
Specification-based
Testing

Software Engineering
Gordon Fraser • Saarland University

Program behaviors
Specified Implemented

Structural Testing

Program behaviors
Specified Implemented

Functional Testing

Program behaviors
Specified Implemented

Structural + Functional Testing

Structural Testing

• Path coverage criteria

• Logic coverage criteria

• Dataflow coverage criteria

• Mutation testing

Structural
“white box”

Functional Testing

• Boundary Value Testing

• Equivalence Class Testing

• Decision Table-Based Testing

• Combinatorial Testing

• Grammar-based Testing

• Model-based Testing

Functional
“black box”

Functional
specification

Independently
testable feature

Representative
values Model

Test case
specifications

identify derive

identify

derive

Test case

generate

Specification-based Testing

Functional
specification

Independently
testable feature

Representative
values Model

Test case
specifications

identify derive

identify

derive

Test case

generate

Representative Values

• Try to select inputs
that are especially
valuable

• Usually by
choosing
representatives of equivalence classes that
are apt to fail often or not at all

Boundary Value Analysis

The main steps of a systematic
approach to functional program
testing
(from Pezze + Young, “Software
Testing and Analysis”, Chapter 10)

The main steps of a systematic
approach to functional program
testing
(from Pezze + Young, “Software
Testing and Analysis”, Chapter 10)

Boundary Value Testing

• Minimum, minimum+1, nominal,
maximum-1, maximum

• Robustness testing
Minimum-1, maximum+1

• Generalized - single fault assumption
Boundary values for one, nominal values for others

• Worst-case testing
All possible combinations

Failures occur rarely as
the result of the

simultaneous occurrence
of two (or more) faults

Single Fault
Assumption

!"#$$%&'()*%#+,"-(.'()/-("-+,)/$(0&()/-($%1-$(

((((((((234%"#)-*#"((((((((5$0$6-"-$((((((((((76#"-+-(Case a b c Output
1 100 100 1 Isosceles
2 100 100 2 Isosceles
3 100 100 100 Equilateral
4 100 100 199 Isosceles
5 100 100 200 Invalid
6 100 1 100 Isosceles
7 100 2 100 Isosceles
8 100 100 100 Equilateral
9 100 199 100 Isosceles
10 100 200 100 Invalid
11 1 100 100 Isosceles
12 2 100 100 Isosceles
13 100 100 100 Equilateral
14 199 100 100 Isosceles
15 200 100 100 Invalid

Single-fault assumption - therefore
only one boundary value at a time

Equivalence Partitioning

Equivalence Partitioning

Input condition Equivalence classes

range one valid, two invalid
(larger and smaller)

specific value one valid, two invalid
(larger and smaller)

member of a set one valid, one invalid

boolean one valid, one invalid

Equivalence Partitioning

• Weak equivalence class testing
One test per equivalence class per input

• Strong equivalence class testing
All combinations (cartesian product of equivalence
classes)

• Robustness testing
Include invalid values

• Combination with boundary value testing
Test at boundaries of partitions

How do we choose equivalence
classes? The key is to examine
input conditions from the spec.
Each input condition induces an
equivalence class – valid and
invalid inputs.

Decision Table Testing

a,b,c form a
triangle

a = b

a = c

b = c

Not a triangle

Scalene

Isosceles

Equilateral

F T T T T T T T T

– T T T T F F F F

– T T F F T T F F

– T F T F T F T F

X

X

X X X

X
Impossible X X X

!"#$$%&'()*%#+,"-(.'()/-("-+,)/$(0&()/-($%1-$(

((((((((234%"#)-*#"((((((((5$0$6-"-$((((((((((76#"-+-(

a < b + c

b < a + c

c < a + b

a = b

a = c

b = c

Not a triangle

Scalene

Isosceles

Equilateral

Impossible

F T T T T T T T T T T
F T T T T T T T T T

F T T T T T T T T
T T T T F F F F
T T F F T T F F
T F T F T F T F

X X X
X

X X X
X

X X X

!"#$$%&'()*%#+,"-(.'()/-("-+,)/$(0&()/-($%1-$(

((((((((234%"#)-*#"((((((((5$0$6-"-$((((((((((76#"-+-(

Each column represents one test
case

Decision Tables

• Outcome of decisions are not necessarily
binary

• Tables can become huge

• Limited entry tables with N conditions have
2N rules

• Don't care entries reduce the number of
explicit rules by implying the existence of
non-explicitly stated rules.

Combinatorial Testing

if (pressure < 10) {
	 // do something
	 if (volume > 300) {
 // faulty code! BOOM!
 }
	 else {
 // good code, no problem
 }
}
else {
	 // do something else
}

0

0,25

0,5

0,75

1

1 2 3 4 5 6

Medical device

Interactions leading to Failure

0

0,25

0,5

0,75

1

1 2 3 4 5 6

Medical device Browser

Interactions leading to Failure

0

0,25

0,5

0,75

1

1 2 3 4 5 6

Medical device Browser
Server

Interactions leading to Failure

0

0,25

0,5

0,75

1

1 2 3 4 5 6

Medical device Browser
Server NASA distributed database

Interactions leading to Failure

0

0,25

0,5

0,75

1

1 2 3 4 5 6

Medical device Browser Server
NASA distributed database Network security

Interactions leading to Failure

• Maximum interactions for fault triggering
for studied applications was 6
This correlates to the number of branch statements

• Reasonable evidence
that maximum interaction strength for fault
triggering is relatively small

• If all faults are triggered by the interaction
of t or fewer variables
then testing all t-way combinations can provide
strong assurance

• Pairwise testing finds about 50% to 90% of
flaws

How many tests?

• There are 10 effects, each can be on
or off

• All combinations is 210 = 1,024 tests

• What if our budget is too limited for
these tests?

• Instead, let’s look at all 3-way
interactions …

How many tests?

• There are =120 3-way interactions

• Naively 120 x 23 = 960 tests.

• Since we can pack 3 triples into each
test, we need no more than 320
tests.

• Each test exercises many triples:

0 1 1 0 0 0 0 1 1 0

10
3

A Covering Array

• Each test covers 120 3-way combinations

• All 3-way combinations (960) in 13 tests

• Finding covering arrays is NP hard

0 = effect off
1 = effect on

Another familiar example

Plan: flt, flt+hotel, flt+hotel+car
From: CONUS, HI, Europe, Asia …
To: CONUS, HI, Europe, Asia …
Compare: yes, no
Date-type: exact, 1to3, flex
Depart: today, tomorrow, 1yr, Sun, Mon …
Return: today, tomorrow, 1yr, Sun, Mon …
Adults: 1, 2, 3, 4, 5, 6
Minors: 0, 1, 2, 3, 4, 5
Seniors: 0, 1, 2, 3, 4, 5

•  No silver bullet because:
 Many values per variable
 Need to abstract values
 But we can still increase information per test

A Larger Example

•  Suppose we have a system with on-off switches:

How do we test this?

•  34 switches = 234 = 1.7 x 1010 possible inputs = 1.7 x 1010 tests

What if we knew no failure involves
more than 3 switch settings?

•  34 switches = 234 = 1.7 x 1010 possible inputs = 1.7 x 1010 tests
•  If only 3-way interactions, need only 33 tests
•  For 4-way interactions, need only 85 tests

Two ways of using
combinatorial testing

Use combinations here or here

System
under test

Test
data
inputs

Test case OS CPU Protocol

1 Windows Intel IPv4

2 Windows AMD IPv6

3 Linux Intel IPv6

4 Linux AMD IPv4

Configuration

Testing Configurations
•  Example: app must run on any configuration of OS, browser,
 protocol, CPU, and DBMS

•  Very effective for interoperability testing

Combinatorial testing
with existent test suite

Test case OS CPU Protocol

1 Windows Intel IPv4

2 Windows AMD IPv6

3 Linux Intel IPv6

4 Linux AMD IPv4

1.  Use t-way coverage
for system
configuration values

2.  Apply existing tests

•  Common practice in telecom industry

Generating Covering Arrays

• Search-based methods:

• Mainly developed by scientists

• Advantages: no restrictions on the input model, and very
flexible, e.g., relatively easier to support parameter
relations and constraints

• Disadvantages: explicit search takes time, the resulting
test sets are not optimal

• Algebraic methods:
• Mainly developed by mathematicians

• Advantages: very fast, and often produces optimal results

• Disadvantages: limited applicability, difficult to support
parameter relations and constraints

IPO Strategy

• Builds a t-way test set in an incremental manner

• A t-way test set is first constructed for the first t parameters,

• Then, the test set is extended to generate a t-way test set for
the first t + 1 parameters

• The test set is repeatedly extended for each additional
parameter.

• Two steps involved in each extension for a new
parameter:

• Horizontal growth: extends each existing test by adding one
value of the new parameter

• Vertical growth: adds new tests, if necessary

Strategy In-Parameter-Order
begin
 /* for the first t parameters p1, p2 , …, pt*/
 T := {(v1, v2, …, vt) | v1, v2, …, vt are values of
 p1, p2, …, pt , respectively}
 if n = t then stop;
 /* for the remaining parameters */
 for parameter pi, i = t + 1, …, n do
 begin
 /* horizontal growth */
 for each test (v1, v2, …, vi-1) in T do
 replace it with (v1, v2, …, vi-1, vi), where vi is a value of pi
 /* vertical growth */
 while T does not cover all the interactions between pi and
 each of p1, p2, …, pi-1 do
 add a new test for p1, p2, …, pi to T;
 end
end

Example

• Consider a system with the following
parameters and values:

• parameter A has values A1 and A2

• parameter B has values B1 and B2

• parameter C has values C1, C2, C3

A B

A1 B1

A1 B2

A2 B1

A2 B2

A B C

A1 B1 C1

A1 B2 C2

A2 B1 C3

A2 B2 C1

A B C

A1 B1 C1

A1 B2 C2

A2 B1 C3

A2 B2 C1

A2 B1 C2

A1 B2 C3

Horizontal Growth Vertical Growth

Example

• Testing VoIP software:

• Caller, VoIP server, client

• CallerOS: Windows, Mac

• ServerOS: Linux, Sun, Windows

• CalleeOS: Windows, Mac

Example

Caller Server Callee
Win Lin Win
Win Sun Mac
Win Win Win
Mac Lin Mac
Mac Sun Win
Mac Win Mac

1. Pairwise testing protects against pairwise bugs

2. while dramatically reducing the number of
tests to perform

3. which is especially cool because pairwise bugs
represent the majority of combinatoric bugs

4. and such bugs are a lot more likely to happen
than ones that only happen with more
variables

5. Plus, you no longer need to create these tests
by hand.

might find some

 compared to testing all combinations,
but not necessarily compared to testing just the
combinations that matter.

might
or might not, depending on the actual dependencies among
variables in the product.

some , or less likely to happen, because user inputs are
not uniformly distributed.

 except for the work of analyzing the product,
selecting variables and values, actually configuring and
performing the test, and analyzing the results.

