Tracking Origins

Andreas Zeller

Today’s Topics

® Exploring History
® Dynamic Slicing

® [everaging Origins

Exploring the Past

A typical debugging session looks like this:

|. Set a breakpoint
2. Start program, reaching breakpoint
3. Step, Step, Step, ...

4. Oops! I've gone too far!
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How does it work?

® ODB records a trace of the entire
execution history

® Slows down programs by a factor of 10
® Records about 100 MB/s

® Now available in commercial tools

Dynamic Slicing

® Static slices apply to all program runs:

® General + reusable, but imprecise

® A dynamic slice applies to a single run:

® Specific and precise

ODC by Bil Lewis
[Give an interactive demo,
using the ODC pre-canned
demo download]

Commercially available in
RETROVUE and
CODEGUIDE



) Just a reminder...

Static Slicing (( —i .

® Given a statement B, the
backward slice contains
all statements that could
influence the read
variables or execution
of B

Formally:

SR A A B

read(); //
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while (i <= n) { while (i <= n)
if (b > 0)
if (a > 1)
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15 write(s); 15 write(s);

1
2
3
4
)
6
7
8
9

Static slice for (s, 15) Dynamic slice for (s, 15)

. Obtain a trace of the
execution

. Get the variables that are
read and written

while (i <= n) { . Assign an empty slice to
if (b > @) each written variable
if Ca > 1) ;
x = 2; 4. Compute the slices from

Sifsielind start to end:
1= 945 akg
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}
write(s); DynSlice(w) = U(DynSlice(ri) U {line(r;)})
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Write Read

Dynamic Slice

DynSlice(w) = | J(DynSlice(r;) U {line(i)})

while (i <= n) {
if Chiz0)ig
if (a > 1) | p10

if (b > @)
if (a > 1)

8 while (i <= n) {
15 write(s);

Write Read
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while (i <= n}:
if (b > @)
if (a
s
1=
while (i <= n)
write(s);

Write Read

=TS
while (i <= n) {
write(s);
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Dynamic Slice
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Dynamic Slice
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read(); // n

1=
S =
whlle (i <=n) { while (i <= n)

if (b > @)
if Ca > 1)
w o= 28

S + X;

=1 4 g 13
14 } 14 }

15 write(s); 15 write(s);
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Static slice for (s, I5) Dynamic slice for (s, 15)

Discussion

® Dynamic slices are much more precise than
static slices (applied to the one run, that is)

® From some variable, a backward slice
encompasses on average

30% of the entire program (static slice)
® 5% of the executed program (dynamic slice)

® Overhead as in omniscient debugging

Ko and Myers (2004) from
CMU (Human-Computer
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“Why did” questions

® Take the dynamic slice of the variable

® Follow at most two dependencies

® [f programmer wants to, follow
dependencies transitively

X
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Ko and Myers (2004) from
CMU (Human-Computer
Interaction)

Ko and Myers (2004) from
CMU (Human-Computer
Interaction)

[switch back and forth
between last slide and this
slide]



“Why did s = 2 in Line 15?”

read(); // n
e as—
1;

1;
s = 0; Take the dynamic slice of
while (i <= n) { . the variable

Follow at most two
dependencies
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If programmer wants to,
14 1} B follow dependencies

15 write(s); transitively

“Why didn’t” questions

® Follow back control dependencies to
closest controlling statement(s)

® Do a“why did” question on each

® Again, follow at most two dependencies

“Why didn’t x = 2 in Line 11?7”

read(); // n
read(); // a =
1;

=da + X;
@ 45 a3

Follow back control
dependencies to closest
controlling statement(s)
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Do a “why did” question
on each
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Again, follow at most two
dependencies
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write(s);




Discussion

The WHYLINE combines
® omniscient debugging
® static slicing
® dynamic slicing

in an attractive package, showcasing the state
of the art in interactive debugging

Tracking Infections

. Start with the infected value as seen in the
failure

. Follow back the dependencies
. Observe and judge origins — are they sane!?
. If some origin is infected, repeat at Step 2

. All origins are sane? Here’s the infection site!

Concepts

* Omniscient debugging allows for simple
exploration of the entire execution history

* Dynamic slicing tells the origin of a value

* To track down an infection, follow
dependencies and observe origins,
repeating the process for infected origins







