
Here be dragons
Things we didn’t cover in depth...

int triangle(int a, int b, int c) {

 if (a <= 0 || b <= 0 || c <= 0) {
 return 4; // invalid
 }
 if (! (a + b > c && a + c > b && b + c > a)) {
 return 4; // invalid
 }
 if (a == b && b == c) {
 return 1; // equilateral
 }
 if (a == b || b == c || a == c) {
 return 2; // isosceles
 }

 return 3; // scalene
}

a > c - b a > b - c b > a - c

More triangle tests...

1. is it fast enough ?
2. doesn’t it use too much

memory ?
3. is it learnable ?
4. is it usable for intended

users ?
5. is it secure ?
6. does it run on different

platforms ?
7. is it portable ?

8. is it easily modifiable ?
9. is the availability sufficient ?
10. is it reliable ?
11. does it comply with relevant

laws ?
12. doesn‘t it do harm to other

applications ?
13.

functional testing, acceptance testing, duration
testing, performance testing, interoperability
testing, unit testing, black-box testing, white-
box testing, grey-box testing, regression testing,
reliability testing, usability testing, portability
testing, security testing, compliance testing,
recovery testing, integration testing, factory
test, robustness testing, stress testing,
conformance testing, developer testing,
acceptance testing, production testing, module
testing, system testing, alpha test, beta test,
third-party testing, specification-based testing,
………

Sorts of Testing

unit

integration

system

efficiency

portability

functionality

white box black box

Level of detail

Accessibility

Characteristics

usability

reliability

module

maintainability

Other dimensions:
- phases in development
- who does it
- goal of testing
-

Test Processes

• Requirements
analysis

• Test planning

• Test development

• Test execution

• Test reporting

• Test result analysis

• Defect retesting

• Regression testing

• Test closure

Test Certification

Test Methods
• Exploratory testing

• Keyword testing

• Domain testing

• Scenario testing

• Capture & Replay

• GUI Testing

• Security testing

• Protocol testing

• Component-based
testing

• Service testing

• Real-time testing

• Embedded systems
testing

• Distributed testing

• Probabilistic testing

• Nondeterministic
testing

• Metamorphic testing

Fuzzing

• One night (it was a dark and stormy night)
in 1990, Bart Miller (U Wisc.) was logged in
over dialup

• There was a lot of line noise due to the
storm

• His shell and editors kept crashing

• This gave him an idea…

Fuzz Testing
• Bart Miller et al., “An Empirical Study of the Reliability of

UNIX Utilities”

• Idea: feed “fuzz” (streams of pure randomness, noise
from /dev/urandom pretty much) to OS & utility code

• Watch it break!

• In 1990, could crash 25-33% of utilities

• Reports every few years since then

• Some of the bugs are the same ones in common security
exploits (particularly buffer overruns)

• http://pages.cs.wisc.edu/~bart/

Fuzzers
• Tools that send malformed/random input to a

program and hope to crash it or find a security
hole

• Firefox is internally using random testing to find
(security) problems

• Fuzzing is useful for finding bugs to protect
programs (“white hat” work)

• But also for finding bugs to hack into systems
(“black hat”)!

Whitebox Fuzzing

• Essentially is dynamic symbolic execution

• E.g. done in large scale at Microsoft

• 100s machines running 24/7

!"#$%&& '()$%&**+,!-./&**+

,0)1$%23405/*6%789 4$5$"8$:%;")<%)$=%8$1(409<%>(#8%?@()A%

B;088$A%><%>5"1C>@D ?(EE$48F%89"901%")"5<808G

H 2338:%0;"#$%34@1$88@48F%;$A0"%35"<$48F%?05$%A$1@A$48FI

H J(#8:%K409$%2LM8F%N$"A%2LM8F%O4"8P$8FI

H Q")<%940"#$A%"8%R8$1(409<%140901"5F%8S409<%7F%340@409<%7T

B=@(5A%940##$4%Q014@8@?9%8$1(409<%>(55$90)%0?%C)@=)%@(980A$%Q,G

H UD";35$:%KUV%,$1(409<%9$";%?@4%K0)6

W X$A01"9$A%?(EE0)# 5">%=09P%7**8%;"1P0)$8%

W 7**8%"338%BA$35@<$A%@)%7>0550@)Y%1@;3(9$48G

W Z7L[%@?%"55 ?(EE0)# >(#8%?@()A%><%,2\U%]

H ,2\U%^%#@5A ;$A"5%"9%_(EE0)# `5<;3018%%

@4#")0E$A%><%,K-%"9%J5($a"9/*b%B`19/*bG

H O4$A09%A($%9@%$)904$%,2\U%9$";%Y%(8$48%]

,2\U%N$8(598,2\U%N$8(598

Grammar Based Testing

Motivation

• Complex (textual) inputs

• Classical application: Testing compilers

• Web applications

• Interpreters

• Anything that uses XML

• Tree-like structures

• HTML injection vulnerabilities

• → Model the input

Context-free Grammars

• Finite set of terminals

• Finite set of nonterminals

• Finite set of rules

• Rule = Nonterminal → list of terminals and
nonterminals

• Starting rule

expr ! expr op expr
expr ! (expr)
expr ! - expr
expr ! id
op ! +
op ! -
op ! *
op ! /
op ! ↑

Derivation

• Interpret production as rewriting rule

• Nonterminal on the left hand side is
replaced by string on the right hand side

• E ⇒ -E ⇒ -(E) ⇒ -(id)

• Sequence of replacements = derivation

Grammar-based Testing

• Test generation = rewriting based on
grammar

• Begin with start symbol

• Replace one nonterminal on the right with
a rule with the nonterminal on the left

• Repeat until only terminals are left

History

• Hanford’s Syntax Machine (1970)

• Earliest reported automated testing
systems

• Inverse of a compiler

• Main application originally: testing compilers

Problems

• Context-free grammars - recursion

• Recursion - infinite number of possible
inputs

• Which rule to replace with next?

• Which alternative to use for the replaced
nonterminal?

Grammar Annotation

• Limit recursion depth

• Limit number of occurrences

• Limit parse tree depth

• Add output checks

Covering Grammars
• Terminal symbol coverage

Each terminal must be used generate at least one test case

• Production coverage
Each production must be used to generate at least one
(section of) test case

• Boundary condition
Annotate each recursive production with minimum and
maximum number of application, then generate:

• Minimum
• Minimum + 1
• Maximum - 1
• Maximum

A Combinatorial Problem

• Testing VoIP software

• Caller, VoIP server, client

• CallerOS: Windows, Mac

• ServerOS: Linux, Sun, Windows

• CalleeOS: Windows, Mac

Same problem as
grammar

Call ::= CallerOS ServerOS CalleeOS;
CallerOS ::= ‘Mac’;
CallerOS ::= ‘Win’;
ServerOS ::= ‘Lin’;
ServerOS ::= ‘Sun’;
ServerOS ::= ‘Win’;
CalleeOS ::= ‘Mac’;
CalleeOS ::= ‘Win’;

XML Schema
<xs:element name = “books”>
 <xs:complexType>
 <xs:sequence>
 <xs:element name = “book” maxOccurs = “unbounded”>
 <xs:complexType>
 <xs:sequence>
 <xs:element name = “ISBN” type = “isbnType” minOccurs = “0”/>
 <xs:element name = “author” type = “xs:string”/>
 <xs:element name = “title” type = “xs:string”/>
 <xs:element name = “publisher” type = “xs:string”/>
 <xs:element name = “price” type = “priceType”/>
 <xs:element name = “year” type = “yearType”/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:simpleType name = “priceType”>
 <xs:restriction base = “xs:decimal”>
 <xs:fractionDigits value = “2” />
 <xs:maxInclusive value = “1000.00” />
 </xs:restriction>
</xs:simpleType>

Generating Tests

• Valid tests

• Generate tests as XML messages by deriving strings
from grammar

• Take every production at least once

• Take choices … “maxOccurs = “unbounded” means
use 0, 1 and more than 1

• Invalid tests

• Mutate the grammar in structured ways

• Create XML messages that are “almost” valid

Mutants = Tests

Every nonterminal symbol in a
production is replaced by other
nonterminal symbols.

Nonterminal Replacement

Every terminal symbol in a production
is replaced by other terminal symbols.

Terminal Replacement

Every terminal and nonterminal symbol
in a production is deleted.

Terminal and Nonterminal
Deletion

Every terminal and nonterminal symbol in
a production is duplicated.

Terminal and Nonterminal
Duplication

EXAMPLE

bank ::= action*
action ::= dep | deb
dep ::= “deposit” account amount
deb ::= “debit” account amount
account ::= digit4
amount ::= “$” digit+ “.” digit2
digit ::= “0” | “1” | “2” | “3” | “4” | “5” | “6” |
 “7” | “8” | “9”

bank ::= action*
action ::= dep | deb
dep ::= “deposit” account amount
deb ::= “debit” account amount
account ::= digit4
amount ::= “$” digit+ “.” digit2
digit ::= “0” | “1” | “2” | “3” | “4” | “5” | “6” |
 “7” | “8” | “9”

dep ::= “deposit” account amount

dep ::= “deposit” amount amount

dep ::= “deposit” account digit

Nonterminal Replacement

deposit $1500.00 $3789.88
deposit 4400 5

bank ::= action*
action ::= dep | deb
dep ::= “deposit” account amount
deb ::= “debit” account amount
account ::= digit4
amount ::= “$” digit+ “.” digit2
digit ::= “0” | “1” | “2” | “3” | “4” | “5” | “6” |
 “7” | “8” | “9”

amount ::= “$” digit+ “.” digit2

amount ::= “.” digit+ “.” digit2

amount ::= “$” digit+ “$” digit2

amount ::= “$” digit+ “1” digit2

Terminal Replacement

deposit 4400 .1500.00
deposit 4400 $1500$00
deposit 4400 $1500100

bank ::= action*
action ::= dep | deb
dep ::= “deposit” account amount
deb ::= “debit” account amount
account ::= digit4
amount ::= “$” digit+ “.” digit2
digit ::= “0” | “1” | “2” | “3” | “4” | “5” | “6” |
 “7” | “8” | “9”

dep ::= “deposit” account amount

dep ::= “deposit” “deposit” account amount

dep ::= “deposit” account account amount

dep ::= “deposit” account amount amount

Terminal and Nonterminal Duplication

deposit deposit 4400 $1500.00
deposit 4400 4400 $1500.00
deposit 4400 $1500.00 $1500.00

bank ::= action*
action ::= dep | deb
dep ::= “deposit” account amount
deb ::= “debit” account amount
account ::= digit4
amount ::= “$” digit+ “.” digit2
digit ::= “0” | “1” | “2” | “3” | “4” | “5” | “6” |
 “7” | “8” | “9”

dep ::= “deposit” account amount

dep ::= account amount

dep ::= “deposit” amount

dep ::= “deposit” account

Terminal and Nonterminal Deletion

4400 $1500.00
deposit $1500.00
deposit 4400

Generating Mutants
• We have more experience with program-based

mutation than input grammar based mutation

• Operators are less “definitive”

• Applying mutation operators

• Mutate grammar, then derive strings

• Derive strings, mutate a derivation “in-process”

• Some mutants give strings in the original grammar
(equivalent)

• These strings can easily be recognized to be equivalent

Verification + Testing

Test Generation with
Model Checkers

• Model checking

Exhaustive state space exploration

• Input
Model + property

• Output
Proof of correctness or counterexample

• Successfully applied in (HW) industry

TODO: Examples - Intel
etc?

Temporal Logic

• Boolean logics + temporal operators

• For our purposes:

• Temporal operators: Globally (G), Next (X)

• Path quantifier: Always (A)

• AG(condition)
Condition always holds along all execution paths

• AG(condition1 -> AX condition2)
Condition 1 always implies condition 2 on all successive states
along all paths

• Counterexample shows violation of
property

• Counterexample = execution sequence

• Property “My test goal is not reachable!”
“Trap property”

• Counterexample = test case

Test Specifications in
Temporal Logics

AG(!goal1)
AG(!goal2)
AG(!goal3)

Testing with Model
Checkers

Model

Model
Checker

Test 1
Test 2
Test 3

Example

!accelerate/stop

accelerate/fast

brake/stop

!accelerate/slowS0

S1

S2
brake/stop

brake/stop

!accelerate/stop

accelerate/slow

Example: SMV
MODULE main
VAR
 accelerate: boolean;
 brake: boolean;
 velocity: { stop, slow,fast };

ASSIGN
 init(velocity) := stop;
 next(velocity) := case
 accelerate & !brake & velocity = stop : slow;
 accelerate & !brake & velocity = slow : fast;
 !accelerate & !brake & velocity = fast : slow;
 !accelerate & !brake & velocity = slow : stop;
 brake: stop;
 TRUE : velocity;
 esac;

Example

• Coverage criteria
AG(!condition)

• Mutation testing
AG(!(condition xor mutant))

• Combinatorial testing
AG !(var1 = val1 & var2 = val2)

Web Testing

Based on slides by Jeff Offutt & Paul Ammann

Issues in Testing Web Software
• A web application is a program that is deployed on the web

–Usually uses HTML as the user interface

–Web-deployment means they are available worldwide

–They accept requests through HTTP and return responses

–HTTP is stateless – each request/response pair is independent

• Web applications are usually very competitive

• A web service is a web-deployed program that accepts XML messages
wrapped in SOAP

–Usually no UI with humans

–Service must be published so other services and applications can
discover them

Web Software

• Composed of independent, loosely coupled software components

–All communication is through messages

–Web application messages always go through clients

–The only shared memory is through the session object – which is very
restricted

–The definition of state is quite different

• Inherently concurrent and often distributed

• Most components are relatively small

• Uses numerous new technologies, often mixed together

Problem Parameters

• HTTP is a stateless protocol

– Each request is independent of previous request

• Servers have little information about where a request
comes from

• Web site software is extremely loosely coupled

– Coupled through the Internet – separated by space

– Coupled to diverse hardware devices

– Written in diverse software languages

Differences in Testing
Web Software

• Traditional graphs do not apply

–Control flow graph

–Call graph

• State behavior is hard to model and describe

• All inputs go through the HTML UI – low controllability

• Hard to get access to server-side state (memory, files,
database) – low observability

• Not clear what logic predicates can be effectively used

• No model for mutation operators on web software

Problem 1: Loosely Coupled

How can we ensure the reliability of this type of software?

Traditional software
Connected by calls and message passing

High and moderate coupling

server

server
client

server

server

Web-based software
Connected with HTTP and XML

Loose, extremely loose, distributed coupling

WebPics

How you’ns doin’ Jeff Offutt!
Search

Recommended Movies

X XXXXX

Examine queue

View account

(Warning: Queue empty)

WebPics

Huan ying guang ling, Wang Shuang!

Search

Recommended Movies

A C DB

Examine queue

View account

Frequent customer bonus

Problem 2: Dynamic Flow of Control

How can we ensure the reliability of this type of system?

Dynamic Execution of
Web Apps

• Parts of the program are generated dynamically

• Dynamic web pages are created when users make
requests

• Different users will see different programs !

• The potential control (the traditional control flow
graph) cannot be known ahead of time

• Users can make unexpected changes to the flow of control

–Back buttons, refreshing, caching, forward button, URL hacking

• State is stored in the server and in the HTML in the client’s
browser

• Operational transitions : Transitions NOT based on an HTML
link or program statement: back, forward, URL rewriting, refresh

nThese transitions can cause unanticipated changes to the state
of the web application

Problem 3: User Control Flow

How can we ensure the reliability of this type of system?

Problem 4: Dynamic Integration

• Software modules can dynamically integrate with others if they
use the same data structures

• EJBs can be inserted into web applications, which can
immediately start using them

• Web services find and bind to other web services dynamically

New Essential Problems of Web Apps

• Web site applications feature distributed integration and are
extremely loosely coupled
Internet and diverse hardware / software

• HTML forms are created dynamically by web applications

UI created on demand and can vary by user and time

• Users can change the flow of control arbitrarily

back button, forward button, URL rewriting, refresh

• Dynamic integration of new software components

new components can be added during execution

Testing Static Hyper Text
Web Sites

• This is not program testing, but checking that all the HTML
connections are valid

• The main issue to test for is dead links

• We should also evaluate

–Load testing

–Performance evaluation

–Access control issues

• The usual model is that of a graph

–Nodes are web pages

–Edges are HTML links

Testing Dynamic Hyper Text
Web Sites

• The user interface is on the client

• Some software is on the client (scripts such as Javascript)

• Most software is on the server

• Client-side testing does not access source or state on
the server

• Server-side testing can use the source or the server state

Client-Side (Black-Box) Testing
• The UI and the software are on separate computers

• The inputs to web software are defined by the HTML form elements

– Text boxes, buttons, dropdown lists, links, etc

• Techniques for generating values

– Supplied by the tester

– Generated randomly

– User session data – data collected from previous users of the software

• Choosing values

– Bypass testing – values that violate constraints on the inputs, as defined by
client-side information

• The problem of finding all screens in a web application is undecidable

Web Application Input Validation

Sensitive
Data

Bad Data
• Corrupts data base
• Crashes server
• Security violationsCheck data

Check data

Malicious
Data

Can “bypass”
data checking

Client

Server

Bypass Testing

n “bypass” client-side constraint enforcement

n Bypass testing constructs tests to intentionally
violate constraints :

–Eases test automation

–Validates input validation

–Checks robustness

–Evaluates security

User Name:

Small

$150

Version to purchase:

Age:

Large

$500

Medium

$250

User Name:

Small

$150

Version to purchase:

Age:

Large

$500

Medium

$250

Username should be
plain text only.

Age should be
between 18 and 150.

Invalid data, please correct …

Alan<Turing 500

Abbreviated HTML
<FORM >

 <INPUT Type=“text” Name=“username” Size=20>

 <INPUT Type=“text” Name=“age” Size=3 Maxlength=3>

 <P> Version to purchase:

 …

 <INPUT Type=“radio” Name=“version” Value=“150” Checked>

 <INPUT Type=“radio” Name=“version” Value=“250”>

 <INPUT Type=“radio” Name=“version” Value=“500”>

 <INPUT Type="submit" onClick="return checkInfo(this.form)">

 <INPUT Type=“hidden” isLoggedIn=“no”>

</FORM>

Bypass Behavior

n Extremely loose coupling …

n combined with the stateless protocol …

n allows users to easily bypass client-side checking :

Saved & Modified HTML
<FORM >

 <INPUT Type=“text” Name=“username” Size=20>

 <INPUT Type=“text” Name=“age” Size=3 Maxlength=3>

 <P> Version to purchase:

 …

 <INPUT Type=“radio” Name=“version” Value=“150”>

 <INPUT Type=“radio” Name=“version” Value=“250”>

 <INPUT Type=“radio” Name=“version” Value=“500” Checked>

 <INPUT Type=“submit” onClick=“return checkInfo (this.form)”>

 <INPUT Type=“hidden” isLoggedIn= “no” >

</FORM>

Allows an input with arbitrary age,
no checking, cost=$25 …

‘<‘ can crash an XML parser

Text fields can have SQL statements

25

yes

SQL Injection

User Name: Password:turing enigma

Original SQL:
SELECT username FROM adminuser WHERE
username=‘turing’ AND password =‘enigma’

“injected” SQL:
SELECT username FROM adminuser WHERE username=‘turing’ OR
‘1’ = ‘1’ AND password =‘enigma’ OR ‘1’ = ‘1’

’ OR ‘1’=‘1 ’ OR ‘1’=‘1

Bypass Testing
n This example illustrates how users can “bypass” client-side

constraint enforcement

n Bypass testing constructs tests to intentionally violate
constraints

–Eases test automation

–Checks robustness

–Evaluates security

n Preliminary results

–Rules for constructing tests

–Successfully found errors in numerous Web apps

Example Client-Side Constraint Rules

n Violate size restrictions on strings

n Introduce values not included in static choices

–Radio boxes

–Select (drop-down) lists

n Violate hard-coded values

n Use values that JavaScripts flag as errors

n Change “transfer mode” (get, post, …)

n Change destination URLs

Server-Side (White-Box)
Testing

n If we have access to the source on the server, we can
try to model the web software

n Many testing criteria on non-web software rely on a
static control flow graph

–Edge testing, data flow, logic coverage, …

–Also slicing, change impact analysis, …

n The standard control flow graph cannot be computed
for web applications !

n But all the pieces of the web pages and the programs
are contained in the software presentation layer …

Atomic Sections

n A section of HTML with the property that if any part of the
section is sent to a client, the entire section is
–May include JavaScript

–All or nothing property

n An HTML file is an atomic section

n Content variable : A program variable that provides data to
an atomic section

n Atomic sections may be empty

Component Expressions
n Atomic sections are combined to model dynamically generated web

pages

n Four ways to combine:

1. Sequence : p1 • p2

2. Selection : (p1 | p2)

3. Iteration : p1*

4. Aggregation : p1 {p2}

– p2 is included inside of p1
n The previous example produces:

 p → p1 • (p2 • (p3 | p4)* | p5) • p6

n Composite sections can be produced automatically

Modeling Component Transitions

Five types of transitions

1. Simple Link Transition: An HTML link (<A> tag)

2. Form Link Transition: Form submission link

3. Component Expression Transition: Execution of a software
component causes a component expression to be sent to the
client

4. Operational Transition: A transition out of the software’s control

• Back button, Forward button, Refresh button, User edits the
URL, Browser reloads from cache

5. Redirect Transition: Server side transition, invisible to user

Modeling Web Applications
n Restricted to the presentation layer only

n Two levels of abstraction

1. Component Interaction Model (CIM)

– Models individual components

– Combines atomic sections

– Intra-component

2. Application Transition Graph (ATG)

– Each node is one CIM

– Edges are transitions among CIMs

– Inter-component

Component Interaction Model : gradeServlet
ID = request.getParameter ("Id");
passWord = request.getParameter ("Password");
retry = request.getParameter ("Retry");
PrintWriter out = response.getWriter();
out.println (“<HTML> <HEAD><TITLE>" + title + "</TITLE></HEAD><BODY>)"P1 =
if ((Validate (ID, passWord)) {
 out.println (“ Grade Report ");P2 =

 out.println(“<p>" + courseName (I) + "“ + courseGrade (I) + “</p>”);P3 =
} else if (retry < 3) {
 retry++;
 out.println ("Wrong ID or wrong password");
 out.println ("<FORM Method=\“get\" Action=\"gradeServlet\">);
 out.println ("<INPUT Type=\“text\" Name=\"Id\" Size=10>");
 out.println ("<INPUT Type=\“password\" Name=\"Password\" Width=20>");
 out.println ("<INPUT Type=\“hidden\" Name=\"Retry\" Value=" + (retry) + ">");
 out.println ("<INPUT Type=\“submit\" Name=\“Submit\" Value=\“submit\">");
 out.println ("Send mail to the professor");

P4 =

 out.println (“<p>Wrong ID or password, retry limit reached. Good bye.") }P5 =

 for (int I=0; I < numberOfCourse; I++)

} else if (retry >= 3) {

out.println(“</BODY></HTML>");P6 =

CIM for gradeServlet

n S = login.html
n A = {p1, p2, p3, p4, p5, p6 }
n CE = gradeServlet = p1 • ((p2 • p3

*) | p4 | p5) • p6

n T = {login.html gradeServlet [get, (Id, Password, Retry)],

 gradeServlet.p4 sendMail [get, ()],

 gradeServlet.p4 gradeServlet [get, (Retry)] }

Application Transition Graph

n Γ : Finite set of web components
n Θ: Set of transitions among web software
 components
– Includes type of HTTP request and data

n Σ: Set of variables that define the web application
 state

n α: Set of start pages

ATG for gradeServlet

• Γ = { login.html, gradeServlet, sendMail, syllabus.html }
• Θ = {login.html syllabus.html [get, ()],
 login.html gradeServlet [get, (Id, Password, Retry)],

 gradeServlet.p4 sendMail [get, ()],

 gradeServlet.p4 gradeServlet [get, (Retry)] }
• Σ = { Id, Password, Retry }
• α = { login.html }

get
(Id, Password, Retry)

gradeServlet p1

p4 p5

p6

p2

p3

ATG for gradeServlet

get (Id, Password, Retry)

sendMail
get ()

syllabus.htmlget ()login.htmlget ()

Web Services

n A Web Service is a program that offers services over
the Internet to other software programs

–Internet-based

–Uses SOAP and XML

–Peer-to-peer communication

n Web service components can integrate dynamically, by
finding other services during execution

n Web services transmit data that are formatted in XML

Difficulties of Testing Web
Services

n Web services are always distributed

n Most “peer-to-peer” communication is between services
published by different organizations

–Trust is a major issue holding back the adoption of web
services !

n Design and implementation are almost never available

n Structured messages are transmitted

n Most testing research so far has focused on messages

–Syntax-based test criteria have been proposed for Web
services

Conclusions
n The Web provides a new way to deploy software

• Web applications:

– offer many advantages

– use many new technologies

– introduce fascinating new problems

• Web software engineering is just starting

• Two very useful techniques:

– Atomic sections : A fundamental model

– Bypass testing : Easy to automate – no source needed

n This is a very active research area

Testing Parallel Systems

Concurrency
• Concurrent Programming is HARD

• Concurrent executions are highly nondeterminisitic

• Rare thread interleavings result in Heisenbugs

• Difficult to find, reproduce, and debug

• Observing the bug can “fix” it

• Likelihood of interleavings changes, say, when you add printfs

• A huge productivity problem

• Developers and testers can spend weeks chasing a single
Heisenbug

Sources of
Nondeterminism

• Interleaving nondeterminism

• Threads can race to access shared variables or monitors

• OS can preempt threads at arbitrary points

• Timing nondeterminism

• Timers can fire in different orders

• Sleeping threads wake up at an arbitrary time in the
future

• Asynchronous calls to the file system complete at an
arbitrary time in the future

Sources of
Nondeterminism

• Hardware relaxations

• The processor can reorder memory instructions

• Can potentially introduce new behavior in a
concurrent program

• Compiler relaxations

• Compiler can reorder memory instructions

• Can potentially introduce new behavior in a
concurrent program (with data races)

Race Condition
• Occurs when two or more threads of execution in a multi­

threaded program try to access the same shared data and at
least one of the accesses is a write.

• Harmful race conditions introduce unpredictability and are
often hard to detect

• The consequences of a race condition might only become
visible at a much later time or in a totally different part of the
program

• They are also incredibly hard to reproduce

• Races are avoided by using synchronization techniques to
correctly sequence operations between threads

Deadlock

• Two or more threads wait on each other

• Forming a cycle and preventing all of them from making any
forward progress

• Can be introduced by the programmer while trying to avoid
race conditions

• For example, incorrect use of synchronization primitives
such as acquiring locks in an incorrect order can result in
two or more threads waiting for each other

• Deadlocks can also occur in cases that don't use locking
constructs; any kind of circular wait can result in a deadlock.

Starvation
• Starvation is an indefinite delay or permanent blocking of one or

more runnable threads in a multithreaded application

• Threads that are not being scheduled to run even though they are
not blocking or waiting on anything else are said to be starving

• Starvation is typically the result of scheduling rules and policies

• For example, if one schedules a high-priority, non-blocking,
continuously executing thread along with a low-priority thread,
then, on a single core CPU, the lower thread will never get a
chance to run

• To help avoid such conditions, the Windows scheduler intervenes
frequently to reduce starvation by occasionally boosting priorities
of starving threads.

Livelocks
• Livelocks occur when threads are scheduled but are not

making forward progress because they are continuously
reacting to each other's state changes

• The best way to describe this is if two people were to
approach each other in a narrow hallway and they step aside
for one another, each time blocking the other's path

• Such side stepping prevents forward progress and results in a
live lock

• High CPU utilization with no sign of real work being done is a
classic warning sign of a livelock

• Livelocks are incredibly difficult to detect and diagnose

Lockset Algorithm
1. For each shared memory variable v, maintain a set C(v) of locks.

Initially C(v) is the list of all locks.

2. Each thread also maintains two sets of locks: locks(t) indicating all
the locks held and writeLocks(t) indicating all the write locks held.

3. On each read of v by thread t:

1. Set C(v) = C(v) intersection locks(t).

2. If C(v) == NULL set, then raise an error.

4. On each write of v by thread t:

1. Set C(v) = C(v) intersection writeLocks(t).

2. If C(v) ==NULL set, then raise an error.

Lockset Algorithm

• As the application progresses, the C(v) of each variable
starts shrinking

• An error is raised if the C(v) ever becomes null
E.g. if the intersection of the threads' locksets are NULL at the time of
accessing the shared memory

• Not all races reported by a lockset algorithm are real races
One can write race-free code without using locks either by applying
clever programming tricks or using other synchronization primitives
such as signaling

• Annotations and certain suppressions can help alleviate this
problem

Testing Concurrent
Systems

• State-less model checking
E.g., CHESS exploration

• Tester controls the scheduler

• Re-run same test with different scheduling

• Exhaustive exploration possible
under certain assumptions

Design by Contract

• A contract of a method describes

• what the method requires (precondition)

• what the method provides (postcondition)

• The contract binds clients (method callers)
and suppliers (method implementors)

A Stack
class STACK[G] -- A stack of G’s
 count: INTEGER
 empty: BOOLEAN -- true if empty
 full: BOOLEAN -- true if full

end

 put(x: G) -- add x to stack
 require -- precondition
 not full
 do … -- implementation
 ensure -- postcondition
 not empty
 item = x
 count = old count + 1
 end

Checking Contracts

• Contracts are checked at runtime

• Failing contracts indicate internal errors
(and therefore raise exceptions)

• Contracts guarantee correctness –
if the program terminates

• Can also be used for program proofs (as Z)

Rights and Obligations

If you promise to call m with pre
satisfied, then I, in return, promise to
deliver a final state in which post is

satisfied.

Design by Contract

Method Obligations Benefits

Client

Supplier

Satisfy
precondition

Obtain
postcondition

Satisfy
postcondition

Rely on
precondition

Design by Contract

put(x) Obligations Benefits

Client

Supplier

Only call put(x) on a
non-full stack

• Stack is updated
• x is on top
• Count is increased

• Update stack
• Put x on top
• Increase count

Need not check
whether stack

is full

Contract Violations

• A violation in the precondition
indicates a defect in the client

• A violation in the postcondition
indicates a defect in the supplier

• Useful for locating defects
(and for putting the blame on someone)

Testing Contracts

Chair of Software Engineering

Contract-based testing
When testing a certain method:

! We try to satisfy its precondition (so that we can
execute it)

! We hope it will not fulfill its postcondition => BUG

precondition

body

postcondition

class ARRAYED_LIST [G] ...

put (v: like item) is

-- Replace current item by `v'.

-- (Synonym for `replace')

require

extendible: extendible

do

...

ensure

item_inserted: is_inserted (v)

same_count: count = old count

end

• When testing a certain method:

• We try to satisfy its precondition (so that we can
execute it)

• We try to violate its postcondition => bugs

