bug.c

double bug(double z[], int n) {

| B e I B R A AT T L D
Iy

return z[n];

What do we do now?

braeburn: bug — bash — 80x24

What is the cause
of this failure?

From Defect to Failure

. The programmer creates a
defect — an error in the code.

. When executed, the defect
creates an infection — an
error in the state.

. The infection propagates.

. The infection causes a failure.

This infection chain must be
traced back — and broken.

Tracing Infections

® For every infection, we must find the earlier
infection that causes it.

® Program analysis tells us possible causes

Tracing Infections

T T 131 [CITYT T 1 O N .« O i [

Real Code

Opaque — e.g. third-party code
Parallel — threads and processes
Distributed — across multiple machines
Dynamic — e.g. reflection in Java

Multilingual — say, Python + C + SQL

And even if we know
everything, there still is
code which is almost
impossible to analyze. In

Obscure Code

struct foo {
int tp, len;
union {
char c[1];
int 1k B B
siteuctefooitplidi]:
1}

C, for instance, only the
programmer knows how
memory is structured;
there is no general way for
static analysis to find this
out

e | e | el

In the last lecture, we have

- seen delta debugging on
Isolating Input input.

LT T T 1] [T T T T]

@“m Difference @“m

causes
failure

| v] | /%

Isolating States

Variables ;

Difference
causes
failure

Comparing States

® What is a program state, anyway?
® How can we compare states?

® How can we narrow down differences?

A Sample Program

$ sample 9 8 7
OuEpuik .. l..8.9

$ sample 11 14
Quneit =g,

Where is the defect
which causes this failure?

Now let’s take a deeper
view. If a program is a
succession of states, can’t
we treat each state as an
input to the remainder of
the run?

Let’s look at a simpler
example first.

int main(int argc, char *argv[])

{

int *a;

// Input array
a = (int *)malloc((argc - 1) * sizeof(int));
for (int i = 0; i < argc - 1; i++)

al[i] = atoiCargv[i + 1]);

// Sort array
shell_sort(a, argc);

// Output array

printf("Output: ");

for (int 1 = 0; i < argc - 1; i++)
printf("%d ", a[il);

printf("\n");

free(a);
return 0;

A sample state

® VWe can access the entire state via the
debugger:

|. List all base variables
2. Expand all references...

3. ...until a fixpoint is found

Sample States

Variable Value Variable

inr, in vy

argc 4 5 i
argv[0] | "./sample™ | "./sample" al0]
argv[1l] | "9" "11" all]
argv[2] | "8" "14" al2]
argv[3] | "7" 0x0 (NIL) al3]
i’

1073834752 | 1073834752 a'[0]
1074077312 | 1074077312 a'[1]
1961 1961 a'[2]
4 3 a’[3]

at shell_sort()

Narrowing State Diffs

W =6 is applied, [=6 is not applied

a'[01al01a’[1]al1] a'[2] al2] argc argv1] argvi2] argvi3] i size Output Test
1 789

A B BN B B B EN

H NN

|
|
OJ |

0
0
7
| 0
7
0
0

Complex State

® Accessing the state as a table is not enough:
® References are not handled
® Aliases are not handled

® We need a richer representation

A Memory Graph

1073834752 ‘ Oxbffff5a4 |

0[0..3] 0[0.4]
| ca |

0Bl 0101 o | or21 (0/El] 0]

o1 /o0l | or21

‘ 9 | ‘ 8 ‘ | 7 | ‘ 1961 | ‘Oxbfffﬁla‘ ‘Oxbfffﬁ49| ‘0xbffff74c| |0xbffff74f‘ ‘ 0x0 |

0[0.] 0101 0[0.] 0[0.]

[| [[w] []

18

}/ siZ\i i arge argv

0x8099ae8 4 0x8099ae8 ‘ 3 ‘ 4 Oxbffff5a4

0[0.3] ﬁo.s] 0[0.4]

[‘ Loccl] ‘

()[2]\‘()[3] 0[0] o1 | Of21

] 8 7 1961 OXbIfff71a | | OxbIff749 | | Oxbffff7dc
0[0.] 0[0.] 0[0.]
n ,/Sample" ‘ "9" ‘ "8" ‘
19

Structure

Memory Graph % Operation
— —_—

T 0. +apply(name:string=""): string

2

Vertex

'1+value: string
+type: string

+address: void *

Construction

® Start with <root> node and base variables

® Base variables are on the stack and at fixed
locations

® Expand all references, checking for aliases...

® __.until all accessible variables are unfolded

Unfolding Memory

® Any variable: make new node

® Structures: unfold all members

® Arrays: unfold all elements

® Pointers: unfold object being pointed to

® Does p point to something? And how many?

Comparing States

o0

failing run

passing run

Comparing States

® Basic idea: compute common subgraph

® Any node that is not part of the common
subgraph becomes a difference

® Applying a difference means to create or
delete nodes — and adjust references

® All this is done within GDB

Applying Diffs

015 Ccreates a variable, 6, deletes another N

15 —
)

LN
£ (next
)>nexi 0

v, st "

Tx

list o'.
— 14

Causes in State

Sane state

The difference
causes GCC to crash!

State of the GNU compiler
(GCO

42991 vertices

44290 edges - and 1 1is
wrong :-)

An actual GCC execution
has millions of these
states.

Search in Space

Sane state

Mixed state

Search in Space

Delta Debugging Log

20 25 30 35 40 45
Tests executed

Search in Space

first_lqop_store_insn—=fld[1].rtx=fld[1].rtx—
falitl il aptsiatit diid lipee cocdas =PIl

Search in Space

Sane state

Mixed state

Search in Space

Sane state

<PLUS node>«—

Search in Time

Passing run

S <PLUS node>

Search in Time

link—=f1ld[@].rtx—=f1d[@].rtx == link

Search in Time

Passing run

<PLUS node>

Search in Time

Passing run

<PLUS node> «——

(5]

Transitions

A cause transition occurs when a new variable
begins to be a failure cause:

® PLUS no longer causes the failure...
® ...but the tree cycle does!

Can be narrowed down by binary search

Why Transitions?

® Each failure cause in the program state is
caused by some statement

® These statements are executed
at cause transitions

® Cause transitions thus are
statements that cause the failure!

Potential Fixes

® Each cause transition implies a fix to make
the failure no longer occur — just prohibit
the transition

® A cause transition is more than a potential
fix — it may be “the” defect itself

All GCC Transitions

Location Cause transition to variable

(Start) argv([3]

toplev.c:4755 name

toplev.c:2909 dump_base_name

c-lex.c:187 finput— _I0_buf_base

c-lex.c:1213 nextchar

c-lex.c:1213 yyssa[41l]

c-typeck.c:3615 yyssa[42]

c-lex.c:1213 last_insn—fld[1l].rtx
—fld[1].rtx—>£fld[3].rtx
—fld[1l].rtx.code

c-decl.c:1213 sequence_result[2]
—f£1d[0].rtvec
—elem[0].rtx—fld[1].rtx
—fld[1l].rtx—>£fld[1l].rtx
—£fld[1].rtx—>£fld[1].rtx
—fld[1].rtx—>£fld[1].rtx
—f1ld[3].rtx—>fld[1l].rtx.code

combine.c:4271 x—£f1d[0].rtx—£1d[0].rtx

NNk WD = Ol

combine.c:4279

if (GET_CODE (XEXP (x, @)) == PLUS {
x = apply_distributive_law
(gen_binary (PLUS, mode,
gen_binary (MULT, mode,
XEXP (XEXP (x, @), @),
XEXP (x, 1)),
gen_binary (MULT, mode,

if (GET_CODE I= MULT
i (retu,«n X;(X) : Should be copy_rtx()

R @2l Askigor - Automated Debugging Service - Mozilla {Build ID: 2002072204} S HEEX

. Eile Edit View Go Bookmarks Tools Window Help Debug QA

G O G O BOI http:ttwwews. askigo][QSean:h] d

o]

Result date

2002-10-28 00:51:38 ¥| Gol

Igor has finished debugging your program.
This is what happens in your program when it is invoked as "cc1 -0 fail.i". (vore info...)

{ Execution reaches line 4755 of toplev.c in main.
Since the program was invaked as "cc1 =0 fail.i"
local variable argv[2] is now "fail.i"
-

2 Execution reaches I|ne 470 Uf combine.c in combine_instructions.
Since argv[2] was "fail.
variable first_loop_ sture nsn—>f1d 1], rex—>F1d[1]. rex—>
f1d[3]. rtx—>F1d[1]. rtx now points to a new rtx_def

Execution reaches line 6761 of combine.c in if_then_else_cond.

Since first_loop_store_insn—>f1d[1].rtx—>f1d[1].rtx—>

f1d[3]. rtx—>f1d[1]. rtx pointed to a new rtx_def,

variable 1nko>F1A[0] - rtx->F18(0] . rtx is now 1Ak b’b'

4 Execution ends. (Qo
Since 1ink=>f1d[0]. rtx->f1d[0]. rtx was Tink, \o o

the program crashes with a SIGSEGV signal

The prograrm 1 - $ O(

Need more details? Select the ewec(s you want to focus upon an; ': (Mo
Plain wrong? Please check the ymptoms as determined by Igor,
Any questions? See the skl)

[&2 4 EJ} | Document: Done (0.557 secs)

Open Issues

® How do we capture an accurate state!
® How do we ensure the cause is valid?
® Where does a state end?

® What is the cost?

Concepts

* Delta Debugging on program states isolates
a cause-effect chain through the run

* Use memory graphs to extract and compare
program states

* Demanding, yet effective technique

Concepts

* Cause transitions pinpoint failure causes in
the program code

* Failure-causing statements are potential fixes
(and frequently defects, too)

* Even more demanding, yet effective
technique

