\

g the Defect

= ”Aneras Zeller

|

From Defect to Failure

. The programmer creates a

defect — an error in the code. T AT S
Q)

. When executed, the defect
creates an infection — an
error in the state.

. The infection propagates.

. The infection causes a failure.

This infection chain must be
traced back — and broken.

Techniques

=lnfections

g a failedassertion

these techniques?

, |
%% How do we integrate endences
e.g. U | | comes from a[0]

‘ Causes
.g-f()"execu eg.a[2] =0
only in failing run causes the failure

All Techniques

Observation

Anomaly

!
[P A T OV LT (0 S i

PR PP 75 R PO O Y
P U N o< O - v
PP S R O 7% M e

Cause Transition

The Defect

The Traffic Principle

rack the problem
eproduce
utomate

ind Origins

ocus

solate

ure

Validating the Defect

Any element of the infection chain must be
® infected — i.e., have an incorrect value

® a failure cause — i.e., changing it causes the
failure to no longer occur

Demonstrate by experiments and observation

Is the Error a Cause?

a = compute_value();
printf("a = %d\n", a);

Is the Cause an Error?

balance[account] = 0.0;
for. Ginkais =0 i cn: i)
balance[account] += deposit[1i]

// account 123 1is wrong - fix it
1f (account == 123)
balance[123] += 45.67

static void shell_sort(int a[], int size)

{

int i, j;

int h = 1;
do { “lgnorant Surgery”
h=h*3+1; g gery

} while (h <= size);
do {
W /= 33
for (i = h; i < size;-i$)i++)
{
int v = a[i];
for (j =1i; j>>h&a[j - h] >v; j -=h)
aljl = alj - hl;
ir @ = 5))
aljl = v;

1
} while Ch '= 1);

To tell whether something
is an error means to have
a correction in mind - but
these examples are not
corrections, they just fix
the problem at hand.

Validating Causality

® In principle, we must show causality for
each element of the infection chain

® However, a successful correction
retrospectively validates causality:

® Since the failure has gone, we have
proven that the defect caused the failure

® Yet, we must not fall into ignorant surgery

Think before you code

Before applying a fix, you must understand

® how your code change will break the
infection chain, and

® how this will make the failure (as well as
other failures) no longer occur

In fact, you have a theory about the defect

The Devil’s Guide
to Debugging

Find the defect by guessing:
® Scatter debugging statements everywhere
® Try changing code until something works
® Don’t back up old versions of the code

® Don’t bother understanding what the
program should do

The Devil’s Guide
to Debugging (2)

Don’t waste time understanding the problem.

® Most problems are trivial, anyway.

The Devil’s Guide
to Debugging (3)

Use the most obvious fix.

® Just fix what you see:

x = compute(y)
// compute(l7) is wrong - fix it
if (y 2 Iv®

X =45 .15

Why bother going into compute()?

Correcting the code can be
a great moment. After
having reproduced

the failure, observed the
execution, carefully
tracked back the
infection chain, and
having gained complete
understanding of what
was

going on—---all this has
prepared us for this very

moment, the actual
correctina of the cnde

Homework

Does the failure no longer occur?
® If the failure is still there, this should
® |eave you astonished
® cause self-doubt + deep soul-searching
® happen rarely

® Note that there may be a second cause

Homework (2)

Did the correction introduce new problems?
® Have corrections peer-reviewed

® Have a regression test to detect
unintended changes in behavior

® Check each correction individually

Homework (3)

Was the same mistake made elsewhere?

® Check for other defects caused by the
same mistake

® Other code of the same developer

® Code involving the same APIs

Homework (4)

Did | commit the change?
® Be sure to commit your change to
® the version control system

® the bug tracking system

Workarounds

Correcting the defect may be impossible:
® Unable to change
® Risks
® Design flaw

A workaround solves the problem at hand —
but mark it as a temporary solution

The Blues

Where’s the next open problem?

Concepts

* To isolate the infection chain, transitively
work backwards along the infection origins.

* To find the most likely origins, focus on
* failing assertions
® causes in state, code, and input
® anomalies

® code smells

Concepts (2)

* To correct the defect, wait until you have a
theory about how the failure came to be

* Check that the correction solves the
problem and does not introduce new ones

* To avoid introducing new problems, use
code review and regression tests

