
Structural Testing and 
Object Oriented Code

Software Engineering
Gordon Fraser • Saarland University

Based on slides from Mauro Pezzè & Michal Young, and from Paul Ammann and Jeff Offutt

What’s different in 
OO?



What’s different

• Less complexity in procedures
Short methods

• Complexity is relocated
to the connections among components

• Less problems
based on intra-procedural and control flow

• More problems
related to interaction between classes

• Less static determinism
many faults can now only be detected at runtime

State dependent behavior
public class Model extends Orders.CompositeItem 
{
  private Slot[] slots;

  // ...

  private void checkConfiguration() {
    legalConfig = true;
    for(int i=0; i<slots.length; ++i) {
      Slot slot = slots[i];
      if(slot.required && !slot.isBound()) {
        legalConfig = false;
      }
    }
  }
}

Outcome of method 
depends on state (slots)

Encapsulation
public class Model extends Orders.CompositeItem 
{
  private Slot[] slots;

  // ...

  private void checkConfiguration() {
    legalConfig = true;
    for(int i=0; i<slots.length; ++i) {
      Slot slot = slots[i];
      if(slot.required && !slot.isBound()) {
        legalConfig = false;
      }
    }
  }
}

Private methods not 
externally accessible



Class 4

Access Control (in Java)
Class 1

inheritance

Class 3

Class 2

Package

Class 5

private members

default

protected members

public members

Exception Handling

• Exception handling is integral part of OO 
programming

• Test where exceptions are thrown

• Test where exceptions are handled

• Test for unhandled exceptions

Abstract Classes
public class Model extends Orders.CompositeItem 
{
  private Slot[] slots;

  // ...

  private void checkConfiguration() {
    legalConfig = true;
    for(int i=0; i<slots.length; ++i) {
      Slot slot = slots[i];
      if(slot.required && !slot.isBound()) {
        legalConfig = false;
      }
    }
  }
}

How to test abstract 
classes?



Inheritance
public class Model extends Orders.CompositeItem 
{
  private Slot[] slots;

  // ...

  private void checkConfiguration() {
    legalConfig = true;
    for(int i=0; i<slots.length; ++i) {
      Slot slot = slots[i];
      if(slot.required && !slot.isBound()) {
        legalConfig = false;
      }
    }
  }
}

When to test 
overridden methods?

Introduction to Software Testing  (Ch 7) 14

Polymorphism Headaches 
A

+d ()
+g ()
+h ()
+i ()
+j ()
+l ()

Instantiated
type

B k()h() i()

C j()i() l()

A d() j()g() h() i() l()

Object is of type A
A::d ()

Introduction to Software Testing  (Ch 7) 15

A
+d ()
+g ()
+h ()
+i ()
+j ()
+l ()

B
+h ()
+i ()
+k ()

B h() i() k()Instantiated
type

B k()h() i()

C j()i() l()

A d() j()g() h() i() l()

C j()i() l()

A d() j()g() h() i() l()

Object is of type B
B::d ()

Polymorphism Headaches 



Introduction to Software Testing  (Ch 7) 16

A
+d ()
+g ()
+h ()
+i ()
+j ()
+l ()

B
+h ()
+i ()
+k ()

C
+i ()
+j ()
+l ()

C j()i() l()

B h() i() k()

Instantiated
type

B k()h() i()

C j()i() l()

A d() j()g() h() i() l()

C j()i() l()

A d() j()g() h() i() l()

B h() i() k()

A d() j()g() h() i() l()

Object is of type C,  C::d ()

Polymorphism Headaches 

21

Inconsistent Type Use
No overriding (no polymorphism)

C extends T, and C adds new methods (extension)

An object is used “as a C”, then as a T, then as a C

Methods in T can put object in state that is inconsistent for C

Vector

-array
+insertElementAt()
+removeElementAt()

Stack

+pop (): Object
+push (): Object

call

call

s.push (“Steffi”);
s.push (“Joyce”);
s.push (“Andrew”);

s.pop();
s.pop();
s.pop(); 

dumb (s);

void dumb (Vector v)
{
   v.removeElementAt(v.size()-1);
}

// Stack is empty!

(c) 2008 Mauro Pezzè & Michal Young

Dynamic binding

abstract class Credit { 
 // ...
 abstract boolean validateCredit(Account a, int amt, CreditCard c); 
 // ...
}

USAccount
UKAccount
EUAccount
JPAccount

OtherAccount

EduCredit
BizCredit

IndividualCredit

VISACard
AmExpCard
StoreCard

The combinatorial problem: 3 x 5 x 3 = 45 possible combinations
of dynamic bindings (just for this one method!)



Introduction to Software Testing  (Ch 7) 12

DU Pairs and Anomalies

B

+h ()
+i ()

-x

A
-u
-v
-w

+h()
+i()
+j()
+l()

C

+i ()
+j ()

-y

Method Defs Uses

A::h () {A::u, A::w}

A::i () {A::u}

A::j () {A::v} {A::w}

A::l() {A::v}

B::h() {B::x}

B::i() {B::x}

C::i()

C::j() {C::y} {C::y}

Consider what happens when an overriding 
method has a different def-set than the 
overridden method

def-use

def-use DU
anomaly

DU
anomaly

A::h() calls j(), B::h
() does not

22

State Definition Anomaly
X extends W, and X overrides some methods

Overriding methods in X fail to define some variables 
that the overridden methods in W defined

W
v
u

m()
n()

X
x

n()

Y
w

m()

• W::m() defines v and W::n() uses v

• X::n() uses v

• Y::m() does not define v

For an object of type Y, a data flow 
anomaly exists and results in a fault if 
m() is called, then n()

Introduction to Software Testing  (Ch 7) 23

State Definition Inconsistency
Hiding a variable, possibly accidentally

If the descendant’s version of the variable is defined, the 
ancestor’s version may not be

• Y overrides W’s version of v

• Y::m() defines Y::v

• X::n() uses v

For an object of type Y, a data flow 
inconsistency may exist and result in a 
fault if m() is called, then n()

W
v
u

m()
n()

X
x

n()

Y
v

m()



Introduction to Software Testing  (Ch 7) 24

Anomalous Construction Behavior 
Constructor of W calls a method f()

A child of W, X, overrides f()

X::f() uses variables that should be defined by X’s 
constructor 

W

W()
f()

X
x
f()

Calls

Uses

Overrides

When an object of type X is 
constructed, W() is run before X().

When W() calls X::f(), x is used, 
but has not yet been given a value!

25

State Visibility Anomaly
A private variable v is declared in ancestor W, and v is 
defined by W::m()
X extends W and Y extends X
Y overrides m(), and calls W::m() to define v

W
-v
m()

Y

m()

Overrides,
calls

W
-v
m()

X

m()

Y

m()

Overrides,
calls

Overrides

X::m() is added later

Y:m() can no longer call 
W::m()!

X

Class-level
Mutation Testing



OO Mutation
AMC - Access Modifier Change

HVD - Hiding Variable Deletion

HVI - Hiding Variable Insertion

OMD - Overriding Method Deletion

OMM - Overridden Method Moving

OMR - Overridden Method Rename

SKR - Super Keyword Deletion

PCD - Parent Constructor Deletion

ATC - Actual Type Change

DTC - Declared Type Change

PTC - Parameter Type Change

RTC - Reference Type Change

OMC - Overloading Method Change

OMD - Overloading Method Deletion

AOC - Argument Order Change

ANC - Argument Number Change

TKD - this Keyword Deletion

SMV - Static Modifier Change

VID - Variable Initialization Deletion

JDC - Java Supported Default Constructor

OO Mutation

AMC - Access Modifier Change

HVD - Hiding Variable Deletion
HVI - Hiding Variable Insertion
OMD - Overriding Method Deletion
OMM - Overridden Method Moving
OMR - Overridden Method Rename
SKR - Super Keyword Deletion
PCD - Parent Constructor Deletion

ATC - Actual Type Change

RTC - Reference Type ChangeInformation Hiding

Inheritance

Polymorphism

DTC - Declared Type Change

PTC - Parameter Type Change

OMC - Overloading Method Change

OMD - Overloading Method Deletion

AOC - Argument Order Change

ANC - Argument Number Change

TKD - this Keyword Deletion

SMV - Static Modifier Change

VID - Variable Initialization Deletion

Overloading

Java Specific

JDC - Java Supported Default Constructor

OO Mutation

AMC - Access Modifier Change

Information Hiding

HVD - Hiding Variable Deletion
HVI - Hiding Variable Insertion
OMD - Overriding Method Deletion
OMM - Overridden Method Moving
OMR - Overridden Method Rename
SKR - Super Keyword Deletion
PCD - Parent Constructor Deletion

Inheritance

ATC - Actual Type Change

RTC - Reference Type Change

Polymorphism

DTC - Declared Type Change

PTC - Parameter Type Change

OMC - Overloading Method Change

OMD - Overloading Method Deletion

AOC - Argument Order Change

ANC - Argument Number Change

Overloading

TKD - this Keyword Deletion

SMV - Static Modifier Change

VID - Variable Initialization Deletion

Java Specific

JDC - Java Supported Default Constructor



AMC - Access Modifier Change

public Stack s; private Stack s;

protected Stack s;

Stack s;

OO Mutation

AMC - Access Modifier Change

Information Hiding

HVD - Hiding Variable Deletion
HVI - Hiding Variable Insertion
OMD - Overriding Method Deletion
OMM - Overridden Method Moving
OMR - Overridden Method Rename
SKR - Super Keyword Deletion
PCD - Parent Constructor Deletion

Inheritance

ATC - Actual Type Change

RTC - Reference Type Change

Polymorphism

DTC - Declared Type Change

PTC - Parameter Type Change

OMC - Overloading Method Change

OMD - Overloading Method Deletion

AOC - Argument Order Change

ANC - Argument Number Change

Overloading

TKD - this Keyword Deletion

SMV - Static Modifier Change

VID - Variable Initialization Deletion

Java Specific

JDC - Java Supported Default Constructor

HVD - Hiding variable deletion

class List { 
  int size;
  ... ...
}
class Stack extends List { 
  int size;
  ... ...
}

class List { 
  int size;
  ... ...
}
class Stack extends List { 
∆ //  int size;
  ... ...
}

This operator does not find any 
functional faults, but shows where 
encapsulation is not done properly. 
Because it leads to many uncompilable 
or equivalent mutants it is not used in 
practice.

This mutant can only be killed by a test 
case that is able to show that the 
reference to the parent variable is 
incorrect.



HVI – Hiding variable insertion

class List { 
  int size;
  ... ...
}
class Stack extends List { 
  ... ...
}

class List { 
  int size;
  ... ...
}
class Stack extends List { 
∆ int size;
  ... ...
}

OMD – Overriding method deletion

class List {
  void clear() { ...}
}
class Stack extends List { 
  ... ...
  void clear() {...}
}

class List {
  void clear() { ...}
}
class Stack extends List { 
  ... ...
∆ // void clear() {...}
}

OMM – Overridden method 
calling position change

class List { 
  ... ...
  void SetEnv() {
    size = 5; ... 
  }
}
class Stack extends List { 
  int size;
  ... ...
  void SetEnv() {
    super.SetEnv();
    size = 10;
  }
}

class List { 
  ... ...
  void SetEnv() {
    size = 5; ... 
  }
}
class Stack extends List { 
  int size;
  ... ...
  void SetEnv() {
∆    size = 10;
∆    super.SetEnv();
  }
}

This mutant can only be killed by a test 
case that is able to show that the 
reference to the overridden variable is 
incorrect.

This mutant is killed by a test case that 
is able to show that the behavior of the 
parentʼs method is incorrect.



OMR – Overridden method rename

class List { 
  void m() {
    ... 
    f(); 
    ... 
  }	
  void f() { ... }
}
class Stack extends List { 
  ... ...
  void f() { ... }
}

class List { 
  void m() {
    ... 
    f’(); 
    ... 
  }	
  void f’() { ... }
}
class Stack extends List { 
  ... ...
  void f() { ... }
}

SKR – super keyword deletion

class Stack extends List { 
  ... ...
  int MyPop( ) { 
    ... ...
    return val*super.num;
  }
}

class Stack extends List { 
  ... ...
  int MyPop( ) { 
    ... ...
∆    return val*num;
  }
}

PCD – Explicit call of a parent’s 
constructor deletion

class Stack extends List { 
  ... ...
  Stack (int a) { 
    super (a);
    ... ...
  }
}

class Stack extends List { 
  ... ...
  Stack (int a) { 
∆   // super (a);
    ... ...
  }
}

These mutants can only be killed by a test case 
that causes different behavior when the 
overriding (childʼs) version is not called.

Ensures that hiding/hidden variables and 
overriding/overridden methods are used 
appropriately.

Causes calling of default constructor. 
Can only be killed by a test case for 
which the parentʼs default constructor 
creates an initial state that is incorrect.



OO Mutation

AMC - Access Modifier Change

Information Hiding

HVD - Hiding Variable Deletion
HVI - Hiding Variable Insertion
OMD - Overriding Method Deletion
OMM - Overridden Method Moving
OMR - Overridden Method Rename
SKR - Super Keyword Deletion
PCD - Parent Constructor Deletion

Inheritance

ATC - Actual Type Change

RTC - Reference Type Change

Polymorphism

DTC - Declared Type Change

PTC - Parameter Type Change

OMC - Overloading Method Change

OMD - Overloading Method Deletion

AOC - Argument Order Change

ANC - Argument Number Change

Overloading

TKD - this Keyword Deletion

SMV - Static Modifier Change

VID - Variable Initialization Deletion

Java Specific

JDC - Java Supported Default Constructor

Polymorphic Mutations

A a; 
a = new A();

A a; 
∆ a = new B();

ATC

∆ B a; 
a = new A();

DTC

boolean equals (B o) 
{ ... }

∆ boolean equals (A o) 
{ ... } PTC

Object obj;
String s = “Hello”;
Integer i = new Integer(4); 
obj=s;

Object obj;
String s = “Hello”;
Integer i = new Integer(4); 
∆ obj=i;

RTC

OO Mutation

AMC - Access Modifier Change

Information Hiding

HVD - Hiding Variable Deletion
HVI - Hiding Variable Insertion
OMD - Overriding Method Deletion
OMM - Overridden Method Moving
OMR - Overridden Method Rename
SKR - Super Keyword Deletion
PCD - Parent Constructor Deletion

Inheritance

ATC - Actual Type Change

RTC - Reference Type Change

Polymorphism

DTC - Declared Type Change

PTC - Parameter Type Change

OMC - Overloading Method Change

OMD - Overloading Method Deletion

AOC - Argument Order Change

ANC - Argument Number Change

Overloading

TKD - this Keyword Deletion

SMV - Static Modifier Change

VID - Variable Initialization Deletion

Java Specific

JDC - Java Supported Default Constructor

Causes object reference to refer to an 
object of a type that is different from the 
declared type.



OMR – Overloading method 
contents change

class List { 
  ... ...
  void Add (int e) { 
    ... ... 
  } 
  void Add (int e, int n) {
    ... ...
  }
}

class List { 
  ... ...
  void Add (int e) { 
    ... ... 
  } 
  void Add (int e, int n) {
∆    this.Add(e);
  }
}

OMD – Overloading method deletion

class Stack extends List 
{ ... ...
  void Push (int i) 
   { ... }
  void Push (float f) 
   { ... }
}

class Stack extends List 
{ ... ...
∆ // void Push (int i)  
∆ //  { ... }
 void Push (float f) 
  { ... }
}

Changing Arguments

s.Push (0.5, 2); ∆ s.Push (2, 0.5);

∆ s.Push (2);
∆ s.Push (0.5);
∆ s.Push ();

AOC

ANC

Checks that overloaded methods are 
invoked correctly. 

Ensures coverage of overloaded 
methods.

Only if there is an overloaded method 
that accepts the parameters.



OO Mutation

AMC - Access Modifier Change

Information Hiding

HVD - Hiding Variable Deletion
HVI - Hiding Variable Insertion
OMD - Overriding Method Deletion
OMM - Overridden Method Moving
OMR - Overridden Method Rename
SKR - Super Keyword Deletion
PCD - Parent Constructor Deletion

Inheritance

ATC - Actual Type Change

RTC - Reference Type Change

Polymorphism

DTC - Declared Type Change

PTC - Parameter Type Change

OMC - Overloading Method Change

OMD - Overloading Method Deletion

AOC - Argument Order Change

ANC - Argument Number Change

Overloading

TKD - this Keyword Deletion

SMV - Static Modifier Change

VID - Variable Initialization Deletion

Java Specific

JDC - Java Supported Default Constructor

TKD – this keyword deletion

class Stack { 
  int size;
  ... ...
  void setSize(int size) {
    this.size = size;
  }
}

class Stack { 
  int size;
  ... ...
  void setSize(int size) {
∆    size = size;
  }
}

SMV – static modifier change

public static int s = 100; 
private String name;

public int s = 100;
public static String name;

Similar to hiding variables.

Change class to instance variables.



 VID – Member variable 
initialization deletion

class Stack { 
  int size = 100;
  ... ...
}

class Stack { 
∆  int size;
  ... ...
}

Others

EOA – Reference assignment and 
content assignment replacement

List list1, list2;
list1 = new List();
list2 = list1;

List list1, list2;
list1 = new List();
∆ list2 = list1.clone();

Ensures correct initialization of instance 
variables.



EOC – Reference comparison 
and content comparison 

replacement

Fract f1 = new Fract (1, 2);
Fract f2 = new Fract (1, 2);
boolean b = (f1==f2);

Fract f1 = new Fract (1, 2);
Fract f2 = new Fract (1, 2);
∆ boolean b = f1.equals(f2);

EAM – Accessor method change

point.getX(); ∆ point.getY();

point.setX(2); ∆ point.setY(2);

EAM – Modifier method change

OO Mutation

• Creates far less mutants than traditional 
mutation 

• Large percentage of equivalent mutants



OO Testing

(c) 2008 Mauro Pezzè & Michal Young

Using Structural Information
• Start with functional testing

– As for procedural software, the specification (formal or informal) 
is the first source of information for testing object-oriented 
software

•“Specification” widely construed:  Anything from a requirements 
document to a design model or detailed interface description

• Then add information from the code (structural testing)

– Design and implementation details not available from other 
sources

Actual Needs and
Constraints

Unit/
Component

Specs

System Test

Integration Test

Module Test

User Acceptance (alpha, beta test )

R
ev

ie
w

Analysis /
Review

Analysis /
Review

User review of external behavior as it is
determined or becomes visible

Unit/
Components

Subsystem
Design/Specs Subsystem

System
Integration

System
Specifications

Delivered
Package



OO Testing Levels

• Intra-method testing : Testing individual methods 
within classes

• Inter-method testing : Multiple methods within a class 
are tested in concert

• Intra-class testing : Testing a single class, usually using 
sequences of calls to methods within the class

• Inter-class testing : More than one class is tested at 
the same time (integration)

Intra-Method Testing

• Procedural testing also applies to methods
Coverage of control flow, data-flow, ...

• Setup-code necessary to get into right state

• Need to treat exceptions

(c) 2008 Mauro Pezzè & Michal Young

Exception handling
void addCustomer(Customer theCust) { 
  customers.add(theCust); 
}
public static Account newAccount(...) 
	 throws InvalidRegionException 
{
  Account thisAccount = null; 
  String regionAbbrev = Regions.regionOfCountry(
	 	 	        mailAddress.getCountry()); 
  if (regionAbbrev == Regions.US) {
	     thisAccount = new USAccount(); 
  } else if (regionAbbrev == Regions.UK) {
    //...
  } else if (regionAbbrev == Regions.Invalid) {
	  throw new InvalidRegionException(mailAddress.getCountry()); 
  } 
  //...
}

exceptions create 
implicit control 

flows and may be 
handled by 

different handlers



Testing exception handling
• Impractical to treat exceptions like normal flow

•too many flows: every array subscript reference, every memory 
allocation, every cast, ... 

• multiplied by matching them to every handler that could appear 
immediately above them on the call stack. 

•many actually impossible

• So we separate testing exceptions

•and ignore program error exceptions (test to prevent them, not 
to handle them)

• What we do test: Each exception handler, and each explicit throw or 
re-throw of an exception

(c) 2008 Mauro Pezzè & Michal Young

Testing exception handlers
• Local exception handlers

– test the exception handler (consider a subset of points 
bound to the handler)

• Non-local exception handlers

– Difficult to determine all pairings of <points, handlers>

– So enforce (and test for) a design rule: 
if a method propagates an exception, the method call 
should have no other effect

(c) 2008 Mauro Pezzè & Michal Young

(c) 2008 Mauro Pezzè & Michal Young

Inheritance
When testing a subclass ... 

•We would like to re-test only what has not been 
thoroughly tested in the parent class

• for example, no need to test hashCode and 
getClass methods inherited from class Object in 
Java

•But we should test any method whose behavior may 
have changed

•even accidentally!



(c) 2008 Mauro Pezzè & Michal Young

Reusing Tests with the 
Testing History Approach

• Track test suites and test executions

• determine which new tests are needed

• determine which old tests must be re-executed

• New and changed behavior ...

• new methods must be tested

• redefined methods must be tested, but we can 
partially reuse test suites defined for the ancestor

• other inherited methods do not have to be retested

(c) 2008 Mauro Pezzè & Michal Young

Testing history

(c) 2008 Mauro Pezzè & Michal Young

Inherited, unchanged



(c) 2008 Mauro Pezzè & Michal Young

Newly introduced 
methods

(c) 2008 Mauro Pezzè & Michal Young

Overridden methods

(c) 2008 Mauro Pezzè & Michal Young

Testing History - Summary



(c) 2008 Mauro Pezzè & Michal Young

Stubs, Drivers, and 
Oracles for Classes

•Problem:  State is encapsulated

– How can we tell whether a method had the 
correct effect?

•Problem: Most classes are not complete 
programs

–   Additional code must be added to execute 
them

•We typically solve both problems together, 
with scaffolding

(c) 2008 Mauro Pezzè & Michal Young

Scaffolding
Driver

Stubs

Classes to 
be tested

Tool example:
 JUnit

Tool example:
 MockMaker

(c) 2008 Mauro Pezzè & Michal Young

Oracles
• Test oracles must be able to check the correctness 

of the behavior of the object when executed with a 
given input

• Behavior produces outputs and brings an object into 
a new state

– We can use traditional approaches to check for 
the correctness of the output

– To check the correctness of the final state we 
need to access the state

 Ch 15, slide 32

A test scaffolding is composed of:
 one or more drivers, that 
provide a prototype 
activation environment for 
the unit under test . For 
procedural programs, drivers 
initialize non-local variables 
and parameters, and call the 
unit.
 one or more stubs, that 
provides a prototype of the 
units used by the program to 
be tested. 
 one or more oracles, i.e., 
acceptors, that identify the 
tests that cause failures.



(c) 2008 Mauro Pezzè & Michal Young

Accessing the state
• Intrusive approaches

– use language constructs (C++ friend classes)

– add inspector methods

– in both cases we break encapsulation and we may produce 
undesired results

• Equivalent scenarios approach:

– generate equivalent and non-equivalent sequences of method 
invocations

– compare the final state of the object after equivalent and non-
equivalent sequences

(c) 2008 Mauro Pezzè & Michal Young

Equivalent Scenarios 
selectModel(M1)

addComponent(S1,C1)

addComponent(S2,C2)

isLegalConfiguration()

deselectModel()

selectModel(M2)

addComponent(S1,C1) 

isLegalConfiguration()

EQUIVALENT
selectModel(M2)
addComponent(S1,C1)
isLegalConfiguration()

NON EQUIVALENT
selectModel(M2)
addComponent(S1,C1)
addComponent(S2,C2)
isLegalConfiguration()

OO Testing Levels

• Intra-method testing : Testing individual methods 
within classes

• Inter-method testing : Multiple methods within a class 
are tested in concert

• Intra-class testing : Testing a single class, usually using 
sequences of calls to methods within the class

• Inter-class testing : More than one class is tested at 
the same time (integration)



Inter-Method Testing

• Complexity due to connections and interactions

• Simple structural criteria cannot capture this 
complexity

• Dataflow within one method

• Dataflow within one class

• Inter-class data flow

• Data flow couplings among units and classes are 
more complicated than control flow couplings

27

Coupling Sequences

Pairs of method calls within body of method under test:

–Made through a common instance context

–With respect to a set of state variables that are commonly 
referenced by both methods

–Consists of at least one coupling path between the two 
method calls with respect to a particular state variable

• Represent potential state space interactions between the 
called methods with respect to calling method

• Used to identify points of integration and testing 

requirements

Example Inter-procedural DU Pairs

F x = 14
// ...
y = G (x)
// ...
print (y)

G(a) print (a)
// ...
b = 42
// ...
return (b)

Caller

Callee

DU pair

DU pair

11

B (int y)

Z = y T = y

print (y)

10

12

13

Last Defs
2, 3

First Uses
11, 12

callsite

first-use

first-use

last-def

last-def x = 5

x = 4

x = 3

B (x)

1

2

3

4

Data flow couplings among units and 
classes are more complicated than 
control flow couplings
When values are passed, they “change 
names”
Many different ways to share data
Finding defs and uses can be difficult – 
finding which uses a def can reach is 
very difficult
When software gets complicated … 
testers should get interested
Thatʼs where the faults are!

If we focus on the interface, then we 
just need to consider the last 
definitions of variables before calls 
and returns and first uses inside units 
and after calls
Last-def : The set of nodes that define 
a variable x and has a def-clear path 
from the node through a callsite to a 
use in the other unit
Can be from caller to callee 
(parameter or shared variable) or from 
callee to caller as a return value
First-use : The set of nodes that have 
uses of a variable y and for which 
there is a def-clear and use-clear path 
from the callsite to the nodes



30Introduction to Software Testing  (Ch 7) © Ammann and Offutt

Polymorphic Call Set

Set of methods that can potentially 
execute as result of a method call 
through a particular instance context

pcs(o.m) = {W::m, Y::m, X::m}

 public void f ( W o )
 {
       …
j      o.m();
       …
l      o.l();
       …
k      o.n();
  }

o bound to 
instance of W

h def (o)

Client f

i  o.m()

j  o.l()

k  o.n()
n ()

use (W::v)
use (W::u)

m ()

def (W::v)

l ()

def (W::u)

Example Coupling Sequence 

W
-v :
-u :

+m()
+n()
+l()

Z

+m()
+n()

X
-x :
+n()

Y
-w :
+m()
+l()

Coupling 
sequence with 
respect to W::v

Coupling 
sequence with 
respect to W::u

o bound to 
instance of Z

h def (o)

Client f

i  o.m()

j  o.l()

k  o.n()

m ()

def (Z::x)

n ()

use (Z::x)
use (Z::x)

l ()

def (W::u)

Example Coupling Sequence (2)

Coupling 
sequence with 
respect to Z::x

W
-v :
-u :

+m()
+n()
+l()

X
-x :
+n()

Y
-w :
+m()
+l()

Z

+m()
+n()

-x :



Introduction to Software Testing  (Ch 7) 34

Testing Goals
We want to test how a method can interact with 

instance bound to object o:

– Interactions occur through the coupling sequences

Need to consider the set of interactions that can 
occur:

–What types can be bound to o?

–Which methods can actually execute? (polymorphic call sets)

Test all couplings with all type bindings possible 

All-Coupling-Sequences

• At least one coupling path must be executed

• Does not consider inheritance and polymorphism

All-Coupling-Sequences (ACS) : For every coupling sequence Sj in f(), 
there is at least one test case t such that there is a coupling path 
induced by Sj,k that is a sub-path of the execution trace of f(t)

Introduction to Software Testing  (Ch 7)

All-Poly-Classes

• Includes instance contexts of calls

• At least one test for every type the object can bind 
to

• Test with every possible type substitution

All-Poly-Classes (APC) : For every coupling sequence Sj,k in method 
f(), and for every class in the family of types defined by the context 

of Sj,k, there is at least one test case t such that when f() is 
executed using t, there is a path p in the set of coupling paths of Sj,k 

that is a sub-path of the execution trace of f(t)



All-Coupling-Defs-Uses

• Every last definition of a coupling variable reaches 
every first use

• Does not consider inheritance and polymorphism

All-Coupling-Defs-Uses (ACDU) : For every coupling variable v in 
each coupling Sj,k of t, there is a coupling path induced by Sj,k such 

that p is a sub-path of the execution trace of f(t) for at last one test 
case t

All-Poly-Coupling-Defs-and-Uses

• Every last definition of a coupling variable reaches 
every first use for every type binding

• Combines previous criteria

• Handles inheritance and polymorphism

Takes definitions and uses of variables into account

All-Poly-Coupling-Defs-and-Uses (APDU) : For every coupling 
sequence Sj,k in f(), for every class in the family of types defined by 
the context of Sj,k, for every coupling variable v of Sj,k, for every 
node m that has a last definition of v and every node n that has a 
first-use of v, there is at least one test case t such that when f() is 

executed using t, there is a path p in the coupling paths of Sj,k that 
is a sub-path of the trace of f()

OO Criteria Subsumption 

All-Coupling-
Sequences

ACS

All-Poly-Coupling 
Defs-Uses

APDU

All-Poly-Classes

APC

All-Coupling-Defs-
Uses

ACDU



OO Testing Levels

• Intra-method testing : Testing individual methods 
within classes

• Inter-method testing : Multiple methods within a class 
are tested in concert

• Intra-class testing : Testing a single class, usually using 
sequences of calls to methods within the class

• Inter-class testing : More than one class is tested at 
the same time (integration)

Intra-Class Testing
• Basic idea: 

• The state of an object is modified by operations

• Methods can be modeled as state transitions

• Test cases are sequences of method calls that 
traverse the state machine model

• State machine model can be derived from 
specification (functional testing), code 
(structural testing), or both

(c) 2008 Mauro Pezzè & Michal Young

Informal state-full specifications

Slot: represents a slot of a computer model. 
	
 .... slots can be bound or unbound. Bound slots are 

assigned a compatible component, unbound slots are 
empty. Class slot offers the following services:

• Install: slots can be installed on a model as required or 
optional.
...

• Bind: slots can be bound to a compatible component.
...

• Unbind: bound slots can be unbound by removing the 
bound component.

• IsBound: returns the current binding, if bound; 
otherwise returns the special value empty.

Part I: generating test cases 
from informal specifications:
Let us start with an informal 
description of a simple class 
slot of our running example: the 
web presence of the Chipmunk 
Coputer Company. 



(c) 2008 Mauro Pezzè & Michal Young

Identifying states and transitions

• From the informal specification we can identify 
three states:
– Not_installed
– Unbound
– Bound

• and four transitions
– install: from Not_installed to Unbound
– bind: from Unbound to Bound
– unbind: ...to Unbound
– isBound: does not change state

(c) 2008 Mauro Pezzè & Michal Young

Deriving an FSM and test cases

Not present Unbound Bound
1 20

isBound

isBound
bind

unBind

unBind

incorporate

• TC-1:  incorporate, isBound, bind, isBound
• TC-2: incorporate, unBind, bind, unBind, isBound

(c) 2008 Mauro Pezzè & Michal Young

Intraclass data flow testing

•Exercise sequences of methods 

– From setting or modifying a field value

– To using that field value

•We need a control flow graph that 
encompasses more than a single method ...  

A simple analysis of the 
informal specification of class 
Slots allows to identify states 
and transitions. 
The analysis reveals some 
ambiguities that have been 
solved in the finite state 
machine model.



(c) 2008 Mauro Pezzè & Michal Young

The intraclass control flow graph
Control flow for each method

+

node for class

+

edges 
from node class to the start 

nodes of the methods 
from the end nodes of the 

methods to node class

=> control flow through sequences of 
method calls

class Model

Method 
addComponent

Method 
selectModel

Method 
checkConfiguration

OO Testing Levels

• Intra-method testing : Testing individual methods 
within classes

• Inter-method testing : Multiple methods within a class 
are tested in concert

• Intra-class testing : Testing a single class, usually using 
sequences of calls to methods within the class

• Inter-class testing : More than one class is tested at 
the same time (integration)

Inter-Class Testing

• The first level of integration testing for object-oriented software

– Focus on interactions between classes

• Bottom-up integration according to “depends” relation

– A depends on B:  Build and test B, then A

•Class A makes method calls on class B

•Class A objects include references to class B methods

– but only if reference means “is part of”

(c) 2008 Mauro Pezzè & Michal Young



(c) 2008 Mauro Pezzè & Michal Young  Ch 15, slide 16

from a class 
diagram...

(c) 2008 Mauro Pezzè & Michal Young

....to a hierarchy

Note: we may have 
to break loops and 

generate stubs

Summary
• Several features of object-oriented languages and programs 

impact testing

– from encapsulation and state-dependent structure to 
generics and exceptions

– but only at unit and subsystem levels

– and fundamental principles are still applicable

• Basic approach is orthogonal

– Techniques for each major issue (e.g., exception handling, 
generics, inheritance, ...) can be applied incrementally and 
independently

(c) 2008 Mauro Pezzè & Michal Young



Random Testing Revisited: 
Method Sequences

Based on slides by Carlos Pacheco

OO Testing

• Testing object oriented systems is 
complicated

• A test case is a sequence of method calls

• Testing object oriented systems is an area 
of active research

• What can we do automatically?

Deriving Method 
Sequences

• Symbolic execution

• Evolutionary search

• Random search



Test Cluster

• Java Reflection

• What’s the class under test?

• What are the dependencies (parameters)

• All methods, constructors, fields form the 
test cluster

Feedback-directed random
test generation

• Build test inputs incrementally

• New test inputs extend previous ones

• In our context, a test input is a method sequence

• As soon as a test is created, execute it

• Use execution results to guide the search

• away from redundant or illegal method 
sequences

• towards sequences that create new object states

1. Useful test
Set t = new HashSet();
s.add(“hi”);
assertTrue(s.equals(s));

2. Redundant test
Set t = new HashSet();
s.add(“hi”);
s.isEmpty();
assertTrue(s.equals(s));

3. Useful test
Date d = new Date(2006, 2, 14);
assertTrue(d.equals(d));

4. Illegal test
Date d = new Date(2006, 2, 14);
d.setMonth(-1);
assertTrue(d.equals(d));

5. Illegal test
Date d = new Date(2006, 2, 14);
d.setMonth(-1);
d.setDay(5);
assertTrue(d.equals(d));



1. Useful test
Set t = new HashSet();
s.add(“hi”);
assertTrue(s.equals(s));

2. Redundant test
Set t = new HashSet();
s.add(“hi”);
s.isEmpty();
assertTrue(s.equals(s));

3. Useful test
Date d = new Date(2006, 2, 14);
assertTrue(d.equals(d));

4. Illegal test
Date d = new Date(2006, 2, 14);
d.setMonth(-1);
assertTrue(d.equals(d));

5. Illegal test
Date d = new Date(2006, 2, 14);
d.setMonth(-1);
d.setDay(5);
assertTrue(d.equals(d));

do not output 

do not even create 

Technique input/output
• Input:

• classes under test

• time limit

• set of contracts

• Method contracts (e.g. “o.hashCode() throws 
no exception”)

• Object invariants  (e.g. “o.equals(o) == true”)

• Output: contract-violating test cases

Technique input/output

HashMap h = new HashMap();
Collection c = h.values();
Object[] a = c.toArray();
LinkedList l = new LinkedList();
l.addFirst(a);
TreeSet t = new TreeSet(l);
Set u = Collections.unmodifiableSet(t);
assertTrue(u.equals(u)); fails when executed

no contracts
violated

up to last
method call



 Each sequence “constructs” several objects, available after the last method 
call is executed:

 < result, receiver, param1, ..., paramn > of last method call

 Example: sequence constructs two objects:

< LinkedList, HashSet > 

 To create a new sequence:

i. Randomly pick a method call m(T1...Tk)/Tret from a tested class

ii. For each input parameter of type Ti, randomly pick a sequence Si that 
constructs an object of type Ti

iii. Create new sequence Snew = S1• ... • Sk • Tret vnew = m(v1...vk);

iv. if Snew was previously created (lexically), go to i

Creating a sequence

LinkedList l = new LinkedList();
Set h = new HashSet();
l.addFirst(h);

Classifying a sequence

execute and
check

contracts

components contract-
violating
test case

contract
violated?

minimize
sequence

yes

sequence
redundant?

no

yes

discard
sequence

start

no

• During generation, maintain a set of all 
objects created.

• A sequence is redundant if all the objects 
created during its execution are members of 
the above set (using equals to compare)

• We incorporate redundancy checking as 
part of the generation process.

Redundant Sequences



Randoop
• Implements feedback-directed random test generation

• Input:

• An assembly (for .NET) or a list of classes (for Java) 

• Generation time limit

• Optional: a set of contracts to augment default contracts

• Output: a test suite (Junit or Nunit) containing

• Contract-violating test cases

• Normal-behavior test cases

Randoop outputs oracles
• Oracle for contract-violating test case:

Object o = new Object();
LinkedList l = new LinkedList();
l.addFirst(o);
TreeSet t = new TreeSet(l);
Set u = Collections.unmodifiableSet(t);
assertTrue(u.equals(u));

• Oracle for normal-behavior test case:
Object o = new Object();
LinkedList l = new LinkedList();
l.addFirst(o);
l.add(o);
assertEquals(2, l.size());
assertEquals(false, l.isEmpty());

Randoop uses 
observer methods 
to capture object state

Errors found: examples
• JDK Collections classes have 4 methods that create objects violating 

o.equals(o) contract

• Javax.xml creates objects that cause hashCode and toString to 
crash, even though objects are well-formed XML constructs

• Apache libraries have constructors that leave fields unset, leading to 
NPE on calls of equals, hashCode and toString (this only counts as 
one bug)

• Many Apache classes require a call of an init() method before object 
is legal—led to many false positives

• .Net framework has at least 175 methods that throw an exception 
forbidden by the library specification (NPE, out-of-bounds, of illegal 
state exception)

• .Net framework has 8 methods that violate o.equals(o)

• .Net framework loops forever on a legal but unexpected input


