
1

Design by contract for software
vigilance and Diagnosability

Yves Le Traon
Professor, University of Luxembourg

SERVAL team

Research domains

2

Component testing

Integration testing

System testing

Fault localization

Model-driven engineering

Security modelling&testing

(meta)models

code

3

Software testing: cost and trust

Testing Detecting inconsistencies between
implementation and specification

Testing

« in God we trust, for the rest we test » (A. Petrenko)

Reliability

Design for testability
Design for trust

Testing

(2) Design for trust

Testing
(1)

2

4

Testing issues

Test cases
generation

Execution

Oracle
correct ?

test adeq.
criterion

Tests OK

no

yes

Diagnosis
correction

no

yes

Test selection

Fault localization

Test adequacy

Oracle

Trust the software => trust the tests

  Trust is higher if tests are good
  How « testing » tests ?
  A test is « good » if it has a high fault revealing

power
  If tests are not able to detect faults we voluntarilly

injected… be cautious

5

page 6

Class A

Test A

Mutants
generation

mutantA6
mutantA5

mutantA4
mutantA3

mutantA2
mutantA1

Execution

mutantAj alive

Diagnosis Equivalent mutant 1
Consider as

2

Enhance test

mutantAj killed

Error detected Error not detected

Automatique

Non automatique

A test qualification technique: Mutation
analysis

3

7

Design for trust

Specification

Implementation

V & V: Test
Cases, verification Trust based on

consistency

 executable contracts

Reuse trustable components

Design by Contract

8

Two examples of my research

System testing

System testing

S. Pickin, C. Jard, T. Jéron, J-M. Jézéquel,
and Y. Le Traon.
“Test synthesis from UML models of
distributed software”,
IEEE Transactions on Software Engineering,
April 2007

C. Nebut, F. Fleurey, J-M. Jézéquel and
Y. Le Traon, “Automatic Test Generation:
A Use Case-Driven Approach”,
IEEE Transactions on Software Engineering,
March 2006

Contracts for test generation

Contracts and reliability
contracts as embedded oracle functions

 Y. Le Traon, B. Baudry and J-M. Jézéquel
“Design by Contract to improve Software
Vigilance”,
IEEE Transactions on Software Engineering,
August 2006

Design by Contract

Contracts as oracles
Evaluation of a design methodology

9

Overview

1.  Contracts as embedded oracles
  Vigilance
  Diagnosability

2.  Contracts for test generation
3.  Conclusion about Design by Contract

4

Contracts as embedded oracles

11

The objectives

  Quantitative estimate of what contracts really improve in
the software

  We propose two estimates
  Vigilance

  Diagnosability

  Obtain general trends
«Things must be as simple as possible, but no simpler». A.

Einstein

12

Design-by-contract™

  A design philosophy (B. Meyer)
  Component-based OO approach
  A component

  is not responsible from its inputs consistency (caller
responsibility)
  may refuse to work if caller breaks the contract

  is responsible from its result

  Specification is derived into executable contracts

5

13

Design-by-contract™: analysis

BankAccount
{balance ≥ overdraft}

balance: Sum
overdraft: Sum

deposit (amount: Sum)
 {pre: amount > 0}

withdraw (amount: Sum)
 {pre: amount > 0}
 {post: balance = balance@pre - amount}

balance = balance - amount

Contracts can detect faults: help to fault localization

{post: balance = balance@pre + amount} {post: balance ≥ balance@pre}

balance = balance * amount

{post: balance ≥ balance@pre} {post: balance = balance@pre + amount}

Contracts may not detect all faults: contracts quality

14

Overview

1.  Contracts as embedded oracles
  Vigilance
  Diagnosability

2.  Contracts for test generation
3.  Conclusion about Design by Contract

15

Vigilance

Isolated vigilance contracts quality

Intuition:
Combination is
better than addition

Global vigilance

B

C

A

A contracts

component

Informally “the quality or state of being wakeful and alert”

6

16

Vigilance

  Vigilance (V): The vigilance expresses the probability that
the system contracts dynamically detect faulty states that
would have otherwise provoked a failure.

  Weakness is the contrary = 1 - V

17

Axiomatization: intuitive properties

Examples:
GVA2 - System concatenation. The global vigilance of a
system obtained by concatenation of two systems S1 and
S2 cannot be lower than the lowest vigilance of S1 and S2

GVP3 - Contract addition. For any system, its global
vigilance cannot decrease by addition of a contract.

 Useful for formal validation

Shepperd M. and Ince D. Derivation and Validation of Software Metrics. Oxford University Press N.Y., 1993.

18

Vigilance: Test dependency

A

D

C

B

A component plugged into
a system has a vigilance
enhanced by its clients contracts

 ⇒ test dependency RTD

Definition. Det(Ci, Cj): probability that
Ci’s contracts detect an error in Cj

Y. Le Traon, T. Jéron, J-M. Jézéquel and P. Morel, “Efficient OO Integration and Regression Testing ”,
IEEE Transactions on Reliability, March 2000

7

19

Global vigilance

  Let Prob_error(i, S) be the probability the failure
in S comes from the component Ci

prob. component i does not
detect the faulty state

prob. no client detects
the faulty state

20

Formal and Empirical validation

  Axiomatization
  Mathematical modelling
  Theoretical validation of the model
  Validation and model parameterization
  Results and threats to validity

GVP3 - Contract addition. For any system, its global vigilance
cannot decrease by addition of a contract.

Min. Max. Average
% mutants of provider

killed by client’s contracts
50% 84% 69%

GVP3 - Contract addition. For any system, its global vigilance
cannot decrease by addition of a contract.

Shepperd M. and Ince D. Derivation and Validation of Software Metrics. Oxford University Press N.Y., 1993.

Minimum Maximum average

% mutants killed (initial
contracts)

17% 83% 58,5%

% mutants killed after
contracts improvement

72% 100% 87,5%

Isolated Vigilance
Det(Ci,Cj)

21

Vigilance: Empirical results and interpretation

A Telecommunication Switching System (SMDS):
 37 classes, 72 relationships

The Pylon library: 50 classes and 134 relationships
The InterViews library: 146 classes and 420 relationships.

8

22

Vigilance: Conclusion

  About the results:
  no contracts ⇒ system not vigilant
  vigilance improves rapidly with contracts quality
  very high vigilance is very expensive: almost 40%

more contracts to improve from 80% to 100%
vigilance

23

Overview

1.  Contracts as embedded oracles
  Vigilance
  Diagnosability

2.  Contracts for test generation
3.  Conclusion about Design by Contract

24

Diagnosability

  Diagnosability expresses the effort for the
localization of a fault.

9

25

Diagnosability: the help of contracts

Diagnosis scope

Classical
software

26

Diagnosability: the help of contracts

Diagnosis scope

Designed
by contract

software

E
xc

ep
tio

n
tre

at
m

en
t

(d
ia

gn
os

is
 a

nd
 d

ef
au

lt
m

od
e)

27

Diagnosability

contract 1 contract 2 contract 3 contract 4 contract #contracts-1 contract #contracts

IS1 IS2 IS3 IS4 IS5 IS#contracts

DiagnosisScope(i,j)=(j-i+1)*|IS|

i=2 j=4

is the probability that contract j detects a faulty statement in ISi

10

28

Diagnosability: trends

29

Conclusion Vigilance & Diagnosability

 Measures estimate the contribution of
contract quality and density

 The quality of contracts is more
important than their quantity

 Related work
  Automated fault localization (ICSE 2006)

B. Baudry, F.Fleurey and Y. Le Traon, “Improving Test Cases for Accurate
Diagnosis”, in proceedings of the 28th Int. Conference on Software Engineering
(ICSE 2006), Shanghai, May 2006.

30

Design for trust

Specification

Implementation

V & V: Test
Cases, verification Trust based on

consistency

 executable contracts

Reuse trustable components

Design by Contract

11

page 31

Design for trust loop

initial tests
generation and

bugs
correction.

1

contracts

test impl.

 automatic
optimization of
the initial tests

set

2

contracts

test impl.

Improve
contracts

5

contracts

test impl.

M
S=

 tr
us

t

measure
contracts
efficiency

4

M
S=

 tr
us

t contracts

test impl.

Test qualified Implementation
 qualified

bugs
correction

3

contracts

test impl.
MS=trus

t

Specification
(contracts)
 qualified

32

Overview

1.  Contracts as embedded oracles
  Vigilance
  Diagnosability

2.  Contracts for test generation
3.  Conclusion about Design by Contract

Contracts for test generation

12

34

Problem analysis: Model-Based System Testing
(for product lines)

 System requirements ...
 … evolve very often

 Nokia : 69% of the requirements modified, 22%
modified twice

  need to build quickly new tests from the new
requirements

 … are in natural language
  need of a formalization to apply automatic test

generation techniques

35

The problem: a gap to bridge

Requirements
requirement 1.1 "Register a book"

the "book" becomes "registered" after the
"librarian" did "register" the "book".

the "book" is "available" after the
"librarian" did "register" the "book".

Test cases

?

36

The problem: a gap to bridge

Requirements
requirement 1.1 "Register a book"

the "book" becomes "registered" after the
"librarian" did "register" the "book".

the "book" is "available" after the
"librarian" did "register" the "book".

Requirement model simulation

Test objectives
[connect(p1), plan(p1,m1)]
 [connect(p1), plan(p1,m1),
open(p1,m1), close(p1,m1)]

Test cases

Test selection
criteria

13

37

A use case contract language
  First order logic expressions

  Boolean properties (predicates) = name+typed
parameters
  Ex: planned(m:meeting)

 manager(u:participant,m:meeting)
  Enumerated properties
  Classical boolean operators (and, or, implies, not)
  Quantifiers (forall, exists)

  Benefits:
  formalization of the use cases
  dependencies between the use cases can be deduced

Plan not planned(m) planned(m) and
manager(p,m)

m:meeting

p:participant R
eq

ui
re

m
en

ts
 m

od
el

s

38

A use case contract language : Deducing
dependencies

#use case OPEN

UC open(u:participant;m:mtg)
pre created(m) and moderator(u,m) and not closed(m) and
not opened(m) and connected(u)
post opened(m)

#use case CLOSE

UC close(u:participant; m:mtg)
pre opened(m) and moderator(u,m)
post ...

OPEN(u1,m1);CLOSE(u1,m1) is a correct sequence

39

The Use Case Transition System
(UCTS)

connected(p1), created(m1),
manager(p1,m1),moderator(p1,m1)

opened(m1)

connected(p1), created(m1),
manager(p1,m1), moderator(p1,m1)

connected(p1), created(m1),
manager(p1,m1), moderator(p1,m1)

closed(m1)

connected(p1), created(m1),
manager(p1,m1), moderator(p1,m1)

opened(m1), entered(p1,m1)

close(p1,m1)

enter(p1,m1)

open(p1,m1)

close(p1,m1)

Te
st

 g
en

er
at

io
n

OPEN(p1,m1);ENTER(p1,m1); CLOSE(p1,m1) is a correct sequence

14

40

Test selection criteria

“all configurations making its
precondition true”

Generate sequences leading to all
licit application of the use case

.

.

.

Correct
sequence

correct action

“all configurations making its
precondition false”

Nominal behaviors Robustness behaviors

Generate sequences leading to
an invalid application of the use
case

.

.

.

Correct
sequence

Non specified
action

41

Hypothesis

  H1: Test cases produced from requirements are
« efficient » to test the overall system.
  Adequacy criterion from the industry : code coverage
  Comparing test criteria

  H2: Most real-industrial requirements can be
treated with such an approach
% operational requirements which can be covered by

the approach

42

H1: Academic experiments

  3 case studies
  FTP client
  ATM
  Virtual meeting

  Code repartition
  Code Coverage

for the virtual meeting example

Nominal code
65 %

Robustness code
w.r.t. spec

8%

Robustness code
w.r.t. env

18%

Dead code
9%

Code repartition

Code covered with APT + robustness criterion

Code coverage

15

43

H2: Experiments with TAS and France
Telecom

  TAS: Two components of weapon navigation system
(Mirage 2000-9 and Rafale).

  France telecom: Three services on the livebox 2 modem
  Translation of the requirements from English to RDL

translated
could be translated

(limit of the prototype tool)

cannot be translated
(arithmetic, real-time)

70%

20%
10%

44

New issues

  Initiate many researches:
  MDE for Requirements
  Product lines testing and verification

  Commercial tools are now available based on
similar principles

  Empirical validation of Model-based testing
  ALCATEL: testing new distributed telecom services
  French Defense Department: testing cryptographic

components

45

Overview

1.  Contracts as embedded oracles
  Vigilance
  Diagnosability

2.  Contracts for test generation
3.  Conclusion about Design by Contract

16

46

Conclusion

 Design by Contract
  an instrument to build trust in a system
 Declarative approach
  Lightweight

 Can be used for
  Fault localization
  Test generation
  Security
  Vigilance  adaptive resilient systems

Creation of the main conference on testing,
verification and validation

47

  Gang of Four : L. Briand, J. Offutt, B. Baudry, Y. Le Traon
  1st edition : 303 abstracts, 224 full papers
  250 participants
  8 associated workshops
  Selection rate: 20-25 %

48

Questions ?

« intelligently react to abnormal situations and ensure the quality
of the information » (P1 conclusion)

17

49

Questions

Q
ue

st
io

ns

50

...

51

Threats to validity: sensitivity analysis

never contradict the axioms

18

52

Threats to validity: contracts repartition

Unit Testing, Virtual Meeting, Junit Auto-Test, Loading JDK, Jtree

53

Threats to validity: contracts repartition

54

Proof for GV3

  Consider that we add a contract to one component, for
instance, C1 Det(C’1, C’1) ≥ Det(C1, C1) (1)

∀ k / C1 RTD Ck, Det(C’1, Ck) ≥ Det(C1, Ck)

Consider that C1 has q-1 servers, we denote [C2, C3 … Cq]

From (2) ∀ k ∈ [2 .. q], LocWeak(Ck ,S’) ≤ LocWeak(Ck ,S)

V(S’) ≥ V(S)

GVP3 - Contract addition. For any system, its global vigilance cannot decrease by addition of a contract.

==>

∀ k / C1 RTD Ck LocWeak(Ck ,S’) ≤ LocWeak (Ck ,S) (2) ==>

==>

19

55

Diagnosability: Measures

  Assumptions:
  the contracts repartition in a flow is uniform	

  Each IS has same size ISsize (=#stat div #contracts),	

  the closer a contract is to the faulty statement i the more
probable it can detect the fault	

  the contracts have an equal probability p to detect a fault
coming from the statements they are directly
consecutive to	

  each statement has the same probability to be faulty
equal to 1/Nstat	

56

Diagnosability

contract 1 contract 2 contract 3 contract 4 contract #contracts-1 contract #contracts

IS1 IS2 IS3 IS4 IS5 IS#contracts

DiagnosisScope(i,j)=(j-i+1)*|IS|

i=2 j=4
is the probability that contract j detects a faulty statement in ISi

Absorption coefficient α: pj = αj.p

57

Diagnosability: simplified

contract 1 contract 2 contract 3 contract 4 contract #contracts-1 contract #contracts

IS1 IS2 IS3 IS4 IS5 IS#contracts

DiagnosisScope(i,j)=(j-i+1)*|IS|

i=2 j=4

is the probability that contract j detects a faulty statement in ISi

20

Cursus and diploma

58

1994. Master in computer science (DEA)
from INPG, Grenoble.

1994. Engineering Degree - ENSIMAG.

1994-1997. PhD at INPG- Grenoble
1997-1998. PostDoc at LCIS-INPG lab

(Valence)

1998-2004. Assistant professor, Univ. of
Rennes 1 - IRISA lab.

2004. Authorization for the management of
research (HDR).

2004-2006. France Télécom R&D

Nov. 2006. Associate professor –
 Telecom Bretagne

Sept. 2008. Professor
 Head of the SERVAL team

Julyt. 2009. Professor
 Univ. Luxembourg

7 teams
5 institutes
2 countries
1 company

59

Some results and ongoing work

  Unit component testing
  Self-testable components (IEEE Software 01)
  Evolutionary algorithms (IEEE Software 05, STVR 05)

  Integration testing (best paper ISSRE 09, IEEE Trans. on Reliability, ECOOP 01)
  System Testing (IEEE TSE 06, IEEE TSE 07)
  Testability Analysis

  Refactoring of UML models (Best paper UML 01)
  Measurements (Information Software and Technology 05, IEEE TSE. 06)

  Security
  Modeling (ICST 08, best paper Models 08)
  Testing (ISSRE 07, ISSRE 08, ICST 08, ICST 09)

  Communication and networks
  P2P system testing (Best paper ISSRE 08)

  MDE and Barriers to Systematic Model Transformation Testing (SoSym journal
07, Communications of the ACM 2010)

… Aspect Oriented Programming and testing
… Requirements and Model-driven engineering
… ad-hoc network testing
… security contracts

Research domains

60

Component testing

Integration testing

System testing

Fault localization

Model-driven engineering

Security modelling&testing

(meta)models

code

21

61

Some results and ongoing work

  Unit component testing
  Self-testable components (IEEE Software 01)
  Evolutionary algorithms (IEEE Software 05, STVR 05)

  Integration testing (best paper ISSRE 09, IEEE Trans. on Reliability, ECOOP 01)
  System Testing (IEEE TSE 06, IEEE TSE 07)
  Testability Analysis

  Refactoring of UML models (Best paper UML 01)
  Measurements (Information Software and Technology 05, IEEE TSE. 06)

  Security
  Modeling (ICST 08, best paper Models 08)
  Testing (ISSRE 07, ISSRE 08, ICST 08, ICST 09)

  Communication and networks
  P2P system testing (Best paper ISSRE 08)

  MDE and Barriers to Systematic Model Transformation Testing (SoSym journal
07, Communications of the ACM 2010)

… Aspect Oriented Programming and testing
… Requirements and Model-driven engineering
… ad-hoc network testing
… security contracts

Industrial partnerships and valorization

62

  Contracts
  European fundings

  2000-2004: Café, Families :Product lines, OO modeling
–  NOKIA, Ericsson, Philips …

  2005-2006: Modelware :Model-driven Engineering
  French fundings

  Cote, Politess, Dali
  Direct contracts

  1995-1998: PEA Aérospatiale/Airbus
  2002-2004 :Caroll (INRIA, CEA, THALES)
  2008+ : French Defense Department (Security Testing)

  Main french partners
  THALES TRT and TAS,
  France Telecom R&D,
  EADS Test & Services,
  French Defense Department (DGA)

Industrial partnerships and valorization

63

 Tools developments and valorization
  UCTSystem
  Kermeta (metamodeling language for executability)
  Many prototype tools (AOP testing, Security Testing)

 Two years at France Télécom R&D
  Real world projects

  IS Migration, new telecom services modelling and testing
(MDE)

 Courses for companies
  The « Test essentials » program for ALCATEL
  Thomson, Mitsubishi, EDS…

22

64

International visibility

  9 past PhDs, 3 running PhDs

  +90 int. papers (15 journals)
  Communications of the ACM (CACM)
  (3) IEEE Trans. on Software Engineering,
  IEEE Trans. on Reliability,
  (2) Software, Testing, Verification & Reliability journal (STVR)
  (2) IEEE Software,
  IEEE Design & Test,
  SoSym,
  Information & Software Technology.

  PC member
  IEEE ICST, IEEE ISSRE, IEEE Metrics, ICSOFT, ICFI…

  Steering committees
  Testing: IEEE ICST, Mutation, IWoTA, SecTest
  Reliability : IEEE ISSRE

Cursus and diploma

65

1994. Master in computer science (DEA)
from INPG, Grenoble.

1994. Engineering Degree - ENSIMAG.

1994-1997. PhD at INPG- Grenoble
1997-1998. PostDoc at LCIS-INPG lab

(Valence)

1998-2004. Assistant professor, Univ. of
Rennes 1 - IRISA lab.

2004. Authorization for the management of
research (HDR).

2004-2006. France Télécom R&D

Nov. 2006. Associate professor –
 Telecom Bretagne

Sept. 2008. Professor
 Head of the SERVAL team

Julyt. 2009. Professor
 Univ. Luxembourg

7 teams
5 institutes
2 countries
1 company

Industrial partnerships and valorization

66

  Contracts
  European fundings

  2000-2004: Café, Families :Product lines, OO modeling
–  NOKIA, Ericsson, Philips …

  2005-2006: Modelware :Model-driven Engineering
  French fundings

  Cote, Politess, Dali
  Direct contracts

  1995-1998: PEA Aérospatiale/Airbus
  2002-2004 :Caroll (INRIA, CEA, THALES)
  2008+ : French Defense Department (Security Testing)

  Main french partners
  THALES TRT and TAS,
  France Telecom R&D,
  EADS Test & Services,
  French Defense Department (DGA)

23

Industrial partnerships and valorization

67

 Tools developments and valorization
  UCTSystem
  Kermeta (metamodeling language for executability)
  Many prototype tools (AOP testing, Security Testing)

 Two years at France Télécom R&D
  Real world projects

  IS Migration, new telecom services modelling and testing
(MDE)

 Courses for companies
  The « Test essentials » program for ALCATEL
  Thomson, Mitsubishi, EDS…

68

International visibility

  9 past PhDs, 3 running PhDs

  100 int. papers (18 journals)
  Communications of the ACM (CACM)
  (3) IEEE Trans. on Software Engineering,
  IEEE Trans. on Reliability,
  (2) Empirical Software Engineering
  (2) Software, Testing, Verification & Reliability journal (STVR)
  (2) IEEE Software,
  IEEE Design & Test,
  (2) SoSym,
  Information & Software Technology.

  PC member
  IEEE ICST, IEEE ISSRE, IEEE Metrics, ICSOFT, ICFI…

  Steering committees
  Testing: IEEE ICST, Mutation, IWoTA, SecTest
  Reliability : IEEE ISSRE

69

Hard point 2: test objective generation

  Test objective
= path of the UCTS
= sequence of instantiated use cases

  Generating test objectives
  Extracting short paths in the UCTS
  Extracting a « reasonable » number of paths
 Test criteria

  4 structural criteria
  1 semantic criterion
  1 robustness criterion Test objectives

{UC1(p1,p2), UC3(p2),UC4(p1)}
{UC3(p1),UC1(p2,p2)}
…

Test
criteria

Te
st

 g
en

er
at

io
n

UCTS

