Tracking Origins

Andreas Zeller

Today’s Topics

® Exploring History
® Dynamic Slicing

® [everaging Origins

Exploring the Past

A typical debugging session looks like this:

|. Set a breakpoint
2. Start program, reaching breakpoint
3. Step, Step, Step, ...

4. Oops! I've gone too far!

File F

Omniscient Debugger 20.Nov.04 - com.lambda.Debugger.Demo
“ode Trace Filter GLojects Debug.Help (Previous "I (4 H Star pl1280] 261 Clock[1.469] 0..31 Demo.java:145

>, "sorter") -> <sorter_2>

“ﬁib"”mf EfDEDH JOPHY

c void st t(nt start, int end) {
int i, j, tmp, middle, newEnd;

if ((end - start) < 1) return;

if ((end - start) == 1) {

TTY Output | < >

D3 Demo *
hrew: java.lang.NullPointerException: Bad met [~
ks rt: 20

How does it work?

® ODB records a trace of the entire
execution history

® Slows down programs by a factor of 10
® Records about 100 MB/s

® Now available in commercial tools

Dynamic Slicing

® Static slices apply to all program runs:

® General + reusable, but imprecise

® A dynamic slice applies to a single run:

® Specific and precise

ODC by Bil Lewis
[Give an interactive demo,
using the ODC pre-canned
demo download]

Commercially available in
RETROVUE and
CODEGUIDE

) Just a reminder...

Static Slicing ((—i .

® Given a statement B, the
backward slice contains
all statements that could
influence the read
variables or execution
of B

Formally:

SR A A B

read(); //

1=
S =
while (i <= n) { while (i <= n)
if (b > 0)
if (a > 1)
W= gyl
=S + X; 12 =
= o4 g 13 188 =R]
14 } 14 %
15 write(s); 15 write(s);

1
2
3
4
)
6
7
8
9

Static slice for (s, 15) Dynamic slice for (s, 15)

. Obtain a trace of the
execution

. Get the variables that are
read and written

while (i <= n) { . Assign an empty slice to
if (b > @) each written variable
if Ca > 1) ;
x = 2; 4. Compute the slices from

Sifsielind start to end:
1= 945 akg

Ooco~NOO UL WN P

}
write(s); DynSlice(w) = U(DynSlice(ri) U {line(r;)})

1

Write Read

Dynamic Slice

DynSlice(w) = | J(DynSlice(r;) U {line(i)})

while (i <= n) {
if Chiz0)ig
if (a > 1) | p10

if (b > @)
if (a > 1)

8 while (i <= n) {
15 write(s);

Write Read

1
2
3
4
5
6
7
8
9

while (i <= n}:
if (b > @)
if (a
s
1=
while (i <= n)
write(s);

Write Read

=TS
while (i <= n) {
write(s);

5 S]S R S Oy .
S i LoD] Sk s e

Dynamic Slice

12, 75 8, By 8 i, 18

Dynamic Slice

2, 75 35 6, 8, i, A8

read(); // n

1=
S =
whlle (i <=n) { while (i <= n)

if (b > @)
if Ca > 1)
w o= 28

S + X;

=1 4 g 13
14 } 14 }

15 write(s); 15 write(s);

oo ~NOYUTPE WN -

Static slice for (s, I5) Dynamic slice for (s, 15)

Discussion

® Dynamic slices are much more precise than
static slices (applied to the one run, that is)

® From some variable, a backward slice
encompasses on average

30% of the entire program (static slice)
® 5% of the executed program (dynamic slice)

® Overhead as in omniscient debugging

Ko and Myers (2004) from
CMU (Human-Computer

0 w g —~
@ Ground BAEE F - - H
om SEY S R — I nteraction
[Ghost =IDo in order
@ Dot Big Dot — | set isShowing to false ~ more..
@ rot2 F Big Dot.isEaten — | set value to true — | more... |2
Dot3 ~|
Pac’s details

@ World.move Pac

World.move Pac No parameters

brapertes

[}s] current direction|= forwar =}

capture pose

color =

tooltips show properties’
AT current values

Pac — move Pac.current direction — '3 meter duration =1 second x!yl(:*(;lmlmun:...
rue

=i both Pac is within 2 meters of Ghost and not Big Dot.isEaten

access to previous

Pac — resize 0.5 more.. N
questions and answers

opacity = 1(100%)

vehicle = World ~

Do in order Do together| “IfiElse :Loop :While ‘:For allin of

runtime actions Questions I've asked
2821010 / 854011
Big Dot.isEaten set to true |z,

causality arrows
%
o true
“(isEaten e Pac is within 2 of Ghost |——#{and r)omg else | > 4

Ny false_— false
4ot }—

code related to the
selection is highlighted
|

-~

Y

a time cursor traverses execution history EEEE >

15

|) Resume || M stop || '7WhyL| 2| Undo “ o Iﬂ [

of question

@ World.move Pac

broperies

@3 Light further questions can be asked
[Ground =
r¥pac] Pac — | iswithin 1 meter — | of Big Dot hecomes true —
@ Ghost [=1Do in order
@ Dot1 Big Dot — | set isShowing to false — more...
Dotz Big DotisEaten — | set valugto true — | more... [Z]
@ Dot3

Pacsdetals | (e N Nl B

[current direction - forwar]

color =

World.move Pac Noparameters [OO/UpS show propenfies’

current values

Pac — move Pac.current direction — |3 meters — | duration =1 second szyle:gemmure...

not Big DotisEaten

access to previous

Elif % both Pac — |iswithin 2 meters ~ of Ghost and

Pac — | resize 0.5~ more..

opacity = 1(100%)

vehicle = World ~|

[z Dbl

Do in order Do together :IfiElse “Loop :While ::For allin of

code related to the
selection is highlighted

——

questions and answers

Questions I've asked

2821010

‘/ 854011
| Big Dot.isEaten set to true r,%
\ — o true
isEaten |\ 2, Pac is within 2 of Ghost |——={and \Pomg clse |

% —
false_—
not ="

vy

A taise

? why.. | | 0] Undo ” 5]

il |

Why did... 1
Why didn't... »| Pac.. »| move forward3?
‘What happened while the world was running? Big Dot... » resize 0.57
pointOfview change to something else?

Big Dot — | set isSh
Do this once, when it becomes true

Big Dot.isEaten

agque O are oSe O a era d
@ World.move Pac

World.move Pac Nopa]

code related to the question is highlighted

[=Do together
Pac move Pac.current direction = 3 meters © | duration =1 second — | style =gently = | more...
Elif | bot Pac = | iswithin 2 meters — | of Ghost and | :not Big DotisEaten

Pac resize 0.5 More...

: Else

“Why did” questions

® Take the dynamic slice of the variable

® Follow at most two dependencies

® [f programmer wants to, follow
dependencies transitively

X

Kl time cursor traverses execution history s D

16

17

Ko and Myers (2004) from
CMU (Human-Computer
Interaction)

Ko and Myers (2004) from
CMU (Human-Computer
Interaction)

[switch back and forth
between last slide and this
slide]

“Why did s = 2 in Line 15?”

read(); // n
e as—
1;

1;
s = 0; Take the dynamic slice of
while (i <= n) { . the variable

Follow at most two
dependencies

1
2
3
4
)
6
7
8
9
10
11
12
13

If programmer wants to,
14 1} B follow dependencies

15 write(s); transitively

“Why didn’t” questions

® Follow back control dependencies to
closest controlling statement(s)

® Do a“why did” question on each

® Again, follow at most two dependencies

“Why didn’t x = 2 in Line 11?7”

read(); // n
read(); // a =
1;

=da + X;
@ 45 a3

Follow back control
dependencies to closest
controlling statement(s)

Ooo~NOUTIPH» WN B

o
(BN

Do a “why did” question
on each

=R e
A WN

Again, follow at most two
dependencies

[EEN
wv

write(s);

Discussion

The WHYLINE combines
® omniscient debugging
® static slicing
® dynamic slicing

in an attractive package, showcasing the state
of the art in interactive debugging

Tracking Infections

. Start with the infected value as seen in the
failure

. Follow back the dependencies
. Observe and judge origins — are they sane!?
. If some origin is infected, repeat at Step 2

. All origins are sane? Here’s the infection site!

Concepts

* Omniscient debugging allows for simple
exploration of the entire execution history

* Dynamic slicing tells the origin of a value

* To track down an infection, follow
dependencies and observe origins,
repeating the process for infected origins

