Deducing Errors

Andreas Zeller

Obtaining a Hypothesis

Problem Report

Deducing from Code Earlier Hypotheses
+ Observations

Hypothesis

Observing a Run

Learning from More Runs

Reasoning about Runs

Induction

n runs

Observation

| run

Deduction

0 runs

Reasoning about Runs

Deduction
0 runs

What'’s relevant?

20 Y =0
30 X =Y
49 PRINT “X = “, X

Fibonacci Numbers

— 1, forn=0vn=1
fibln) = i apiii g mb i ihanuisar

DB BB ES

fibo.c

int fib(int n) int main()
{ {
e 1ty 1% = iy Tl =alg int n = 9;

while (n > 1) { while (n > 0)
M =Mn = i3 {
f =0 + f1; printf("fib(%d)=%d\n",
i) = {Filg n, fib(n));
il = g A== i3

3 b

return f; return 0;

}

Fibo in Action

$ gcc -o fibo fibo.c

$./fibo

fib(9)=55

Flb(8)=34 Where does

fib(l) come from?

i

fib(1)=134513905

Effects of Statements

A statement can change the
program state (i.e. write to a variable)

A statement may determine which
statement is executed next
(other than unconditional transfer)

Affected Statements

° A statement can read the program
state (i.e. from a variable)

To have any effect, a statement
must be executed.

Effects in fibo.c

Statement Reads Writes | Controls

n-—m

1nt f

-———
a5) i v i

i 0 i i
7 10l L P it
B O A T o e
T e o R S ey o)

[l
Control Flow @™

G)’
int fib(int n) 3
{
int f, fo = 1, f1 = 1;
while (n > 1) {
m=m = s
17 = i) dh arilg
EOR=Ff"
P i
3

return f;

The CFG is best
developed incrementally
on an extra board.

Control Flow Patterns

while (COND) for
while (COND)

if (COND)
THEN-BLOCK ELSE-BLOCK

AL Again, this is best
[)
et developed interactively on
Dependences —— the board (possibly by

1) having the students call
further dependences)

A B

A's data is used in B;
B is data dependent on A

A]

A controls B's execution;
B is control dependent on A

Again, this is best

developed interactively on
Dependences the board (possibly by

having the students call
further dependences)

Following the
dependences, we can
answer questions like

® \Where does this value
go to!?

® Where does this value
come from!?

Navigating along
Dependences

Ap src/ftpd.c

File Edit Functions Queries Go Tools Window

Bes | PAX2TES80T |HLAE| e
ftpe | inh | access.c | domain.c | timeaut.c |

(void) signal (SIGALRM, draconian_alarm_signal);
alarn(timeout data) ;

socket_ |y Function send_data

}
transflag = —
if (ferror: Navigaion T variable (Global) timeout_data J

¢ (Jote 2 Properties

if ({dracor MO “ Data Predecessors: " timeout_data = 1200 [expression]
goto d: Call Graph Data Successors: g

draconian_F) . 7 timeout_data = value [expression)

alarm(0);~ Queries “ Indirect Predecessors: p! A

8 reply (226, “ITSASTEL COMpLETE. ")

#ifdef TRANSFER COUNT Indirect Successors:

if (retrieve_is_data) { .
file_count_Eotale+; Control Predecessors:
file_count_out++; Control Successors:

)}<fer count_total++; CFG Predecessors:
£ CFG Successors:

Program Slicing

® A slice is a subset of the program

® Allows programmers to focus on what’s
relevant with respect to some statement S:

® All statements influenced by S

® All statements that influence S

Again, this is best
: developed interactively on
Forward Slice((.+ the board (possibly by

having the students call
further dependences)

® Given a statement A, the
forward slice contains all
statements whose read
variables or execution
could be influenced by A

® Formally:

SF(A) = {B|A —* B}
[e J°

o Again, this _is best |
/ = developed interactively on
Backward Slice the board (possibly by

having the students call
Given a statement B, the further dependenCeS)

backward slice contains
all statements that could
influence the read
variables or execution
of B

e Formally:

SR A A B

Two Slices

int mainQ) {
int a, b, sum, mul; ; ;
sum = 0; Slice Operations:

mul = 1; ® Backbones
a = readQ);

b = read(Q); ® Dices

while (a <= b) {
sum = sum + a;
mul = mul * a;
a=a+ 1;

} .

write(sum); ——Backward slice of sum

write(mul); ——Backward slice of mul
}

e Chops

20

Backbone

a = read(); e Contains only those
b
B read(); statement that occur

while (a <= b) { in both slices

® Useful for focusing on
common behavior
a=a+1;

Two Slices

int main() {
int a, b, sum, mul; 4 :
sum = 0; Slice Operations:
mul = 1;
read();
read(); ® Dices
while (a <= b) {
sum = sum + 4,
mul = mul * a;
=@ # i3

® Backbones

® Chops

¥ .
write(sum); ——Backward slice of sum

write(mul); ——Backward slice of mul
}

22

e Contains only the
difference between
two slices

sum = sum + a; ® Useful for focusing on
differing behavior

write(sum);

EETHE Again, this is best
- developed interactively on
Chop | the board (possibly by
having the students call
further dependences)

Intersection between
a forward and a
backward slice

Useful for determining
influence paths within
the program

Leveraging Slices

~ slice-cs.c 00
File Edit Functions Queries Go Window Help
Bes PAX2788GT [4H| e

int main() {

sum, 1N
;

write(sum) ;
write (mul)Hj

(Note:This slice is executable!) | .

|4

Deducing Code Smells

Use of uninitialized variables
Unused values

Unreachable code

Memory leaks

Interface misuse

Null pointers

Uninitialized
Variables

$ gcc -Wall -0 -o fibo fibo.c
fiboscsclnefnction . fibl.
fiboucsZecwarnings it miahtcho
used uninitialized in this
function

False Positives

int go;
switch (color) {
case RED:
case AMBER:
go = 0;
break; warning: "go' might
case GREEN: o sed uninitialized

go = 1; 4. this function
break;

Iy
e Gl e

Unreachable Code

if (w >= 0)

printf("w is non-negative\n");
else if (w > @)

printf("w is positive\n");

warning: will never be executed

Memory Leaks

int *readbuf(int size)
{
int *p = malloc(size * sizeof(int));
fop Gintais—s0 s zccisizonsastd oL
p[i] = readint();
if (p[i] == @)
return @; // end-of-file

¥
EekUEn P

memory leak

Interface Misuse

void readfile()
{
int fp = open(file);
int size = readint(file);
if (size <= @)
return;

close(fp);

stream not closed

Null Pointers

int *readbuf(int size) p may be null

{ /
int *p“= malloc(size * sizeof(int));

for Gintaii=s0isccisizereaatd ol
plida=sreadink:
if (p[i] == 0)
return @; // end-of-file

}

return p;

-~ FindBugs - classpath
File View Settings Help

Al IR TR
By Class ' By Package ' By Bug Tyg I ' r’ Crr) L"E. :)

1 ﬁ 0S: java.security.SignedObject.getObject() may fail to closestream
1 ﬁ PZLA: Should java.security.CodeSource.getCertificates() return a zero length array rather than nu
1 ﬂ UrF: Unread field: java.security.SecureRandom.randomBytes
} ﬁ UR: Uninitialized read of java.security. AccessControlContext.protectionDomain in java.security A
[+ Q java.security.cert (1) =
[+ Q java.security.spec (1)
java.sgl {3)

AWV
Details | Source code |, Annotations

Uninitialized read of field in constructor

This constructor reads a field which has not yet been assigned a value. This is often
caused when the prograrmmer mistakenly uses the field instead of one of the

CONStructor's parameters.

Defect Patterns

Limits of Analysis

ik
for(i=j=k=1;--j11k;k=7?21%j?k:k-7j:(j=1+=2));
write(x);

® [s x being used uninitialized or not?

® Loop halts only if there is an odd perfect
number (= a number that’s the sum of its
proper positive divisors)

® Problem is undediced yet

static void shell_sort(int a[], int size)
{
antis Conservative approximation:
intiahi=ils
e any a[] depends on all a[]
h=h*34+1;
} while (h <= size);
do {
0 /= 35
for (i = h; i < size; i++)
{
int v = a[i];
for (j =1; j>>h& a[j - h] > v; j -= h)
aljl = a[j - hl;
it @1 U= 3D
alil = v;
¥
} while Ch != 1);

Causes of Imprecision

Indirect access, as in a[i]
Pointers

Functions

Dynamic dispatch

Concurrency

Risks of Deduction

° Is the run created from
this very source code?

° A slice typically encompasses
90% of the source code.

° Failures may be caused
by a defect in the environment.

But still, testing suffers

L y from what | call Dijkstra’s
Dukstra s Curse curse - a double meaning,
as it applies both to
testing as to his famous
quote. Is there something
Testing can only find the that can find the absence

presence of errors, of errors?
not their absence

configurations

[
.0
=)
O
«
o
)
(%]
0
(o]

abstraction

Formal Verification

configurations

Formal Verification

configurations

Formal Verification

———————— >
configurations

Areas missing might be:
the operating system, the
hardware, all of the world
the system is embedded in
(including humans!)

We might not be able to
cover all abstraction levels
in all configurations, but
we can do our best to
cover as much as possible.

Best of Both Worlds

Hetzel-Myers Law

abstraction

configurations

A combination
of different V&V methods
outperforms any single
method alone.

Increasing Precision

° If we know that certain
properties hold, we can leverage them in
our inference process.

° Facts from concrete runscan
be combined with deduction.

...in the weeks to come!

Concepts

* To reason about programs, use
® deduction (0 runs)
® observation (I run)
® induction (multiple runs)

® experimentation (controlled runs)

Concepts (2)

* To isolate value origins, follow back the
dependences

* Dependences can uncover code smells such as
® uninitialized variables
® unused values
® unreachable code

* Get rid of smells before debugging

Concepts (3)

* To slice a program, follow dependences from
a statement S to find all statements that

® could be influenced by S (forward slice)

® could influence S (backward slice)

Concepts (4)

* Using deduction alone includes a number of
risks, including code mismatch, sbstracting
away, and imprecision.

* Any deduction is limited by the halting
problem and must thus resort to
conservative approximation.

* For debugging, deduction is best combined
with actual observation.

