Observation
| run

Deduction
0 runs

Reasoning about Runs

Observation
| run

Deduction
0 runs

Principles of
Observation

® Don’t interfere.
® Know what and when to observe.

® Proceed systematically.

Logging execution

® General idea: Insert output statements at
specific places in the program

® Also known as printf debugging

Printf Problems

Clobbered code
Clobbered output

Slow down

Possible loss of data (due to buffering)

Demonstrate technique, using sample
program

Better Logging

® Use standard formats
® Make logging optional
® Allow for variable granularity

® Be persistent

Logging Functions

® Have specific functions for logging
(e.g. dprintf() to print to a specific logging
channel)

® Have specific macros that can be turned on
or offfor focusing as well as for production
code

Logging Frameworks

® Past: home-grown logging facilities

® Future: standard libraries for logging

® Example:The LOGFOR| framework

Again, demonstrate the use of LOG()
interactively

The core idea of LOGFORJ is to
assign each class in an application an
individual or common logger. A logger
is a component which

takes a request for logging and logs it.
Each logger has a

level, from DEBUG over INFO, WARN,
and ERROR to FATAL (very important
messages).

LOGFOR]J

// Initialize a logger.
final ULogger logger =
LoggerFactory.getLogger(TestLogging.class);

// Try a few logging methods
public static void main(String args[]) {

logger of main()");

message with level
message with level
message with level
message with level

logger
logger
logger
logger

.debug("Start
.info ("A log
.warn ("A log
.error("A log
.fatal("A log

set to INFO");
set to WARN");
set to ERROR™);
set to FATAL");

new TestLogging().init(Q);

The core idea of LOGFORJ is to
assign each class in an application an
individual or common logger. A logger
is a component which

takes a request for logging and logs it.
Each logger has a

level, from DEBUG over INFO, WARN,
and ERROR to FATAL (very important
messages).

Customizing Logs

Set root logger level to DEBUG and its only appender to Al.
log4j.rootLogger=DEBUG, Al

Al is set to be a ConsoleAppender.
log4j.appender.Al=org.apache.log4j.ConsoleAppender

Al uses PatternLayout.
log4j.appender.Al.layout=org.apache.log4j.PatternLayout
log4j.appender.Al.layout.ConversionPattern=\

%d [%t] %-5p %c %x - %m¥%n

2005-02-06 20:47:31,508 [main] DEBUG TestlLogging - Start of
main()

2005-02-06 20:47:31,529 [main] INFO
message with level set to INFO

TestLogging - A log

4 Chainsaw v2 - Log Viewer [3=1[3] = [B]X]
File View Curenttsb Help D Start Tutorial
a® &% e o vAlS 2
Welcome to the Chainsaw v2 Tutorial. Here you will
a X | Refine focus on: | team how to effectively uiiise the many features of
o Tiestamp Chainsaw

142_|2004-05-12 154302311
143 |2004.05-121543.02,311

| 4 Root Logger
® loom

erns will be shown ike this
should try during the tutorial
like this

155 _|2004.05. 313

2 3,31 N
[~ Bocos 215 samma | |

Outline

The built-in tutorial
plugins t
and post them

LTS

Recei

\j just like a real Receiver

d like to read more about
then click here. (TODO)

When you are ready to hegin the tutorial, click
here, or click the “Start Tutorial” button in this
dialog’s toolhar.

{ {hostname,localhost) { some

Properties |
k]

java lang Exception
Throwable org apache logdj ch
java lang Thread run(Thread ja

Receivers

After you have said yes to the confirmation dialog,
you should see 3 new tabs appear in the main GUI
~f This is because the tutorial has installed 3 ‘Generator'
eretor 3 | @ loc : ¢ 4
o Receivers into the Logéj engine.
Receiver's panel faise o0 oo N e ——

12

Logging with Aspects

® Basic idea: Separate concerns into individual
syntactic entities (aspects)

® Aspect code (advice) is woven into the
program code at specific places (join points)

® The same aspect code can be woven into
multiple places (pointcuts)

A Logging Aspect

public aspect LogBuy {
pointcut buyMethod():
call(public void Article.buy());
before(): buyMethod() {
System.out.println("Entering Article.buy()")
3
after(): buyMethod() {
System.out.println("Leaving Article.buy()")
&
$ ajc logBuy.aj Article.java

$ java Article

Using Pointcuts

public aspect LogArticle {
pointcut allMethods():
call(public * Article.*(..));
before(): allMethods() {
System.out.println("Entering '
ks
after(): allMethods() {
System.out.println("Leaving '
ks
I

+ thisJoinPoint)

+ thisJoinPoint)

Aspect Arguments

public aspect LogMoves {
pointcut setP(Line a_line, Point p):
call(void a_line.setP*(p));

after(Line a_line, Point p): setP(a_line, p) {
System.out.printlnCa_line +
"moved to " + p + ".");

Observation Tools

® Getting started fast — without altering the
program code at hand

® Flexible observation of arbitrary events

® Transient sessions — no code is written

Debuggers

® Execute the program and make it stop
under specific conditions

® Observe the state of the stopped program

® Change the state of the program

Show this interactively with GDB or
DDD

“'A'Débligging Session

e R)
ntaha=gdlis
do {
I =Hlni s S i
} while Ch <= size);
do {
h /= 3;
for (i = h; 1 < size; i++)
{
int v = a[i];
for (j =1i; j>>h& a[j - h] >v; j -=h)
aljl = alj - hl;
i @ = 3D
alil = v;

}
} while ¢h !'= 1);

More Features

Control environment
Post mortem debugging
Logging data

Fix and continue

Demonstrate watchpoints and
conditionals interactively

More on Breakpoints

® Data breakpoints (watchpoints)

® Conditional breakpoints

Debugger Caveats

® A debugger is a tool, not a toy!

el DDD: fpublic/source/programming/ddd - 3.2/ddd/cxxtest.C g
File Edit View Program Commands Status Source Data

glﬂz&hnigb

__ — —ot g
: Self = Oxi self = 0x804df90)
(List *) 0x804df80[next = 0x804d|

next

list—>next = new List(a_global + start+);
list—>next—>next = new List{a_global + start+);

Tist—>next—>next->next = list; Run
@ woid) 1isk /4 Display this (R
P delete list CList *) 0x804df80 MM

delete list—>next; Next | Mexti

delete list;

Until | Finish |

17 Test £-4 DDD Tip of the Day #5 S > kil
void lis

Tist If you made a mistake, try Edit—Undo. This will undo the most
recent debugger command and redisplay the previous program state.

/-
\éold ref

date Close Prev Tip Next Tip

dele
dates

3

(gdb) graph display *(1ist—>next—>next—>self) dependent on 4
(gdb) }

A list= (List *) 0x804df80

Concepts

* Logging functions (”printf debugging”) are
easy to use, but clobber code and output

* To encapsulate and reuse debugging code,
use dedicated logging functions or aspects

Again, demonstrate DDD interactively

Concepts (2)

* Logging functions can be turned on or off
(and may even remain in the source code)

* Aspects elegantly keep all logging code in
one place

* Debuggers allow flexible + quick
observation of arbitrary events

Concepts (3)

* To observe the final state of a crashing
program, use a debugger

* Advanced debuggers allow to query events
in a declarative fashion...

* ...as well as visualizing events and data

