
Where do Bugs come from?
Andreas Zeller • Saarland University

bug.aj
@interface A {}

aspect Test {
 declare @field : @A int var* : @A;
 declare @field : int var* : @A;

 interface Subject {}

 public int Subject.vara;
 public int Subject.varb;
}

class X implements Test.Subject {}

Woher kommen Software-Fehler?

Jeder Programmierer kennt die Situation: Ein Programm läuft nicht
so, wie es soll. Ich stelle Techniken vor, die automatisch

(a) die Ursachen eines Fehlverhaltens finden - indem wir genau die
Aspekte isolieren, die das Zustandekommen eines Fehlers
verursachen;
(b) Programmfehler finden - indem wir aus dem Code "normale"
Anweisungsfolgen lernen und nach Abweichungen suchen; und
(c) vorhersagen, wo in Zukunft Fehler auftreten werden - indem wir
maschinell lernen, welche Code- und Prozesseigenschaften bisher
mit Fehlern korrelierten.

Fallstudien an echten Programmen mit echten Fehlern, von
AspectJ über Firefox zu Windows demonstrieren die
Praxistauglichkeit der vorgestellten Verfahren.

Andreas Zeller ist Professor für Softwaretechnik an der Universität
des Saarlandes in Saarbrücken. Sein Forschungsgebiet ist die
Analyse großer Software-Systeme und deren Fehler. Sein Buch
"Why Programs Fail - A Guide to Systematic Debugging" wurde
2006 mit dem Jolt Software Development Productivity Award
ausgezeichnet.

Diagnosis Detection Prevention

Where do Bugs come from? • Andreas Zeller, Saarland University

Diagnosis Detection Prevention

Where do Bugs come from? • Andreas Zeller, Saarland University

bug.aj
@interface A {}

aspect Test {
 declare @field : @A int var* : @A;
 declare @field : int var* : @A;

 interface Subject {}

 public int Subject.vara;
 public int Subject.varb;
}

class X implements Test.Subject {}

java.util.NoSuchElementException
 at java.util.AbstractList$Itr
 .next(AbstractList.java:427)
 at org.aspectj.weaver.bcel.BcelClassWeaver
 .weaveAtFieldRepeatedly
 (BcelClassWeaver.java:1016)

ajc Stack Trace
We can fix this by
looking at the
stack trace.

weaveAtFieldRepeatedly

for (Iterator iter = itdFields.iterator();
 iter.hasNext();) {
 ...
 for (Iterator iter2 = worthRetrying.iterator();
 iter.hasNext();) {
 ...
 }
}

Lenhof, Hans-Peter,, +49 681 302-64701, lenhof@cs.uni-sb.de
Lindig, Christian, +49 681 9358406, +49 681 302 5590, lindig@cs.uni-sb.de
Mehlmann, Martin,,, mehlmann@st.cs.uni-sb.de
Meyer zu Tittingdorf, Friederike, +49 6894 890035, +49 681 302-58099,
meyer@cs.uni-sb.de
Mileva, Yana,, +49 681 302-64020, mileva@cs.uni-sb.de
Müller-Perich, Elisabeth,, +49 681 302-5070, sekr.techfak@rz.uni-sb.de
Nir-Bleimling, Naomi,, +49 68130264011, naomi@wjpserver.cs.uni-sb.de
Offergeld, Thilo,, +49 681 302-6594, t.offergeld@univw.uni-sb.de
PC, CC 2006,,, cc2006pc@st.cs.uni-sb.de
Paul, Wolfgang, +4968171825, +49 6813022436, wjp@cs.uni-sb.de
Premraj, Rahul, +44 7796953511, +49 681 302-64013, premraj@cs.uni-sb.de
Reindel, Erich, +49 6371 912842, +49 681 302-58091, reindel@cs.uni-sb.de
Schuler, David,, +49 681 302-64026, schuler@st.cs.uni-sb.de
Schuler, Erika,, +49 6813025069, schuler@tf.uni-sb.de
Schäfer, Christa, +49 6897 51165, +49 68130264011,
Security, AG,,, security@st.cs.uni-sb.de
Seidel, Raimund, +49 6894 383698, +49 681 302-4513, rseidel@cs.uni-sb.de
Sekretariat, Sekretariat,, +49 681 302-64011, office@st.cs.uni-sb.de
Sliwerski, Jacek, +491741333208,, sliwers@st.cs.uni-sb.de
Slusallek, Philipp, +49 6826 1 88 71 32, +49 681 302-3830, slusallek@cs.uni-sb.de
Slusallek USA, Philipp, +1 650 391 9186, +1 408 486 2788, slusallek@cs.uni-sb.de
Smolka, Gert, +49 681 582770, +49 681 302-5311, smolka@ps.uni-sb.de
Software-Evolution, AG,,, softevo@st.cs.uni-sb.de
Thiel, Frank,,, hausmeister@cs.uni-sb.de
Weiß, Cathrin,,, weiss@st.cs.uni-sb.de
Wilhelm, Reinhard,, +49 681 302-4399, wilhelm@cs.uni-sb.de
Zeller, Andreas,,, zeller@cs.uni-sb.de
Zeller, Andreas, +49 681 3710465, +49 681 302-64011, zeller@cs.uni-sb.de
Zimmermann, Tom, +49 851 51542 (Eltern), +1 403 210 9470, zimmerth@cs.uni-sb.de

mozilla.csv

• Proceed by binary search. Throw away half
the input and see if the output is still wrong.

• If not, go back to the previous state and
discard the other half of the input.

Simplifying

mozilla.csv

✘✔✘✘✘✔

Lenhof, Hans-Peter,, +49 681 302-64701, lenhof@cs.uni-sb.de
Lindig, Christian, +49 681 9378406, +49 681 302 7790, lindig@cs.uni-sb.de
Mehlmann, Martin,,, mehlmann@st.cs.uni-sb.de
Meyer zu Tittingdorf, Friederike, +49 6894 890037, +49 681 302-78099,
meyer@cs.uni-sb.de
Mileva, Yana,, +49 681 302-64020, mileva@cs.uni-sb.de
Müller-Perich, Elisabeth,, +49 681 302-7070, sekr.techfak@rz.uni-sb.de
Nir-Bleimling, Naomi,, +49 68130264011, naomi@wjpserver.cs.uni-sb.de
Offergeld, Thilo,, +49 681 302-6794, t.offergeld@univw.uni-sb.de
PC, CC 2006,,, cc2006pc@st.cs.uni-sb.de
Paul, Wolfgang, +4968171827, +49 6813022436, wjp@cs.uni-sb.de
Premraj, Rahul, +44 7796973711, +49 681 302-64013, premraj@cs.uni-sb.de
Reindel, Erich, +49 6371 912842, +49 681 302-78091, reindel@cs.uni-sb.de
Schuler, David,, +49 681 302-64026, schuler@st.cs.uni-sb.de
Schuler, Erika,, +49 6813027069, schuler@tf.uni-sb.de
Schäfer, Christa, +49 6897 71167, +49 68130264011,
Security, AG,,, security@st.cs.uni-sb.de
Seidel, Raimund, +49 6894 383698, +49 681 302-4713, rseidel@cs.uni-sb.de
Sekretariat, Sekretariat,, +49 681 302-64011, office@st.cs.uni-sb.de
Sliwerski, Jacek, +491741333208,, sliwers@st.cs.uni-sb.de
Slusallek, Philipp, +49 6826 1 88 71 32, +49 681 302-3830, slusallek@cs.uni-sb.de
Slusallek USA, Philipp, +1 670 391 9186, +1 408 486 2788, slusallek@cs.uni-sb.de
Smolka, Gert, +49 681 782770, +49 681 302-7311, smolka@ps.uni-sb.de
Software-Evolution, AG,,, softevo@st.cs.uni-sb.de
Thiel, Frank,,, hausmeister@cs.uni-sb.de
Weiß, Cathrin,,, weiss@st.cs.uni-sb.de
Wilhelm, Reinhard,, +49 681 302-4399, wilhelm@cs.uni-sb.de
Zeller, Andreas,,, zeller@cs.uni-sb.de
Zeller, Andreas, +49 681 3710467, +49 681 302-64011, zeller@cs.uni-sb.de
Zimmermann, Tom, +49 871 71742 (Eltern), +1 403 210 9470, zimmerth@cs.uni-sb.de

Failure Cause

Lenhof, Hans-Peter,, +49 681 302-64701, lenhof@cs.uni-sb.de
Lindig, Christian, +49 681 9378406, +49 681 302 7790, lindig@cs.uni-sb.de
Mehlmann, Martin,,, mehlmann@st.cs.uni-sb.de
Meyer zu Tittingdorf, Friederike, +49 6894 890037, +49 681 302-78099,
meyer@cs.uni-sb.de
Mileva, Yana,, +49 681 302-64020, mileva@cs.uni-sb.de
Müller-Perich, Elisabeth,, +49 681 302-7070, sekr.techfak@rz.uni-sb.de
Nir-Bleimling, Naomi,, +49 68130264011, naomi@wjpserver.cs.uni-sb.de
Offergeld, Thilo,, +49 681 302-6794, t.offergeld@univw.uni-sb.de
PC, CC 2006,,, cc2006pc@st.cs.uni-sb.de
Paul, Wolfgang, +4968171827, +49 6813022436, wjp@cs.uni-sb.de
Premraj, Rahul, +44 7796973711, +49 681 302-64013, premraj@cs.uni-sb.de
Reindel, Erich, +49 6371 912842, +49 681 302-78091, reindel@cs.uni-sb.de
Schuler, David,, +49 681 302-64026, schuler@st.cs.uni-sb.de
Schuler, Erika,, +49 6813027069, schuler@tf.uni-sb.de
Schäfer, Christa, +49 6897 71167, +49 68130264011,
Security, AG,,, security@st.cs.uni-sb.de
Seidel, Raimund, +49 6894 383698, +49 681 302-4713, rseidel@cs.uni-sb.de
Sekretariat, Sekretariat,, +49 681 302-64011, office@st.cs.uni-sb.de
Sliwerski, Jacek, +491741333208,, sliwers@st.cs.uni-sb.de
Slusallek, Philipp, +49 6826 1 88 71 32, +49 681 302-3830, slusallek@cs.uni-sb.de
Slusallek USA, Philipp, +1 670 391 9186, +1 408 486 2788, slusallek@cs.uni-sb.de
Smolka, Gert, +49 681 782770, +49 681 302-7311, smolka@ps.uni-sb.de
Software-Evolution, AG,,, softevo@st.cs.uni-sb.de
Thiel, Frank,,, hausmeister@cs.uni-sb.de
Weiß, Cathrin,,, weiss@st.cs.uni-sb.de
Wilhelm, Reinhard,, +49 681 302-4399, wilhelm@cs.uni-sb.de
Zeller, Andreas,,, zeller@cs.uni-sb.de
Zeller, Andreas, +49 681 3710467, +49 681 302-64011, zeller@cs.uni-sb.de
Zimmermann, Tom, +49 871 71742 (Eltern), +1 403 210 9470, zimmerth@cs.uni-sb.de

Failure Cause
Now, the idea is
that we can easily
automate the
whole process.

Problem:
Simplifying manually

is inhuman.

Delta Debugging

Delta Debugging isolates failure causes automatically:

Inputs: 1 of 436 Columba contacts

Code changes: 1 of 8,721 code changes in GDB

Threads: 1 of 3.8 bln thread switches in Scene.java

Fully automatic + purely test-based

Problem:
Simulating user interaction

is cumbersome.

v: Vector

Vector()
add()

remove()

remove() ↯
Isolating Relevant Calls

Step 1: Record

add()

remove()

Event log contains
32 interactions

JINSI

Event
Log

v: Vector

Isolating Relevant Calls
Step 2: Replay

Event log contains
32 interactions

JINSI

Event
Log

Vector()
add()

remove()

remove()

add()

remove() ↯

v: Vector

Isolating Relevant Calls
Step 3: Simplify

Event log contains
32 interactions

JINSI

Event
Log

Vector()
add()

remove()

remove()

add()

remove() ↯

Isolating Relevant Calls
Step 4: Create Unit Test

Event log contains
32 interactions

JINSI

↯Text
testVector()
{
 Vector v = new Vector();
 v.remove(obj);
}

Columba ContactModel

c: ContactModel

ContactModel()
setSortString()

setNickName()

setFamilyName()

setFormattedName()

setGivenName()

and 18732 more…

↯

ContactModel()
getPreferredEmail() c: ContactModel↯

Columba ContactModel

Unit Test

testContactModel()
{
 ContactModel c = new ContactModel();
 String s = c.getPreferredEmail();
}

getPreferredEmail
 public String getPreferredEmail() {
 Iterator it = getEmailIterator();

 // get first item
 IEmailModel model = (IEmailModel) it.next();

 // backwards compatiblity
 // -> its not possible anymore to create a
 // contact model without email address
 if (model == null)
 return null;

 return model.getAddress();
 }

Delta Debugging

Delta Debugging isolates failure causes automatically:

Inputs: 1 of 436 Columba contacts

Code changes: 1 of 8,721 code changes in GDB

Threads: 1 of 3.8 bln thread switches in Scene.java

Fully automatic + purely test-based

Calls: 2 of 18738 method calls

ZELLER

FAILA Guide to Systematic Debugging

A N D R E A S Z E L L E R

W
HY PROGRAM

S FAIL
A Guide to Systematic Debugging

WHY
PROGRAMS

H e i d e l b e rg , G e r m a n y
w w w . d p u n k t . d e

WHY PROGRAMS FAIL
A G u i d e t o S y s t e m a t i c D e b u g g i n g

A N D R E A S Z E L L E R
James Madison wrote: ‘If men were angels, no government would be necessary.’
If he lived today, Madison might have written: ‘If software developers were angels,
debugging would be unnecessary.’ Most of us, however, make mistakes, and many of
us even make errors while designing and writing software. Our mistakes need to be
found and fixed, an activity called debugging that originated with the first computer
programs. Today every computer program written is also debugged, but debugging is
not a widely studied or taught skill. Few books, beyond this one, present a systematic
approach to finding and fixing programming errors.

—from the foreword by James Larus, Microsoft Research

Why Programs Fail is about bugs in computer programs, how to find them, how
to reproduce them, and how to fix them in such a way that they do not occur any-
more. This is the first comprehensive book on systematic debugging and covers a
wide range of tools and techniques ranging from hands-on observation to fully automated diagnoses,
and includes instructions for building automated debuggers. This discussion is built upon a solid theory
of how failures occur, rather than relying on seat-of-the-pants techniques, which are of little help with
large software systems or to those learning to program. The author, Andreas Zeller, is well known in the
programming community for creating the GNU Data Display Debugger (DDD), a tool that visualizes the
data structures of a program while it is running.

Features
• Suitable for any programming language and all levels of programming experience
• Describes how to fix the program in the best possible way, and shows how to create

your own automated debugging tools
• Includes exercises and extensive references for further study, and a companion website

with source code for all examples and additional debugging resources

About the Author
Andreas Zeller is a professor of computer science at Saarland University, Germany, where his
research centers on programmer productivity. Among Linux and Unix programmers he is best
known as the developer of GNU DDD, and among academics and advanced professionals he is
best known for delta debugging, a technique that automatically isolates failure causes for
computer programs.

Programming, Software Engineering

Zeller_mech 8/30/05 11:06 AM Page 1

“The definitive book on debugging”
– WALTER F. TICHY

TU Karlsruhe

#1 in
Software Engineering Books
Algorithms Books
Software Design Books

Diagnosis Detection Prevention

Where do Bugs come from? • Andreas Zeller, Saarland University

And if you need
such a toolbox, I
have written all
these techniques
down in a
textbook.

Diagnosis Detection Prevention

Where do Bugs come from? • Andreas Zeller, Saarland University

• Invalid iterator usage:
hasNext() should precede next()

• hasNext() is operational precondition

AspectJ Columba

Problem:
Specifying preconditions

is hard work.

Kann man
spezifizieren –
eleganter ist aber
das Extrahieren
aus Code

OP-Miner

Program iter.hasNext () iter.next ()

Usage Models

hasNext ≺ next
hasNext ≺ hasNext
next ≺ hasNext
next ≺ next

Temporal Properties

hasNext ≺ next
hasNext ≺ hasNext

Patterns

hasNext ≺ next
hasNext ≺ hasNext

hasNext ≺ next
hasNext ≺ hasNext✓

✗

Anomalies

OP-Miner

Program iter.hasNext () iter.next ()

Usage Models

hasNext ≺ next
hasNext ≺ hasNext
next ≺ hasNext
next ≺ next

Temporal Properties

hasNext ≺ next
hasNext ≺ hasNext

Patterns

hasNext ≺ next
hasNext ≺ hasNext

hasNext ≺ next
hasNext ≺ hasNext✓

✗

Anomalies

Method Models

public Stack createStack () {
Random r = new Random ();
int n = r.nextInt ();
Stack s = new Stack ();
int i = 0;
while (i < n) {
s.push (rand (r));
i++;

}
s.push (-1);
return s;

}

Method Models

public Stack createStack () {
Random r = new Random ();
int n = r.nextInt ();
Stack s = new Stack ();
int i = 0;
while (i < n) {
s.push (rand (r));
i++;

}
s.push (-1);
return s;

}

 Random r = new Random ();

Method Models

public Stack createStack () {
Random r = new Random ();
int n = r.nextInt ();
Stack s = new Stack ();
int i = 0;
while (i < n) {
s.push (rand (r));
i++;

}
s.push (-1);
return s;

}

 Random r = new Random ();

 int n = r.nextInt ();

 Stack s = new Stack ();

 int i = 0;

 Random r = new Random ();

 int n = r.nextInt ();

 Stack s = new Stack ();

 int i = 0;

 i < n
 i++;

 s.push (rand (r));

Method Models

public Stack createStack () {
Random r = new Random ();
int n = r.nextInt ();
Stack s = new Stack ();
int i = 0;
while (i < n) {
s.push (rand (r));
i++;

}
s.push (-1);
return s;

}

 Random r = new Random ();

 int n = r.nextInt ();

 Stack s = new Stack ();

 int i = 0;

i < n i < n
 i++;

 s.push (-1); s.push (rand (r));

Method Models

public Stack createStack () {
Random r = new Random ();
int n = r.nextInt ();
Stack s = new Stack ();
int i = 0;
while (i < n) {
s.push (rand (r));
i++;

}
s.push (-1);
return s;

}

 Random r = new Random ();

 int n = r.nextInt ();

 Stack s = new Stack ();

 int i = 0;

i < n i < n
 i++;

 s.push (-1); s.push (rand (r));

Method Models

public Stack createStack () {
Random r = new Random ();
int n = r.nextInt ();
Stack s = new Stack ();
int i = 0;
while (i < n) {
s.push (rand (r));
i++;

}
s.push (-1);
return s;

}

 Random r = new Random ();

 int n = r.nextInt ();

 Stack s = new Stack ();

 int i = 0;

i < n i < n
 i++;

 s.push (-1); s.push (rand (r));

Usage Models

 Stack s = new Stack ();

 s.push (-1); s.push (rand (r));

Usage Models

Usage Models

 s.<init>()

 s.push (_)

 s.push (_)

 Random r = new Random ();

 int n = r.nextInt ();

 Stack s = new Stack ();

 int i = 0;

i < n i < n
 i++;

 s.push (-1); s.push (rand (r));

Usage Models

 Random r = new Random ();

 int n = r.nextInt ();

 s.push (rand (r));

Usage Models

Usage Models

 r.<init> ()

 r.nextInt ()

 Utils.rand (r)

OP-Miner

Program iter.hasNext () iter.next ()

Usage Models

hasNext ≺ next
hasNext ≺ hasNext
next ≺ hasNext
next ≺ next

Temporal Properties

hasNext ≺ next
hasNext ≺ hasNext

Patterns

hasNext ≺ next
hasNext ≺ hasNext

hasNext ≺ next
hasNext ≺ hasNext✓

✗

Anomalies

OP-Miner

Program iter.hasNext () iter.next ()

Usage Models

hasNext ≺ next
hasNext ≺ hasNext
next ≺ hasNext
next ≺ next

Temporal Properties

hasNext ≺ next
hasNext ≺ hasNext

Patterns

hasNext ≺ next
hasNext ≺ hasNext

hasNext ≺ next
hasNext ≺ hasNext✓

✗

Anomalies

Discovering Anomalies

open()

hello()

parse()

get()

Temporal Properties

M
et

ho
ds

start ≺
stop

lock ≺
unlock

eof ≺
close

✘

A Defect

for (Iterator iter = itdFields.iterator();
 iter.hasNext();) {
 ...
 for (Iterator iter2 = worthRetrying.iterator();
 iter.hasNext();) {
 ...
 }
}

should be iter2

This would be a
pattern, if it were
not for the missing
element

Another Defect

public void visitNEWARRAY (NEWARRAY o) {
 byte t = o.getTypecode ();
 if (!((t == Constants.T_BOOLEAN) ||
 (t == Constants.T_CHAR) ||
 ...
 (t == Constants.T_LONG))) {
 constraintViolated (o, "(...) '+t+' (...)");
 }
} should be double quotes

Name internalNewName (String[] identifiers)
 ...
 for (int i = 1; i < count; i++) {
 SimpleName name = new SimpleName(this);
 name.internalSetIdentifier(identifiers[i]);
 ...
 }
 ...
}

A False Positive

should stay as is

A Code Smell
public String getRetentionPolicy ()
{
 ...
 for (Iterator it = ...; it.hasNext();)
 {
 ... = it.next();
 ...
 return retentionPolicy;
 }
 ...
}

should be fixed

On encountering a
wrong typecode,
\<visitNEWARRAY()
> should report
the typecode to the
user. However,
it fails to do so, as
it uses \<'+t+'>
instead of \<"+t
+"> when

In 48 cases:
argument comes
from String()
constructor;
only in 3 cases:
from array

Hint → if fixed,
would improve
program
Code smell → does
not result in errors,
but may cause
maintainability
problems
Defects → reported
& verified

AspectJ

16
42

242

Defects Code smells False positives

More Results
Table 2: Summary of the results for the experiment subjects. (See Section 5.2 for a discussion.)

Violations

Program Total Investigated # Defects # Code smells # False positives Efficiency

A��-Rʙ�� 0.8.2 25 25 2 13 10 60%
A���ʜ� T����� 6.0.16 55 55 0 9 46 16%
Aʀɢ�UML 0.24 305 28 0 12 16 43%
A�����J 1.5.3 300 300 16 42 242 19%
A��ʀ��� 2.5.0.0 315 85 1 26 58 32%
C�ʟ��ʙ� 1.2 57 57 4 15 38 33%
�E�ɪ� 4.2 11 11 0 4 7 36%

1,068 562 23 121 417 26%

public String getPreferredEmail () {
Iterator it = getEmailIterator ();
IEmailModel = (IEmailModel) it.next ();
...

}

Figure 17: Another defect in C�ʟ��ʙ�. Missing call to hasNext
causes this method to throw an exception in certain circum-
stances and thus cause a failure.

protected void loadPluginList () {
...
List bits = new ArrayList ();
while (...) {

...
if (...) {

bits.add (...);
break;

}
else {

bits.add (...);
...

}
}
String version = (String) bits.get (0);
String cvs_version = (String) bits.get (1);
String name = (String) bits.get (2);
...

}

Figure 18: A defect in A��ʀ���. The code does not check the
size of the bits list before accessing its elements. This method
was fixed in version 2.5.0.2.

5.3 Limitations and Threats to Validity

The most important limitation of our approach is that it needs sub-
stantial code bases to learn from. While this limitation can be par-
tially circumvented (e.g. if one wants to use some library and wants
OP-Mɪɴ�ʀ to check if one is not making any mistakes, one can use
someone else’s program to learn from), it is an unavoidable price
for the ability to tap into developers’ knowledge and experience
that is contained in those code bases. Also, OP-Mɪɴ�ʀ is only use-
ful for single-threaded programs, but it can handle the whole J���
language, including the exception handling.

We have identified the following potential threats to validity:

• We have investigated seven programs with different applica-
tion domains, sizes and maturity and our results seem fairly
consistent across those programs. However, it is possible
that they do not generalize to arbitrary projects; proprietary,
closed-source programs may have very different properties.

• The tools we have used (JADET and C�ʟɪʙʀɪ) could be de-
fective. We think this is very improbable, especially for C�ʟ-
ɪʙʀɪ, whose implementation is publicly available [28]. As for
JADET as well as the OP-Mɪɴ�ʀ code, we have used and
thoroughly validated it, so we believe that any defects left af-
fect only a small number of OUMs and violations and thus
do not spoil the results overall.

• The results of the categorization process performed on vio-
lations might depend on the expertise of the human apply-
ing the approach. However, if anything, this would make
our results better than reported—because we have marked
violations as defects only if we were completely sure that
they are indeed defects (e.g. by crashing the program, mak-
ing sure the contract was violated, seeing the code changed
in the way suggested by OP-Mɪɴ�ʀ, etc.). An experienced
developer may spot potential problems where we see false
positives.

6. RELATED WORK

To the best of our knowledge, the present work is the first to take
an operational view at preconditions—learning and checking what
needs to be done to call a function. However, there are several other
approaches that learn from existing code or that detect defects.

6.1 Learning from Code

Ernst et al. [15] have written the seminal work on inferring invari-
ants dynamically using DAIKON. Later Hangal and Lam [22] cre-
ated DIDUCE that detects and checks invariants. Csallner et al. [9]
created DʏSʏ, which uses dynamic analysis together with symbolic
execution to discover relevant invariants. Flanagan and Leino [17]
created H���ɪɴɪ which infers ESC/J��� [18] annotations from the
program. These approaches can only produce axiomatic precon-
ditions. Ramanathan et al. [35] produce axiomatic preconditions,
unordered usage information (“this value was also used as a param-
eter of the following functions: . . . ”), origin information and con-
straints on method calls of the form “a call to g is always preceded
by a call to f”. However, these constraints are “must” as opposed to
ours “may” and are created separately from the static information
mentioned earlier. The upshot of this is that the interplay between
methods that can be represented is more limited than what OPs can
represent. They used their approach to find defects, too, but un-
fortunately did not report on the rate of false positives. Ray-Yaung
Chang et al. [7] presented an approach for revealing neglected con-
ditions in programs: they can learn so-called conditional rules and
then look for their violations.

OP-Miner

OP-Miner learns operational preconditions –
i.e., how to typically construct arguments

learns from normal usage –
for specific projects or across projects

Fully automatic

Found dozens of verified defects

1 out of 5 is a
defect or code
smell
2.5 minutes per
violation – one new
defect after 10
minutes
Defects → reported
& confirmed

All in all, 1 out of 4
violations is a
problem
Lots of subtle
defects in
production code
Unclear whether
these would be
found by other
means

Diagnosis Detection Prevention

Where do Bugs come from? • Andreas Zeller, Saarland University

Diagnosis Detection Prevention

Where do Bugs come from? • Andreas Zeller, Saarland University

ProgramBugs sind
eingereicht und
bestätigt

Problem:
How can we learn
from our mistakes?

Bugs Versions

Such software archives are being
used in practice all the time. If
you file a bug, for instance, the
report is stored in a bug
database, and the resulting fix is
stored in the version archive.

Bugs Versions

Map bugs to code

Bugs in AspectJ

Firefox VulnerabilitiesWhere do these bugs come from?

These databases can then be
mined to extract interesting
information. From bugs and
changes, for instance, we can tell
how many bugs were fixed in a
particular location.

Is it the Developers?

Does experience
matter?

Bug density
correlates with

experience!

Is it History?

I found lots of
bugs here. Will
there be more?

Yes! (But where
did these come

from?)

How about metrics?

Do code metrics
correlate with bug

density?
Sometimes!

Uh. Coverage?

Does test coverage
correlate with bug

density?

Yes –
 the more coverage,

 the more bugs!

Ah! Language features?

Are gotos
harmful?

No correlation!

Ok. Problem Domain?

Which tokens
do matter?

import • extends
• implements

nsIPrivateDOMEvent.h

nsReadableUtils.h

✘

✘

✘

✘

✘

✘

✘

✘

✘

✘

✘

✘

✘

✘

✘

✘

✘

✘
✘

Prediction Component Fact

1 nsDOMClassInfo 3

2 SGridRowLayout 95

3 xpcprivate 6

4 jsxml 2

5 nsGenericHTMLElement 8

6 jsgc 3

7 nsISEnvironment 12

8 jsfun 1

9 nsHTMLLabelElement 18

10 nsHttpTransaction 35

• Know where the bugs are

• Calibrate bug prediction

• Know where the next bugs will be

• Fully automatic

Bugs Versions

• contain full record of project history

• maintained via programming environments

• automatic maintenance and access

• freely accessible in open source projects

Software Archives

Bugs VersionsEffort Navigation Chatse-mail

Models Specs Code Traces Profile Tests

Bugs VersionsEffort Navigation Chatse-mail

Models Specs Code Traces Profile Tests

This was just a simple example.
So, the most important aspect
that software archives give you is
automation. They are maintained
automatically (“The data comes
to you”), and they can be
evaluated automatically
(“Instantaneous results”). For
researchers, there are plenty
open source archives available,
allowing us to test, compare, and
evaluate our tools.

Tools can only work
together if they draw
on different artefacts

What are we working
on in SE - we are
constantly producing
and analyzing
artefacts: code,
specs, etc.

Combining these sources will allow us
to get this “waterfall effect” – that is,
being submerged by data; having more
data than we could possibly digest.

Obtaining Data
The dirty story about this data is that it
is frequently collected manually. In
fact, the company phone book is
among the most important tools of an
empirical software engineering
researchers. One would phone one
developer after the other, and question
them – say, “what was your effort”, or
“how often did you test module ʻfooʼ?”,
and tick in the appropriate form. In
other words, data is scarce, and as it is
being collected from humans after the
fact, is prone to errors, and prone to
bias.

Combining these sources will allow us
to get this “waterfall effect” – that is,
being submerged by data; having more
data than we could possibly digest.

Studies

Rosenberg, L. and Hyatt, L. “Developing An Effective Metrics Program”
European Space Agency Software Assurance Symposium, Netherlands, March, 1996

Make this
Actionable!

Letʼs now talk about results. What
should our tools do? Should they
come up with nice reports, and curves
like this one?

Diagnosis Detection Prevention

Where do Bugs come from? • Andreas Zeller, Saarland University

Diagnosis Detection Prevention

Where do Bugs come from? • Andreas Zeller, Saarland University

ZELLER

FAILA Guide to Systematic Debugging

A N D R E A S Z E L L E R

W
HY PROGRAM

S FAIL

WHY
PROGRAMS

