
Model-based TestingModel-based Testing

Gordon Fraser Gordon Fraser · · Saarland UniversitySaarland University

Slides by Lars Frantzen

Conformance Testing

SystemSystem

specifies

conforms to

Test Generation Test ExecutionTest Suite

Model

Verdict

Soundness of Conformance Testing

SystemSystem

specifies

conforms to

Test Generation Test Execution

Model

Verdict

Completeness of Conformance Testing

SystemSystem

specifies

conforms to

Test Generation Test Execution

Model

Verdict

Remarks on Soundness and Completeness

A test system, which always says is sound.

A test system, which always says is complete.

We want test systems which are sound and complete!

Soundness and Completeness of Conformance Testing

SystemSystem

specifies

conforms to

Test Generation Test Execution

Model

Verdict

More Remarks on Soundness and Completeness

Testing can never be
sound and complete!

Edsger W.
Dijkstra

Edsger W.
Dijkstra

Proving Soundness and Completeness

SystemSystem

specifies

conforms to

Test Generation Test ExecutionTest Suite

Model

Verdict

Proving Soundness and Completeness

SystemSystem

specifies

conforms to

Test Generation Test ExecutionTest Suite

Model

Verdict

Physical
ingredients

Proving Soundness and Completeness

SystemSystem

specifies

conforms to

Test Generation Test ExecutionTest Suite

Model

Verdict

Physical
ingredients

Observations

Observations

Observations

Executing a test case on the system yields a set of

observations.

Every observation represents a part of the implementation

 model of the system, i.e. the model describing how the

real system behaves.

Test Suite

SystemSystem Test Execution

Observations

Test Cases

SystemSystem Test Execution

Implementation Models

The set of all observations made with all possible test

cases represents the complete implementation model of

the system!

Test Suite

SystemSystem Test Execution

Test Cases

SystemSystem Test Execution

Observations

Implementation Model

Implementation Models

Depending on the chosen class of implementation models,

the observations might have to be transformed, first.

Implementation Model

Observations

transform

Implementation Models

Assuming from now on the validity of the test hypothesis,

we know that for every system there is a corresponding

observational equivalent implementation model.

This implementation model is unknown since in practice

we cannot execute all possible test cases at the system.

But since we know it exists, we can now define formally

what conformance means!

Implementation Model

SystemSystemSystemSystem

Observational Equivalence

SystemSystem

Test ExecutionTest Suite

Implementation Model

Formal
Test Execution

Observations

Physical
ingredients

=

Proving Soundness and Completeness

SystemSystem

specifies

conforms to

Test Generation Test ExecutionTest Suite

Model

Verdict

Physical
ingredients

Observations

Proving Soundness and Completeness

specifies

imp

Test Generation
Formal

Test ExecutionTest Suite

Model

Verdict
Observations

Implementation Model

Proving Soundness and Completeness

specifies

imp

Test Generation
Formal

Test ExecutionTest Suite

Model

Verdict
Observations

Implementation Model

Now we can define:

System conforms-to the specification model

⇔
the implementation model is imp-correct to the specification model

Proving Soundness

specifies

imp

Test Generation
Formal

Test Execution

Model

Verdict
Observations

Implementation Model

Proving Completeness

specifies

imp

Test Generation
Formal

Test Execution

Model

Verdict
Observations

Implementation Model

Proving Soundness and Completeness

specifies

imp

Test Generation Formal
Test Execution

Model

Verdict
Observations

Implementation Model

Test Suite

The proof-obligation to show the soundness and completeness
of a test generation algorithm w.r.t. an implementation relation imp
is:

Show for all implementation models:

implementation model M is imp-correct to the specification model

⇔
M passes all test cases which the algorithm can generate

Proving Soundness and Completeness

SystemSystem

specifies

conforms to

Test Generation Test ExecutionTest Suite

Model

Verdict

Physical
ingredients

Observations
Verdict

Test Suite

Having done so, you have shown that:

System passes all test cases which the algorithm can generate

⇔
System conforms-to the specification model

Summary

We want test generation algorithms to be sound and

complete for the conforms-to relation.

Every system has an underlying implementation model

consisting of all possible observations one can make with

all possible test cases.

To restrict the class of systems, assumptions are made on

the test execution.

Based on these assumptions, one has to prove that an

implementation model exists which is observational

equivalent to the system.

Summary

Now the implementation model can be substituted for the

real system (aka the test hypothesis).

Between the implementation model and the specification

model implementation relations can be defined.

Conformity of a system to a model is then defined by the

imp-correctness of its underlying implementation model.

The main proof obligation is to show the soundness and

completeness of the test generation algorithm w.r.t. the

chosen implementation relation.

Finite State Machines

Original domains:
sequential circuits

communication protocols

Two types of Finite State Machines (FSM) matter for

testing:
Mealy Machines

Moore Machines

Commonly, FSM is identified with Mealy Machine.

Mealy Machines

s1 m/m0 s2

state s1 state s2 = (s1,m)
input m

output m0 = (s1,m)

Alternating Bit Protocol

s1

s4 s3

 m/m0

a0/-

a0/-
a1/-

 a0/m1
 m/-

m/m1

 a1/-

User
Sender Receiver

m
 m0,m1

a0,a1

s2
a1/m0
m/-

 a0/-
 a1/-

The Sender as a
Mealy Machine:

Conformance

Specification models and implementation models are

Mealy Machines.

What does conformance mean here?

s1

s2 s3

a/0

b/0

a/0a/1

b/1

b/1

i1

i2 i3

a/0

b/1

a/0a/1

b/1

b/1

Ms Mi1

imp

Conformance

We have Mi imp Ms ⇔ Mi is equivalent to Ms

Two FSM are equivalent iff for every input sequence they

produce the same output sequence.

s1

s2 s3

a/0

b/0

a/0a/1

b/1

b/1

i1

i2 i3

a/0

b/1

a/0a/1

b/1

b/1

Ms Mi1

imp

Ms(bbb) = 110 ≠ Mi1(bbb) = 111Ms(bbb) = 110 ≠ Mi1(bbb) = 111

Test Cases

A test case is an input sequence together with its output

sequence, derived from the specification model.

Test case: input: bbb
 output: 110

s1

s2 s3

a/0

b/0

a/0a/1

b/1

b/1

Ms

Formal Test Execution

A test case is an input sequence together with its output

sequence, derived from the specification model.

Formally executing a test case means giving the input

sequence to the implementation model.

i1

i2 i3

a/0

b/1

a/0a/1

b/1

b/1

Mi1

Test case: input: bbb
 output: 110

Observations

A test case is an input sequence together with its output

sequence, derived from the specification model.

Formally executing a test case means giving the input

sequence to the implementation model, and observing the

corresponding output sequence.
i1

i2 i3

a/0

b/1

a/0a/1

b/1

b/1

Mi1

Observation: input: bbb
 output: 111

Test case: input: bbb
 output: 110

a/0

Verdicts

A test case is an input sequence together with its output

sequence, derived from the specification model.

Formally executing a test case means giving the input

sequence to the implementation model, and observing the

corresponding output sequence - leading to a verdict.
i1

i2 i3

b/1

a/0a/1

b/1

b/1

Mi1

Test case: input: bbb
 output: 110

+

=

Observation: input: bbb
 output: 111

Implementation Models

But we don't know the implementation model a priori, we

have just executed a single test case!

What has really happened, is this:

o1 o2 o3
b/1b/1b/1  Mi1

Test case: input: bbb
 output: 110

o4

SystemSystem

Test Execution
Observation: input: bbb
 output: 111

transfor
m

Implementation Models

All we know is a little puzzle-piece from Mi1.

Mi1

o1 o2 o3
b/1b/1b/1

o4



a/? a/? a/? a/?

????

Black Box

o1 o2 o3
b/1b/1b/1

o4

?
b/?

Implementation Models

But this is sufficient to observe non-conformity, since all

possible completions of the Black Box are non-

conforming!

s1 s2 s3
b/1b/1b/1

s4

s1

s2 s3

a/0

b/0

a/0a/1

b/1

b/1

Ms

imp



Mi1

o1 o2 o3
b/1b/1b/1

o4

a/? a/? a/? a/?

????

Black Box

?
b/?

Test Generation

A sound and complete test generation algorithm must

generate all possible test cases.

s1

s2 s3

a/0

b/0

a/0a/1

b/1

b/1

Ms

Test Cases

Input Output

a 0
b 1
ab 01
aab 001
bbb 110
abababab 01110001...

Dijkstra Revisited

A sound and complete test generation algorithm must

generate all possible test cases.

Test Cases

Input Output

a 0
b 1
ab 01
aab 001
bbb 110
abababab 01110001...

Testing can never be
sound and complete!

Edsger W.
Dijkstra

Edsger W.
Dijkstra

Test Generation

A sound and complete test generation algorithm must

generate all possible test cases.

s1

s2 s3

a/0

b/0

a/0a/1

b/1

b/1

Ms

Test Cases

Input Output

a 0
b 1
ab 01
aab 001
bbb 110
abababab 01110001...

Dijkstra Revisited

When should we stop testing?

Which test cases shall we select?

⇒ How to deal with the practical incompleteness of testing?

1) Accept it, and focus on heuristics like code coverage,

model coverage, timing constraints, randomness,

test purposes, etc.

2) Try to find further assumptions, which makes testing

complete in practice, i.e., leading to a finite sound and

complete test suite.

Dijkstra Revisited

When should we stop testing?

Which test cases shall we select?

⇒ How to deal with the practical incompleteness of testing?

1) Accept it, and focus on heuristics like code coverage,

model coverage, timing constraints, randomness,

test purposes, etc.

2) Try to find further assumptions, which makes testing

complete in practice, i.e., leading to a finite sound and

complete test suite.

Remember...

Dijkstra is right (of course).

He refers to the fact, that the number of test cases in a

sound and complete test suite is usually infinite (or at least

too big).

If that would not be the case, testing could prove the

conformity of the system to the model (given some

assumptions on the system).

2) Try to find further assumptions, which makes testing

complete in practice, i.e., leading to a finite sound and

complete test suite.

Checking Sequences

A checking sequence for Ms is an input sequence that

distinguishes the class of machines equivalent to Ms from

all other machines.

The length of this sequence can be used to compare the

time complexity of the several algorithms.

Mandatory Assumptions

(1) Ms is minimized, meaning that Ms has no equivalent

states. Equivalent states produce the same output

sequence for every input sequence.

s1

s2 s3

b/1a/0

Ms

s4

b/1b/1

a/0 a/0

a/0
b/0

equivalent

Mandatory Assumptions

(1) Ms is minimized, meaning that Ms has no equivalent

states. Equivalent states produce the same output

sequence for every input sequence.

s1

s2 s3

b/1a/0

Ms

s4

b/1b/1

a/0 a/0

a/0
b/0

Mandatory Assumptions

(1) Ms is minimized, meaning that Ms has no equivalent

states. Equivalent states produce the same output

sequence for every input sequence.

s1

s5

b/1a/0

Ms (minimized)

s4

b/1

a/0

a/0
b/0

Mandatory Assumptions

(1) Ms is minimized.

(2) Ms is strongly connected, meaning every state can reach

every other state.

s1

s5

b/1a/0

Ms (minimized)

s4

b/1

a/0
b/0

Ms is not strongly connected!a/0

Mandatory Assumptions

(1) Ms is minimized.

(2) Ms is strongly connected.

(3) Mi has the same inputs and outputs as Ms, and does not

change during runtime.

Mandatory Assumptions

(1) Ms is minimized.

(2) Ms is strongly connected.

(3) Mi has the same inputs and outputs as Ms, and does not

change during runtime.

Mandatory

Mandatory and Additional Assumptions

(1) Ms is minimized.

(2) Ms is strongly connected.

(3) Mi has the same inputs and outputs as Ms, and does not

change during runtime.

(4) Ms and Mi have an initial state.

Mandatory and Additional Assumptions

(1) Ms is minimized.

(2) Ms is strongly connected.

(3) Mi has the same inputs and outputs as Ms, and does not

change during runtime.

(4) Ms and Mi have an initial state.

(5) Ms and Mi have a reset message that from any state of

the machine causes a transition which ends in the initial

state, and produces no output.

Mandatory and Additional Assumptions

(1) Ms is minimized.

(2) Ms is strongly connected.

(3) Mi has the same inputs and outputs as Ms, and does not

change during runtime.

(4) Ms and Mi have an initial state.

(5) Ms and Mi have a reset message. s1

s5

b/1a/0

Ms (minimized)

s4

b/1

a/0
b/0

Having a reset message,
Ms is strongly connected!

a/0

reset

Mandatory and Additional Assumptions

(1) Ms is minimized.

(2) Ms is strongly connected.

(3) Mi has the same inputs and outputs as Ms, and does not

change during runtime.

(4) Ms and Mi have an initial state.

(5) Ms and Mi have a reset message.

(6) Mi has the same number of states than Ms.

Mandatory and Additional Assumptions

(1) Ms is minimized.

(2) Ms is strongly connected.

(3) Mi has the same inputs and outputs as Ms, and does not

change during runtime.

(4) Ms and Mi have an initial state.

(5) Ms and Mi have a reset message.

(6) Mi has the same number of states than Ms. Under this

assumption, two types of faults can be present in Mi:

Output faults: a transition produces a wrong output

Transfer faults:a transition goes to a wrong state

Output- and Transfer Faults

s1

s2 s3

a/0

b/0

a/0a/1

b/1

b/1

i1

i2 i3

a/0

b/1

a/0a/1

b/1

b/1

Ms

Mi1

imp

i1

i2 i3

b/0

a/0

b/1b/1

a/1

a/0 Mi2
imp

Output fault

Transfer and

Output faults

Mandatory and Additional Assumptions

(1) Ms is minimized.

(2) Ms is strongly connected.

(3) Mi has the same inputs and outputs as Ms, and does not

change during runtime.

(4) Ms and Mi have an initial state.

(5) Ms and Mi have a reset message.

(6) Mi has the same number of states than Ms.

Mandatory and Additional Assumptions

(1) Ms is minimized.

(2) Ms is strongly connected.

(3) Mi has the same inputs and outputs as Ms, and does not

change during runtime.

(4) Ms and Mi have an initial state.

(5) Ms and Mi have a reset message.

(6) Mi has the same number of states than Ms.

(7) Ms and Mi have a status message. Giving a particular

input “status”, the output uniquely defines the current state.

Mandatory and Additional Assumptions

(1) Ms is minimized.

(2) Ms is strongly connected.

(3) Mi has the same inputs and outputs as Ms, and does not

change during runtime.

(4) Ms and Mi have an initial state.

(5) Ms and Mi have a reset message.

(6) Mi has the same number of states than Ms.

(7) Ms and Mi have a status message.

(8) Ms and Mi have a set message. From the initial state the

system can be transferred to every other state s by giving

the input set(s). No output is produced while doing so.

Mandatory and Additional Assumptions

(1) Ms is minimized.

(2) Ms is strongly connected.

(3) Mi has the same inputs and outputs as Ms, and does not

change during runtime.

(4) Ms and Mi have an initial state.

(5) Ms and Mi have a reset message.

(6) Mi has the same number of states than Ms.

(7) Ms and Mi have a status message.

(8) Ms and Mi have a set message.

Additional

A Sound and Complete Algorithm

For all states s and all inputs a do:

1. Apply the reset message to bring Mi to the initial state.

2. Apply a set message to transfer Mi to state s.

3. Apply the input a.

4. Verify that the output conforms to the specification Ms.

5. Apply the status message and verify that the final state

conforms to the specification Ms.

This algorithm is sound and complete given that all assumptions
(1) – (8) hold.

The length of the checking sequence is 4 * |I| * |S|

Transition Tours

To get rid of the set message, and possibly shorten the

test suite, we can build a sequence that visits every state

and every transition at least once – a transition tour.

The shortest transition tour visits each transition exactly

once, and is called an Euler tour. It only exists for

symmetric FSM (every state is the start state and end

state of the same number of transitions).

An Euler Tour can be computed in linear time w.r.t. the

number of transitions.

In non-symmetric FSM finding the shortest tour is referred

to as the Chinese Postman Problem. It can be solved in

polynomial time.

Transition Tours

Problem:

Covering all transitions of Ms, and checking whether

Mi produces the same output, is

not complete!

s1

s2 s3

a/0

b/0

a/0a/1

b/1

b/1

i1

i2 i3

a/0

b/1

a/0a/1

b/1

b/1

Ms

Mi1
imp

i1

i2 i3

b/0

a/0

b/1b/1

a/1

a/0 Mi2
imp

Transition Tours

Problem:

Covering all transitions of Ms, and checking whether

Mi produces the same output, is

not complete!

s1

s2 s3

a/0

b/0

a/0a/1

b/1

b/1

i1

i2 i3

a/0

b/1

a/0a/1

b/1

b/1

Ms

Mi1
imp

i1

i2 i3

b/0

a/0

b/1b/1

a/1

a/0 Mi2
imp

ababab is an Euler tour

Transition Tours

Problem:

Covering all transitions of Ms, and checking whether

Mi produces the same output, is

not complete!

s1

s2 s3

a/0

b/0

a/0a/1

b/1

b/1

i1

i2 i3

a/0

b/1

a/0a/1

b/1

b/1

Ms

Mi1
imp

i1

i2 i3

b/0

a/0

b/1b/1

a/1

a/0 Mi2
imp

ababab is an Euler tour

The Euler tour is sufficient
to spot the output fault of Mi1:

011100 ≠ 011101

Transition Tours

Problem:

Covering all transitions of Ms, and checking whether

Mi produces the same output, is

not complete!

s1

s2 s3

a/0

b/0

a/0a/1

b/1

b/1

i1

i2 i3

a/0

b/1

a/0a/1

b/1

b/1

Ms

Mi1
imp

i1

i2 i3

b/0

a/0

b/1b/1

a/1

a/0 Mi2
imp

ababab is an Euler tour

The Euler tour is sufficient
to spot the output fault of Mi1:

011100 ≠ 011101

The Euler tour is not sufficient
to spot the faults of Mi2:

011100 = 011100

State Identification and Verification

Solution 1:

Use the status message to verify the states while doing

the transition tour.

Solution 2:

If the status message does not exists, use separating

sequences instead. Examples are:
Characterizing set (W Method)

Identification set (Wp Method)

UIO sequence (UIO Methods)

Distinguishing sequence (Distinguishing Sequence Method)

...

Not all separating sequences are guaranteed to exists.

Not all of these methods are complete.

Where's the Reset Button?

When even a reset message is not available, more can be

done...

...using distinguishing sequences without reset...

...homing sequence...

...t
ransfer s

equences...

...adaptive distinguishing sequences...

...using identifying sequences instead of distinguishing sequences...

The General Procedure

Every method follows the same scheme:

1.
For all states s and all inputs a do:

1. Bring Mi to the state s.

2. Apply the input a.

4. Verify that the output conforms to the specification Ms.

5. Verify that the final state conforms to the specification Ms.

Summary

The test hypothesis for FSM-based testing makes some

general assumptions regarding the system to be tested:
The system has finite state.

The system is deterministic.

The system communicates in a synchronous manner (input / output).

FSM-based testing focused on testing for equivalence.

Based on a given set of further mandatory and

additional assumptions, the FSM algorithms can give a

finite sound and complete test suite.

In other words, these algorithm can prove the equivalence.

Most of the theoretical problems have been solved.

Summary

FSM-based testing can be the underlying testing model of

several other formalisms, like UML state machines,

Abstract State Machines, RPC-like systems, etc.

Tools related to FSM-based testing are for instance:
Conformance Kit, PHACT, TVEDA, Autofocus, AsmL Test Tool,...

Results regarding other types of state machines have

shown that there is no hope that feasible algorithms can

yield a finite sound and complete test suite, for instance:
Nondeterministic machines

Probabilistic machines

Symbolic machines

Real-Time machines

Hybrid machines

Labeled Transition Systems

Original domains:
sequential and concurrent programs

hardware circuits

Several formalisms have an underlying Labeled

Transition System (LTS) semantics, for instance:
Statecharts

Process Algebras

Models: Labelled Transition Systems

states

output actions

transitions

initial state

? = input

! = output

 Labelled Transition System: < S, LI, LU, T, s0 >

input actions

http://www.cartoline.it/pics/_zoom_flash.htm?immagine=scherzi_150404_01

Observable Behaviour

a aa

a

a?

�

“ Some systems are more equal than others “

?

�
?

�
��

Conformance

Relating two LTS can be done in a variety of manners, e.g.:

Equivalence relations:
Isomorphism, Bisimulation, Trace Equivalence, Testing Equivalence,

Refusal Equivalence, ...

Preorder relations:
Observation Preorder, Trace Preorder, Testing Preorder, Refusal

Preorder, ...

Input-Output relations:
Input-Output Testing

Input-Output Refusal

ioconf

ioco

...

Conformance

An implementation relation is called stronger than another,

if the classes of related LTS are more differentiated.

Implementation relations may also be incomparable.

We want an implementation relation to
relate systems we naturally consider as being conforming

be applicable in practice, i.e., having a feasible testing scenario

be as strong as possible

stronger

Isomorphism

Two LTS are isomorph (or: equivalent) iff they are exactly

the same modulo state names.

Isomorphism is the strongest notion of conformance.

Isomorphism is not suited for testing since we cannot

observe the unobservable  action!

b

a

s2

s1

s2

s1

s3

≡ ≡a a 

a

Bisimulation

Two LTS are (weak) bisimular iff they simulate each other

and go to states from where they can simulate each other

again.

Bisimulation is not suited for testing since its testing

scenario comprises means which are infeasible in practice.

s2

s1

s2

s1

s3

≈b

a

a


s2

s1

s3

a

s4

c

s1

s2 s3

a

s5

c

a≈b

b

s4

b

Trace Equivalence

A trace is an observable sequence of actions.

Two LTS are trace equivalent iff they have the same

traces.

Trace equivalence is the weakest notion of conformance.

For testing purposes it is usually considered too weak.

isomorphism  bisimularity  trace equivalence

s2

s1

s3

b

a

s2

s1

s4

b

a

s3

a

≈tr s2

s1

s3

a

s4

c

s1

s2 s3

a

s5

c

a

b

s4

b

≈tr

Completed Trace Equivalence

A completed trace is a trace leading to a state refusing all

actions – a final state.

Two LTS are completed trace equivalent iff they are trace

equivalent, and also share the same completed traces.

Here we need to be able to observe the absence of all

actions, i.e., deadlocks.

s2

s1

s3

b

a

s2

s1

s4

b

a

s3

a≈ctr

More Relations

Testing equivalence is stronger than completed trace

equivalence, and demands a test scenario which can

observe the refusal of actions.

conf is a modification of testing equivalence restricting the

observations to only those traces contained in the

specification (conf is not transitive).

Refusal equivalence is stronger than testing equivalence,

and demands a test scenario which can continue the test

after observing the refusal of actions.

Tool: Cooper for the Co-Op method for conf

Preorder Relations

i imp s means that implementation model i implements

specification model s.

Do we want imp to be
reflexive s imp s ✔
symmetric i imp s  s imp i 
transitive i imp s ∧ s imp t  i imp t ✔
anti-symmetric i imp s ∧ s imp i  i = s 
total i imp s ∨ s imp i 
congruent i imp s  f(i) imp f(s) ✔

An equivalence is reflexive, symmetric and transitive.

A preorder is just reflexive and transitive.

Preorder Relations

The motivation for preorder relations is to simplify the

testing scenario.

For almost every equivalence ≈ a corresponding preorder

≤ can be defined such that

 p≈q ⇔ p≤q ∧ q≤p

Trace preorder:

i ≤tr s ⇔ traces(i) ⊆ traces(s)

In the same way testing preorder ≤te and refusal

preorder ≤rf can be defined.

Input-Output Labeled Transition Systems

In Input-Output relations, the set of action labels is

partitioned into input actions and output actions, leading

to an Input-Output Labeled Transition System (IOLTS).

Compared to FSM, IOLTS differ in
having asynchronous transitions (either input or output)

having potentially an infinite number of states

being potentially nondeterministic

being not necessarily completely specified for all inputs

being compositional

An IOLTS, which is completely specified for all inputs is

called an input enabled IOLTS.

ioco - Conformance

Specification models are IOLTS

Implementation models are input-enabled IOLTS

What does ioco-conformance mean?

ioco
s2

s1

?reqQuote

s3

!offerQuote

s4

?orderGoods s6s5

 

!cancel
 !confirm

p2

p1

?reqQuote

p3

!offerQuote

p4

?orderGoods

 !confirm

IOLTS input enabled IOLTS

Quiescence

s2

s1

?a

s3

!x

s4

?b s6s5

 

!y
 !z





after

s1 after  = {s1}

s1 after ?a = {s2}

s2 after !x?b = {s4,s5,s6}

s2 after !x?b = {s4,s5,s6}

s1 after ?a!x?b!z = {s1}

s2

s1

?a

s3

!x

s4

?b s6s5

 

!y
 !z





out

s2

s1

?a

s3

!x

s4

?b s6s5

 

!y
 !z





out(s1) = {}
out(s2) = {!x}
out(s3) = {}
out(s4) = ∅
out(s5) = {!y}
out({s1,s2}) = {,!x}

out(s1 after ?a) = {!x}
out(s1 after ?a!x?b) = {!y,!z}

ioco

ioco

Just writing ioco abbreviates iocoF with F = Straces(s0).

ioco

Intuition:

i ioco s, iff

● if i produces output x after trace ,
 then s can produce x after trace .

● if i cannot produce any output after trace ,
 then s cannot produce any output after trace  (quiescence).

ioco

ioco
s2

s1

?reqQuote

s3

!offerQuote

s4

?orderGoods s6s5

 

!cancel
 !confirm

p2

p1

?reqQuote

p3

!offerQuote

p4

?orderGoods

 !confirm

S P









ioco

ioco
s2

s1

?reqQuote

s3

!offerQuote

s4

?orderGoods s6s5

 

!cancel
 !confirm

p2

p1

?reqQuote

p3

!offerQuote

p4

?orderGoods

 !confirm

S P









ioco

ioco

S P

s2

s1

s3

?1€

s4

!tea!coffee

p2

p1

p3

?1€

p4

!tea!coffee

?2€

ioco

ioco

S P

s2

s1

s3

?1€

s4

!tea!coffee

p2

p1

p3

?1€

p4

!tea!coffee

?2€

ioco

ioco

S P

s2

s1

s3

?1€

s4

!tea!coffee

p2

p1

?1€

p3

!tea

?2€

ioco

ioco

S P

s2

s1

s3

?1€

s4

!tea!coffee

p2

p1

?1€

p3

!tea

?2€

ioco

ioco

S P

s2

s1

s3

?1€

s4

!tea!coffee

p2

p1

p4

?1€

!coffee

?2€

p3

p5

!cappuccino

ioco

ioco

S P

s2

s1

s3

?1€

s4

!tea!coffee

p2

p1

p4

?1€

!coffee

?2€

p3

p5

!cappuccino

ioco

ioco

S P

s2

s1

s3

?1€

s4

!tea!coffee !cappuccino

p2

p1

p3

?1€

p4

!coffee

?2€

ioco

ioco

S P

s2

s1

s3

?1€

s4

!tea!coffee !cappuccino

p2

p1

p3

?1€

p4

?2€

!coffee

out(p1 after ?1€) = {!coffee, !cappuccino}
⊈

out(s1 after ?1€) = {!coffee, !tea}

ioco

ioco

S P

s2

s1

s3

?1€

s4

!tea!coffee

p2

p1

p4

?1€

!coffee

?1€

p3

ioco

S P

s2

s1

s3

?1€

s4

!tea!coffee

p2

p1

p4

?1€

!coffee

?1€

p3
ioco



out(p1 after ?1€) = {!coffee, }
⊈

out(s1 after ?1€) = {!coffee, !tea}

ioco

ioco

Q P

ioco
q2

q1

q4

?€

!tea

?€

q3

q5

?€

q6

!coffee

?€

?€

?€

?€

p2

p1

p4

?€

!tea

?€

p3

p5

?€

p7

!coffee

?€

?€

?€

?€

p6
?€

!tea

ioco

ioco

Q P

ioco
q2

q1

q4

?€

!tea

?€

q3

q5

?€

q6

!coffee

?€

?€

?€

?€

p2

p1

p4

?€

!tea

?€

p3

p5

?€

p7

!coffee

?€

?€

?€

?€

p6
?€

!tea

out(p1 after ?€?€) = {!tea, !coffee}
⊈

out(q1 after ?€?€) = {!coffee}



ioco

S I

ioco

ioco

S I

ioco

ioco

S I

ioco

ioco

S I

ioco

ioco

S I

ioco

ioco

S I

ioco

Test Cases

A test case is an IOLTS

having a quiescence label  (modeling the observation of quiescence)

having inputs and outputs swapped

being tree-structured

being finite and deterministic

having final states pass and fail

where from each state ≠ pass and fail:

either a single output and all inputs

or all inputs and 

t2

t1

?coffee !€

t3 t4

?tea

pass

fail fail

?coffee?tea

fail
t7t6t5

tat9t8

?coffee !€ ?tea

failfail

tdtctb

 ?tea ?coffee

passfail pass

Formal Test Execution

Formally executing a test case means putting it in parallel

with the implementation model, leading to a verdict.

t2

t1

?coffee !€

t3 t4

?tea

pass

fail fail

?tea

fail
t7t6t5

tat9t8

?coffee !€ ?tea

failfail

tdtctb

 ?tea ?coffee

passfail pass

P

p2

p1

p4

?€

!tea

?€

p3

p5

?€

p7

!coffee

?€

?€

?€

?€

p6
?€

!tea


?coffee

Formal Test Execution

t2

t1

?coffee !€

t3 t4

?tea

pass

fail fail

?tea

fail
t7t6t5

tat9t8

?coffee !€ ?tea

failfail

tdtctb

 ?tea ?coffee

passfail pass

P

p2

p1

p4

?€

!tea

?€

p3

p5

?€

p7

!coffee

?€

?€

?€

?€

p6
?€

!tea



Formally executing a test case means putting it in parallel

with the implementation model, leading to a verdict.

?coffee

Formal Test Execution

t2

t1

?coffee !€

t3 t4

?tea

pass

fail fail

?tea

fail
t7t6t5

tat9t8

?coffee !€ ?tea

failfail

tdtctb

 ?tea ?coffee

passfail pass

P

p2

p1

p4

?€

!tea

?€

p3

p5

?€

p7

!coffee

?€

?€

?€

?€

p6
?€

!tea



Formally executing a test case means putting it in parallel

with the implementation model, leading to a verdict.

?coffee

Formal Test Execution

t2

t1

?coffee !€

t3 t4

?tea

pass

fail fail

?tea

fail
t7t6t5

tat9t8

?coffee !€ ?tea

failfail

tdtctb

 ?tea ?coffee

passfail pass

P

p2

p1

p4

?€

!tea

?€

p3

p5

?€

p7

!coffee

?€

?€

?€

?€

p6
?€

!tea



Formally executing a test case means putting it in parallel

with the implementation model, leading to a verdict.

?coffee

Formal Test Execution

t2

t1

?coffee !€

t3 t4

?tea

pass

fail fail

?tea

fail
t7t6t5

tat9t8

!€ ?tea

failfail

tdtctb

 ?tea ?coffee

passfail pass

P

p2

p1

p4

?€

!tea

?€

p3

p5

?€

p7

!coffee

?€

?€

?€

?€

p6
?€

!tea

 A test run has been completed:
!€?tea

with verdict pass

?coffee

Formally executing a test case means putting it in parallel

with the implementation model, leading to a verdict.

?coffee

Formal Test Execution

t2

t1

?coffee !€

t3 t4

?tea

pass

fail fail

?tea

fail
t7t6t5

tat9t8

?coffee !€ ?tea

failfail

tdtctb

 ?tea ?coffee

passfail pass

P

p2

p1

p4

?€

!tea

?€

p3

p5

?€

p7

!coffee

?€

?€

?€

?€

p6
?€

!tea



Formally executing a test case means putting it in parallel

with the implementation model, leading to a verdict.

?coffee

Formal Test Execution

t2

t1

?coffee !€

t3 t4

?tea

pass

fail fail

?tea

fail
t7t6t5

tat9t8

?coffee !€ ?tea

failfail

tdtctb

 ?tea ?coffee

passfail pass

P

p2

p1

p4

?€

!tea

?€

p3

p5

?€

p7

!coffee

?€

?€

?€

?€

p6
?€

!tea



Formally executing a test case means putting it in parallel

with the implementation model, leading to a verdict.

?coffee

Formal Test Execution

t2

t1

?coffee !€

t3 t4

?tea

pass

fail fail

?tea

fail
t7t6t5

tat9t8

?coffee !€ ?tea

failfail

tdtctb

 ?tea ?coffee

passfail pass

P

p2

p1

p4

?€

!tea

?€

p3

p5

?€

p7

!coffee

?€

?€

?€

?€

p6
?€

!tea



Formally executing a test case means putting it in parallel

with the implementation model, leading to a verdict.

?coffee

Formal Test Execution

t2

t1

?coffee !€

t3 t4

?tea

pass

fail fail

?tea

fail
t7t6t5

tat9t8

?coffee !€ ?tea

failfail

tdtctb

 ?tea ?coffee

passfail pass

P

p2

p1

p4

?€

!tea

?€

p3

p5

?€

p7

!coffee

?€

?€

?€

?€

p6
?€

!tea



Formally executing a test case means putting it in parallel

with the implementation model, leading to a verdict.

?coffee

Formal Test Execution

t2

t1

?coffee !€

t3 t4

?tea

pass

fail fail

?tea

fail
t7t6t5

tat9t8

?coffee !€ ?tea

failfail

tdtctb

 ?tea ?coffee

passfail pass

P

p2

p1

p4

?€

!tea

?€

p3

p5

?€

p7

!coffee

?€

?€

?€

?€

p6
?€

!tea



Formally executing a test case means putting it in parallel

with the implementation model, leading to a verdict.

?coffee

Formal Test Execution

t2

t1

?coffee !€

t3 t4

?tea

pass

fail fail

?tea

fail
t7t6t5

tat9t8

?coffee !€ ?tea

failfail

tdtctb

 ?tea ?coffee

passfail pass

P

p2

p1

p4

?€

!tea

?€

p3

p5

?€

p7

!coffee

?€

?€

?€

?€

p6
?€

!tea



Formally executing a test case means putting it in parallel

with the implementation model, leading to a verdict.

?coffee
A test run has been completed:

!€!€?tea
with verdict pass

Observations

The test runs represent the observations.

 In the previous example, two observations have been made:
!€?tea

!€!€?tea

Note that the set of all test runs for a given test case

comprises all possible observations for all

nondeterministic cases.

One more observation could have been made in the

previous example:

!€!€?coffee (with verdict pass)

Dijkstra Revisited

When should we stop testing?

Which test cases shall we select?

⇒ How to deal with the practical incompleteness of testing?

1) Accept it, and focus on heuristics like code coverage,

model coverage, timing constraints, randomness,

test purposes, etc.

2) Try to find further assumptions, which makes testing

complete in practice, i.e., leading to a finite sound and

complete test suite.

1) Accept it, and focus on heuristics like code coverage,

model coverage, timing constraints, randomness,

test purposes, etc.

Dijkstra Revisited

When should we stop testing?

Which test cases shall we select?

⇒ How to deal with the practical incompleteness of testing?

2) Try to find further assumptions, which makes testing

complete in practice, i.e., leading to a finite sound and

complete test suite.

The possibly infinite state space, and the nondeterministic
character, make computing a finite sound and complete test suite
an infeasible task!

1) Accept it, and focus on heuristics like code coverage,

model coverage, timing constraints, randomness,

test purposes, etc.

Dijkstra Revisited

When should we stop testing?

Which test cases shall we select?

⇒ How to deal with the practical incompleteness of testing?

2) Try to find further assumptions, which makes testing

complete in practice, i.e., leading to a finite sound and

complete test suite.

Dijkstra Revisited

When should we stop testing?

Which test cases shall we select?

⇒ How to deal with the practical incompleteness of testing?

1) Accept it, and focus on heuristics like code coverage,

model coverage, timing constraints, randomness,

test purposes, etc.

2) Try to find further assumptions, which makes testing

complete in practice, i.e., leading to a finite sound and

complete test suite.

A Sound and Complete Test Generation Algorithm

Given a specification LTS with initial state s0

Initially compute the set of states K = s0 after 
Do a finite number of recursive applications of the following

three nondeterministic choices:

a) Stop the test case with the verdict pass

pass

A Sound and Complete Test Generation Algorithm

b) Let the test case produce an output !a with K after a≤∅
 Also accept all inputs at the same time.

ta is obtained by applying the algorithm with K = K after !a
txi are obtained by applying the algorithm with K = K after xi

!a

xi ∈ out(S) yk ∉ out(S)

fail fail

ta tx1 txj

... ...

A Sound and Complete Test Generation Algorithm

c) Let the test case accept all inputs – and quiescence.

t is obtained by applying the algorithm with K = K after 
txi are obtained by applying the algorithm with K = K after xi

xi ∈ out(S) yk ∉ out(S)

fail fail

t tx1 txj



A Sound and Complete Test Generation Algorithm

Q

q2

q1

q4

?€

!tea

?€

q3

q5

?€

q6

!coffee

?€

?€

?€

?€



We generate a test case out of Q.

Initially, K = {q1}

A Sound and Complete Test Generation Algorithm

Q

q2

q1

q4

?€

!tea

?€

q3

q5

?€

q6

!coffee

?€

?€

?€

?€



b) Let the test case produce an output !a with K after a≤∅
 Also accept all inputs at the same time.

t2

t1

?coffee !€

t3 t4

?tea

fail failK = {q2,q3}

A Sound and Complete Test Generation Algorithm

t2

t1

?coffee !€

t3 t4

?tea

fail fail

?coffee?tea

fail
t7t6t5

Q

q2

q1

q4

?€

!tea

?€

q3

q5

?€

q6

!coffee

?€

?€

?€

?€



c) Let the test case accept all inputs – and quiescence.

K = {q3} K = {q4}

A Sound and Complete Test Generation Algorithm

Q

q2

q1

q4

?€

!tea

?€

q3

q5

?€

q6

!coffee

?€

?€

?€

?€



t2

t1

?coffee !€

t3 t4

?tea

pass

fail fail

?coffee?tea

fail
t7t6t5

a) Stop the test case with the verdict pass

K = {q3}

A Sound and Complete Test Generation Algorithm

Q

q2

q1

q4

?€

!tea

?€

q3

q5

?€

q6

!coffee

?€

?€

?€

?€



t2

t1

?coffee !€

t3 t4

?tea

pass

fail fail

?coffee?tea

fail
t7t6t5

tat9t8

?coffee !€ ?tea

failfail

b) Let the test case produce an output !a with K after a≤∅
 Also accept all inputs at the same time.

K = {q5}

A Sound and Complete Test Generation Algorithm

Q

q2

q1

q4

?€

!tea

?€

q3

q5

?€

q6

!coffee

?€

?€

?€

?€



t2

t1

?coffee !€

t3 t4

?tea

pass

fail fail

?coffee?tea

fail
t7t6t5

tat9t8

?coffee !€ ?tea

failfail

tdtctb

 ?tea ?coffee

failfail K = {q6}

c) Let the test case accept all inputs – and quiescence.

A Sound and Complete Test Generation Algorithm

Q

q2

q1

q4

?€

!tea

?€

q3

q5

?€

q6

!coffee

?€

?€

?€

?€



t2

t1

?coffee !€

t3 t4

?tea

pass

fail fail

?coffee?tea

fail
t7t6t5

tat9t8

?coffee !€ ?tea

failfail

tdtctb

 ?tea ?coffee

failfail pass

a) Stop the test case with the verdict pass

On-The-Fly Testing

In every state a test case has to be defined for all

possible inputs, i.e., outputs from the system.

This can easily let the state space explode.

Some tools do not firstly generate a test suite, and then

apply it on the system.

They combine the test case generation and execution

process.

By so doing, outputs observed from the system guide

the “test case” generation.

So doing avoids this state space explosion problem.

This kind of testing is called on-the-fly testing.

On-The-Fly Testing

Q

q2

q1

q4

?€

!tea

?€

q3

q5

?€

q6

!coffee

?€

?€

?€

?€



We test on-the-fly with Q.

Initially, K = {q1}

On-The-Fly Testing

Q

q2

q1

q4

?€

!tea

?€

q3

q5

?€

q6

!coffee

?€

?€

?€

?€



b) We choose some output !a with K after a≤∅
 We also accept all inputs at the same time.

 We choose to give!€ to the system.
t1

!€

t3
K = {q2,q3}

On-The-Fly Testing

t1

!€

t3

?coffee?tea

fail
t7t6t5

Q

q2

q1

q4

?€

!tea

?€

q3

q5

?€

q6

!coffee

?€

?€

?€

?€



c) We accept all inputs – and quiescence.

 We observe quiescence and hence only need
 to continue with state t5 and K = {q3}

K = {q3} K = {q4}

Summary

LTS are a common formalism to model reactive systems.

LTS are the underlying semantics of several other

formalisms like like statecharts or process algebras.

Relating two LTS can be done in a variety of manners.

Not all relations are suited for testing purposes.

Partitioning the action labels into inputs and outputs leads

to an IOLTS.

A common implementation relation for IOLTS is ioco.

ioco assumes implementation models to be input enabled.

ioco allows specifications to be not input enabled –

allowing for partial specifications.

Summary

A test case is a tree-structured IOLTS with pass and fail

leaves.

Test cases must be output-complete for all possible

outputs of the system.

To avoid a state space explosion in test cases, the

generation and execution of test cases can be combined –

called on-the-fly testing.

A simple sound and complete test case generation for ioco

exists.

This algorithm is implemented in an on-the-fly manner in

the TorX tool.

The TGV tool combines ioco testing with test purposes.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Models: Labelled Transition Systems
	Observable Behaviour
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143

