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Remarks on Soundness and Completeness

A test system, which always says               is sound.

A test system, which always says               is complete.

We want test systems which are sound and complete!
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More Remarks on Soundness and Completeness

Testing can never be 
sound and complete!

Edsger W. 
Dijkstra

Edsger W. 
Dijkstra
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Observations

Observations

Executing a test case on the system yields a set of 

observations.

Every observation represents a part of the implementation 

 model of the system, i.e. the model describing how the 

real system behaves.

Test Suite

SystemSystem Test Execution

Observations

Test Cases

SystemSystem Test Execution



Implementation Models

The set of all observations made with all possible test 

cases represents the complete implementation model of 

the system!
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Implementation Models

Depending on the chosen class of implementation models, 

the observations might have to be transformed, first.

Implementation Model

Observations

transform



Implementation Models

Assuming from now on the validity of the test hypothesis, 

we know that for every system there is a corresponding 

observational equivalent implementation model.

This implementation model is unknown since in practice 

we cannot execute all possible test cases at the system.

But since we know it exists, we can now define formally 

what conformance means!
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Observational Equivalence
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Proving Soundness and Completeness
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Now we can define:

System conforms-to the specification model

⇔
the implementation model is imp-correct to the specification model
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Proving Soundness and Completeness
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Test Suite

The proof-obligation to show the soundness and completeness
of a test generation algorithm w.r.t. an implementation relation imp
is:

Show for all implementation models:

implementation model M is imp-correct to the specification model

⇔
M passes all test cases which the algorithm can generate



Proving Soundness and Completeness
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Having done so, you have shown that:

System passes all test cases which the algorithm can generate

⇔
System conforms-to the specification model



Summary

We want test generation algorithms to be sound and 

complete for the conforms-to relation.

Every system has an underlying implementation model 

consisting of all possible observations one can make with 

all possible test cases.

To restrict the class of systems, assumptions are made on 

the test execution.

Based on these assumptions, one has to prove that an 

implementation model exists which is observational 

equivalent to the system.



Summary

Now the implementation model can be substituted for the 

real system (aka the test hypothesis).

Between the implementation model and the specification 

model implementation relations can be defined.

Conformity of a system to a model is then defined by the 

imp-correctness of its underlying implementation model.

The main proof obligation is to show the soundness and 

completeness of the test generation algorithm w.r.t. the 

chosen implementation relation.



Finite State Machines

Original domains:
sequential circuits

communication protocols

Two types of Finite State Machines (FSM) matter for 

testing:
Mealy Machines

Moore Machines

Commonly, FSM is identified with Mealy Machine.



Mealy Machines

 

s1 m/m0 s2

state s1 state s2 = (s1,m)
input m

output m0 = (s1,m)



Alternating Bit Protocol
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Conformance

Specification models and implementation models are 

Mealy Machines.

What does conformance mean here?
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Conformance

We have Mi imp Ms ⇔ Mi is equivalent to Ms

Two FSM are equivalent iff for every input sequence they 

produce the same output sequence.
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Ms(bbb) = 110 ≠ Mi1(bbb) = 111Ms(bbb) = 110 ≠ Mi1(bbb) = 111



Test Cases

A test case is an input sequence together with its output 

sequence, derived from the specification model.

Test case: input: bbb
        output: 110
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Formal Test Execution

A test case is an input sequence together with its output 

sequence, derived from the specification model.

Formally executing a test case means giving the input 

sequence to the implementation model.
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Test case: input: bbb
        output: 110



Observations

A test case is an input sequence together with its output 

sequence, derived from the specification model.

Formally executing a test case means giving the input 

sequence to the implementation model, and observing the 

corresponding output sequence.
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i2 i3

a/0

b/1

a/0a/1

b/1

b/1

Mi1

Observation: input: bbb
          output: 111

Test case: input: bbb
        output: 110



a/0

Verdicts

A test case is an input sequence together with its output 

sequence, derived from the specification model.

Formally executing a test case means giving the input 

sequence to the implementation model, and observing the 

corresponding output sequence - leading to a verdict.
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Test case: input: bbb
        output: 110

+
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Observation: input: bbb
          output: 111



Implementation Models

But we don't know the implementation model a priori, we 

have just executed a single test case!

What has really happened, is this:

o1 o2 o3
b/1b/1b/1  Mi1

Test case: input: bbb
        output: 110

o4

SystemSystem

Test Execution
Observation: input: bbb
          output: 111

transfor
m



Implementation Models

All we know is a little puzzle-piece from Mi1.
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Implementation Models

But this is sufficient to observe non-conformity, since all 

possible completions of the Black Box are non-

conforming!
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Test Generation

A sound and complete test generation algorithm must 

generate all possible test cases.

s1

s2 s3

a/0

b/0

a/0a/1

b/1

b/1

Ms

Test Cases

Input Output

a 0
b 1
ab 01
aab 001
bbb 110
abababab 01110001...



Dijkstra Revisited

A sound and complete test generation algorithm must 

generate all possible test cases.

Test Cases

Input Output
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Testing can never be 
sound and complete!
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Test Generation

A sound and complete test generation algorithm must 

generate all possible test cases.

s1

s2 s3

a/0

b/0

a/0a/1

b/1

b/1

Ms

Test Cases

Input Output

a 0
b 1
ab 01
aab 001
bbb 110
abababab 01110001...



Dijkstra Revisited

When should we stop testing?

Which test cases shall we select?

⇒ How to deal with the practical incompleteness of testing?

1)  Accept it, and focus on heuristics like code coverage, 

model coverage, timing constraints, randomness,

test purposes, etc.

2) Try to find further assumptions, which makes testing 

complete in practice, i.e., leading to a finite sound and 

complete test suite.



Dijkstra Revisited

When should we stop testing?

Which test cases shall we select?

⇒ How to deal with the practical incompleteness of testing?

1)  Accept it, and focus on heuristics like code coverage, 

model coverage, timing constraints, randomness,

test purposes, etc.

2) Try to find further assumptions, which makes testing 

complete in practice, i.e., leading to a finite sound and 
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Remember...

Dijkstra is right (of course).

He refers to the fact, that the number of test cases in a 

sound and complete test suite is usually infinite (or at least 

too big).

If that would not be the case, testing could prove the 

conformity of the system to the model (given some 

assumptions on the system).

2) Try to find further assumptions, which makes testing 

complete in practice, i.e., leading to a finite sound and 

complete test suite.



Checking Sequences

A checking sequence for Ms is an input sequence that 

distinguishes the class of machines equivalent to Ms from 

all other machines.

The length of this sequence can be used to compare the 

time complexity of the several algorithms.



Mandatory Assumptions

(1) Ms is minimized, meaning that Ms has no equivalent 

states. Equivalent states produce the same output 

sequence for every input sequence.
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Mandatory Assumptions

(1) Ms is minimized, meaning that Ms has no equivalent 

states. Equivalent states produce the same output 

sequence for every input sequence.
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Mandatory Assumptions

(1) Ms is minimized, meaning that Ms has no equivalent 

states. Equivalent states produce the same output 

sequence for every input sequence.
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Mandatory Assumptions

(1) Ms is minimized.

(2) Ms is strongly connected, meaning every state can reach 

every other state.
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b/1a/0

Ms (minimized)

s4

b/1

a/0
b/0

Ms is not strongly connected!a/0



Mandatory Assumptions

(1) Ms is minimized.

(2) Ms is strongly connected.

(3) Mi has the same inputs and outputs as Ms, and does not 

change during runtime.



Mandatory Assumptions

(1) Ms is minimized.

(2) Ms is strongly connected.

(3) Mi has the same inputs and outputs as Ms, and does not 

change during runtime.

Mandatory



Mandatory and Additional Assumptions

(1) Ms is minimized.

(2) Ms is strongly connected.

(3) Mi has the same inputs and outputs as Ms, and does not 

change during runtime.

(4) Ms and Mi have an initial state.



Mandatory and Additional Assumptions

(1) Ms is minimized.

(2) Ms is strongly connected.

(3) Mi has the same inputs and outputs as Ms, and does not 

change during runtime.

(4) Ms and Mi have an initial state.

(5) Ms and Mi have a reset message that from any state of 

the machine causes a transition which ends in the initial 

state, and produces no output.



Mandatory and Additional Assumptions

(1) Ms is minimized.

(2) Ms is strongly connected.

(3) Mi has the same inputs and outputs as Ms, and does not 

change during runtime.

(4) Ms and Mi have an initial state.

(5) Ms and Mi have a reset message. s1

s5

b/1a/0

Ms (minimized)

s4

b/1

a/0
b/0

Having a reset message,
Ms is strongly connected!

a/0

reset



Mandatory and Additional Assumptions

(1) Ms is minimized.

(2) Ms is strongly connected.

(3) Mi has the same inputs and outputs as Ms, and does not 

change during runtime.

(4) Ms and Mi have an initial state.

(5) Ms and Mi have a reset message.

(6) Mi has the same number of states than Ms.



Mandatory and Additional Assumptions

(1) Ms is minimized.

(2) Ms is strongly connected.

(3) Mi has the same inputs and outputs as Ms, and does not 

change during runtime.

(4) Ms and Mi have an initial state.

(5) Ms and Mi have a reset message.

(6) Mi has the same number of states than Ms. Under this 

assumption, two types of faults can be present in Mi:

Output faults: a transition produces a wrong output

Transfer faults:a transition goes to a wrong state



Output- and Transfer Faults
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Mandatory and Additional Assumptions

(1) Ms is minimized.

(2) Ms is strongly connected.

(3) Mi has the same inputs and outputs as Ms, and does not 

change during runtime.

(4) Ms and Mi have an initial state.

(5) Ms and Mi have a reset message.

(6) Mi has the same number of states than Ms.



Mandatory and Additional Assumptions

(1) Ms is minimized.

(2) Ms is strongly connected.

(3) Mi has the same inputs and outputs as Ms, and does not 

change during runtime.

(4) Ms and Mi have an initial state.

(5) Ms and Mi have a reset message.

(6) Mi has the same number of states than Ms.

(7) Ms and Mi have a  status message. Giving a particular 

input “status”, the output uniquely defines the current state.



Mandatory and Additional Assumptions

(1) Ms is minimized.

(2) Ms is strongly connected.

(3) Mi has the same inputs and outputs as Ms, and does not 

change during runtime.

(4) Ms and Mi have an initial state.

(5) Ms and Mi have a reset message.

(6) Mi has the same number of states than Ms.

(7) Ms and Mi have a  status message.

(8) Ms and Mi have a  set message. From the initial state the 

system can be transferred to every other state s by giving 

the input set(s). No output is produced while doing so.



Mandatory and Additional Assumptions

(1) Ms is minimized.

(2) Ms is strongly connected.

(3) Mi has the same inputs and outputs as Ms, and does not 

change during runtime.

(4) Ms and Mi have an initial state.

(5) Ms and Mi have a reset message.

(6) Mi has the same number of states than Ms.

(7) Ms and Mi have a  status message.

(8) Ms and Mi have a  set message.

Additional



A Sound and Complete Algorithm

For all states s and all inputs a do:

1. Apply the reset message to bring Mi to the initial state.

2. Apply a set message to transfer Mi to state s.

3. Apply the input a.

4. Verify that the output conforms to the specification Ms.

5. Apply the status message and verify that the final state 

conforms to the specification Ms.

This algorithm is sound and complete given that all assumptions
(1) – (8) hold.

The length of the checking sequence is 4 * |I| * |S|



Transition Tours

To get rid of the set message, and possibly shorten the 

test suite, we can build a sequence that visits every state 

and every transition at least once – a transition tour.

The shortest transition tour visits each transition exactly 

once, and is called an Euler tour. It only exists for 

symmetric FSM (every state is the start state and end 

state of the same number of transitions).

An Euler Tour can be computed in linear time w.r.t. the 

number of transitions.

In non-symmetric FSM finding the shortest tour is referred 

to as the Chinese Postman Problem. It can be solved in 

polynomial time.



Transition Tours

Problem:

Covering all transitions of Ms, and checking whether

Mi produces the same output, is

not complete!
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Transition Tours

Problem:

Covering all transitions of Ms, and checking whether

Mi produces the same output, is

not complete!
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Transition Tours

Problem:

Covering all transitions of Ms, and checking whether

Mi produces the same output, is

not complete!
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The Euler tour is sufficient
to spot the output fault of Mi1:

011100 ≠ 011101



Transition Tours

Problem:

Covering all transitions of Ms, and checking whether

Mi produces the same output, is

not complete!

s1

s2 s3

a/0

b/0

a/0a/1

b/1

b/1

i1
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a/0
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b/1

Ms

Mi1
imp

i1
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b/0

a/0

b/1b/1

a/1

a/0 Mi2
imp

ababab is an Euler tour

The Euler tour is sufficient
to spot the output fault of Mi1:

011100 ≠ 011101

The Euler tour is not sufficient
to spot the faults of Mi2:

011100 = 011100



State Identification and Verification

Solution 1:

Use the status message to verify the states while doing 

the transition tour.

Solution 2:

If the status message does not exists, use separating 

sequences instead. Examples are:
Characterizing set (W Method)

Identification set (Wp Method)

UIO sequence (UIO Methods)

Distinguishing sequence (Distinguishing Sequence Method)

...

Not all separating sequences are guaranteed to exists.

Not all of these methods are complete.



Where's the Reset Button?

When even a reset message is not available, more can be 

done...

...using distinguishing sequences without reset...

...homing sequence...

...t
ransfer s

equences...

...adaptive distinguishing sequences...

...using identifying sequences instead of distinguishing sequences...



The General Procedure

Every method follows the same scheme:

1. 
For all states s and all inputs a do:

1. Bring Mi to the state s.

2. Apply the input a.

4. Verify that the output conforms to the specification Ms.

5. Verify that the final state conforms to the specification Ms.



Summary

The test hypothesis for FSM-based testing makes some 

general assumptions regarding the system to be tested:
The system has finite state.

The system is deterministic.

The system communicates in a synchronous manner (input / output).

FSM-based testing focused on testing for equivalence.

Based on a given set of further mandatory and 

additional assumptions, the FSM algorithms can give a 

finite sound and complete test suite.

In other words, these algorithm can prove the equivalence.

Most of the theoretical problems have been solved.



Summary

FSM-based testing can be the underlying testing model of 

several other formalisms, like UML state machines, 

Abstract State Machines, RPC-like systems, etc.

Tools related to FSM-based testing are for instance:
Conformance Kit, PHACT, TVEDA, Autofocus, AsmL Test Tool,...

Results regarding other types of state machines have 

shown that there is no hope that feasible algorithms can 

yield a finite sound and complete test suite, for instance:
Nondeterministic machines

Probabilistic machines

Symbolic machines

Real-Time machines

Hybrid machines



Labeled Transition Systems

Original domains:
sequential and concurrent programs

hardware circuits

Several formalisms have an underlying Labeled 

Transition System (LTS) semantics, for instance:
Statecharts

Process Algebras



Models: Labelled Transition Systems

states

output actions

transitions

initial state

? = input

!  = output

 Labelled Transition System:    < S, LI, LU, T, s0 >

input actions

http://www.cartoline.it/pics/_zoom_flash.htm?immagine=scherzi_150404_01


Observable Behaviour

a aa

a

a?

�

“ Some systems are more equal than others “
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Conformance

Relating two LTS can be done in a variety of manners, e.g.:

Equivalence relations:
Isomorphism, Bisimulation, Trace Equivalence, Testing Equivalence, 

Refusal Equivalence, ...

Preorder relations:
Observation Preorder, Trace Preorder, Testing Preorder, Refusal 

Preorder, ...

Input-Output relations:
Input-Output Testing

Input-Output Refusal

ioconf

ioco

...



Conformance

An implementation relation is called stronger than another, 

if the classes of related LTS are more differentiated.

Implementation relations may also be incomparable.

We want an implementation relation to
relate systems we naturally consider as being conforming

be applicable in practice, i.e., having a feasible testing scenario

be as strong as possible

stronger



Isomorphism

Two LTS are isomorph (or: equivalent) iff they are exactly 

the same modulo state names.

Isomorphism is the strongest notion of conformance.

Isomorphism is not suited for testing since we cannot 

observe the unobservable  action!

b

a
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s1

s2

s1

s3

≡ ≡a a 

a



Bisimulation

Two LTS are (weak) bisimular iff they simulate each other 

and go to states from where they can simulate each other 

again.

Bisimulation is not suited for testing since its testing 

scenario comprises means which are infeasible in practice.

s2
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s3

≈b

a

a


s2

s1

s3

a

s4

c
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s2 s3

a

s5

c

a≈b

b

s4

b



Trace Equivalence

A trace is an observable sequence of actions.

Two LTS are trace equivalent iff they have the same 

traces. 

Trace equivalence is the weakest notion of conformance.

For testing purposes it is usually considered too weak.

isomorphism  bisimularity  trace equivalence

s2

s1

s3

b

a

s2

s1

s4

b

a

s3

a

≈tr s2

s1

s3

a

s4

c

s1

s2 s3

a

s5

c

a

b

s4

b

≈tr



Completed Trace Equivalence

A completed trace is a trace leading to a state refusing all 

actions – a final state.

Two LTS are completed trace equivalent iff they are trace 

equivalent, and also share the same completed traces.

Here we need to be able to observe the absence of all 

actions, i.e., deadlocks.

s2

s1

s3

b

a

s2

s1

s4

b

a

s3

a≈ctr



More Relations

Testing equivalence is stronger than completed trace 

equivalence, and demands a test scenario which can 

observe the refusal of actions.

conf is a modification of testing equivalence restricting the 

observations to only those traces contained in the 

specification (conf is not transitive).

Refusal equivalence is stronger than testing equivalence, 

and demands a test scenario which can continue the test 

after observing the refusal of actions.

Tool: Cooper for the Co-Op method for conf



Preorder Relations

i imp s means that implementation model i implements 

specification model s.

Do we want imp to be
reflexive s imp s ✔
symmetric i imp s  s imp i 
transitive i imp s ∧ s imp t  i imp t ✔
anti-symmetric i imp s ∧ s imp i  i = s 
total i imp s ∨ s imp i 
congruent i imp s  f(i) imp f(s) ✔

An equivalence is reflexive, symmetric and transitive.

A preorder is just reflexive and transitive.



Preorder Relations

The motivation for preorder relations is to simplify the 

testing scenario.

For almost every equivalence ≈ a corresponding preorder 

≤ can be defined such that

                               p≈q  ⇔  p≤q ∧ q≤p

Trace preorder:

i ≤tr s ⇔ traces(i) ⊆ traces(s)

In the same way testing preorder ≤te and refusal 

preorder ≤rf can be defined.



Input-Output Labeled Transition Systems

In Input-Output relations, the set of action labels is 

partitioned into input actions and output actions, leading 

to an Input-Output Labeled Transition System (IOLTS).

Compared to FSM, IOLTS differ in
having asynchronous transitions (either input or output)

having potentially an infinite number of states

being potentially nondeterministic

being not necessarily completely specified for all inputs

being compositional

An IOLTS, which is completely specified for all inputs is 

called an input enabled IOLTS.



ioco - Conformance

Specification models are IOLTS

Implementation models are input-enabled IOLTS

What does ioco-conformance mean?
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after

s1 after  = {s1}

s1 after ?a = {s2}

s2 after !x?b = {s4,s5,s6}

s2 after !x?b = {s4,s5,s6}

s1 after ?a!x?b!z = {s1}
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out(s1) = {}
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out(s3) = {}
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out(s5) = {!y}
out({s1,s2}) = {,!x}

out(s1 after ?a) = {!x}
out(s1 after ?a!x?b) = {!y,!z}
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Just writing ioco abbreviates iocoF  with F  = Straces(s0).



ioco

Intuition:

i ioco s, iff

● if i produces output x after trace ,
  then s can produce x after trace .

● if i cannot produce any output after trace ,
  then s cannot produce any output after trace  (quiescence).
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Test Cases

A test case is an IOLTS

having a quiescence label   (modeling the observation of quiescence)

having inputs and outputs swapped

being tree-structured

being finite and deterministic

having final states pass and fail

where from each state ≠ pass and fail:

either a single output and all inputs

or all inputs and 
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t3 t4
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pass

fail fail

?coffee?tea

fail
t7t6t5

tat9t8

?coffee !€ ?tea

failfail
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 ?tea ?coffee

passfail pass



Formal Test Execution

Formally executing a test case means putting it in parallel 

with the implementation model, leading to a verdict.
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 A test run has been completed:
!€?tea

with verdict pass
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Formally executing a test case means putting it in parallel 

with the implementation model, leading to a verdict.
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Formally executing a test case means putting it in parallel 

with the implementation model, leading to a verdict.
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A test run has been completed:

!€!€?tea
with verdict pass



Observations

The test runs represent the observations.

 In the previous example, two observations have been made:
!€?tea

!€!€?tea

Note that the set of all test runs for a given test case 

comprises all possible observations for all 

nondeterministic cases.

One more observation could have been made in the 

previous example:

!€!€?coffee    (with verdict pass)



Dijkstra Revisited

When should we stop testing?

Which test cases shall we select?

⇒ How to deal with the practical incompleteness of testing?

1)  Accept it, and focus on heuristics like code coverage, 

model coverage, timing constraints, randomness,

test purposes, etc.

2) Try to find further assumptions, which makes testing 

complete in practice, i.e., leading to a finite sound and 

complete test suite.
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Dijkstra Revisited

When should we stop testing?

Which test cases shall we select?

⇒ How to deal with the practical incompleteness of testing?

2) Try to find further assumptions, which makes testing 

complete in practice, i.e., leading to a finite sound and 

complete test suite.

The possibly infinite state space, and the nondeterministic
character, make computing a finite sound and complete test suite
an infeasible task!
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Dijkstra Revisited

When should we stop testing?

Which test cases shall we select?

⇒ How to deal with the practical incompleteness of testing?

1)  Accept it, and focus on heuristics like code coverage, 

model coverage, timing constraints, randomness,

test purposes, etc.

2) Try to find further assumptions, which makes testing 

complete in practice, i.e., leading to a finite sound and 

complete test suite.



A Sound and Complete Test Generation Algorithm

Given a specification LTS with initial state s0

Initially compute the set of states K = s0 after 
Do a finite number of recursive applications of the following 

three nondeterministic choices:

a) Stop the test case with the verdict pass

pass



A Sound and Complete Test Generation Algorithm

b) Let the test case produce an output !a with K after a≤∅
    Also accept all inputs at the same time.

ta is obtained by applying the algorithm with K = K after !a
txi are obtained by applying the algorithm with K = K after xi

!a

xi ∈ out(S) yk ∉ out(S)

fail fail

ta tx1 txj

... ...



A Sound and Complete Test Generation Algorithm

c) Let the test case accept all inputs – and quiescence.

t is obtained by applying the algorithm with K = K after 
txi are obtained by applying the algorithm with K = K after xi

xi ∈ out(S) yk ∉ out(S)

fail fail

t tx1 txj

 ... ...



A Sound and Complete Test Generation Algorithm
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q3

q5
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q6
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?€

?€

?€

?€



We generate a test case out of Q.

Initially, K = {q1}



A Sound and Complete Test Generation Algorithm
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?€
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

b) Let the test case produce an output !a with K after a≤∅
    Also accept all inputs at the same time.

t2

t1

?coffee !€

t3 t4

?tea

fail failK = {q2,q3}



A Sound and Complete Test Generation Algorithm
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fail fail
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fail
t7t6t5
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

c) Let the test case accept all inputs – and quiescence.

K = {q3} K = {q4}



A Sound and Complete Test Generation Algorithm

Q

q2

q1

q4

?€

!tea

?€

q3

q5

?€

q6

!coffee

?€

?€

?€

?€



t2

t1

?coffee !€

t3 t4

?tea

pass

fail fail

?coffee?tea

fail
t7t6t5

a) Stop the test case with the verdict pass

K = {q3}
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t3 t4

?tea

pass

fail fail

?coffee?tea

fail
t7t6t5

tat9t8

?coffee !€ ?tea

failfail

b) Let the test case produce an output !a with K after a≤∅
    Also accept all inputs at the same time.

K = {q5}
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c) Let the test case accept all inputs – and quiescence.
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fail
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failfail pass

a) Stop the test case with the verdict pass



On-The-Fly Testing

In every state a test case has to be defined for all 

possible inputs, i.e.,  outputs from the system.

This can easily let the state space explode.

Some tools do not firstly generate a test suite, and then 

apply it on the system.

They combine the test case generation and execution 

process.

By so doing, outputs observed from the system guide 

the “test case” generation.

So doing avoids this state space explosion problem.

This kind of testing is called on-the-fly testing.



On-The-Fly Testing
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We test on-the-fly with Q.

Initially, K = {q1}



On-The-Fly Testing
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b) We choose some output !a with K after a≤∅
    We also accept all inputs at the same time.

    We choose to give!€ to the system.
t1

!€

t3
K = {q2,q3}



On-The-Fly Testing

t1

!€

t3
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c) We accept all inputs – and quiescence.

    We observe quiescence and hence only need
    to continue with state t5 and K = {q3}

K = {q3} K = {q4}



Summary

LTS are a common formalism to model reactive systems.

LTS are the underlying semantics of several other 

formalisms like like statecharts or process algebras. 

Relating two LTS can be done in a variety of manners.

Not all relations are suited for testing purposes.

Partitioning the action labels into inputs and outputs leads 

to an IOLTS.

A common implementation relation for IOLTS is ioco.

ioco assumes implementation models to be input enabled.

ioco allows specifications to be not input enabled – 

allowing for partial specifications.



Summary

A test case is a tree-structured IOLTS with pass and fail 

leaves.

Test cases must be output-complete for all possible 

outputs of the system.

To avoid a state space explosion in test cases, the 

generation and execution of test cases can be combined – 

called on-the-fly testing.

A simple sound and complete test case generation for ioco 

exists.

This algorithm is implemented in an on-the-fly manner in 

the TorX tool.

The TGV tool combines ioco testing with test purposes.
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