But how to create the tests?

Test Data Generation

Given a function and a location we want to
reach, how do we derive inputs to the
function that lead the control flow to the
desired statement?

We are still looking at the problem
of deriving input data that will lead
execution to some particular point
in the control flow that is interesting
for testing reasons. Today, we will
consider constraint based testing,
which allows us to reason about
the precise conditions under which
a test goal is satisfied, and allows
us to deduce test data satisfying
the test goals.

4' int cgi_decode(char *encoded, char *decoded) I

1

int ok = 0;

[{char *eptr = encoded; QA ,'\'

char *dptr = decoded; ~ J

c has to be “+”
*eptr has to be

true

else int digit high = ' A

s R int digit_high = Hex_Values[*(++eptr)]; |

dptr = "eptr; QF > int digit_low = Hex_Values[*(++eptr); _ G
if (digit_high == -1 || digit_low == -1) { —

LTru .
) e Under which
conditions do we
reach this point?

ﬁFals

else {
*dptr = 16 * digit_high + digit_low;
}

“dptr =10’
return ok;

)

Constraint-based Testing

® Constraint generation
Extract a constraint system from the program and a
testing objective

® Constraints on inputs
If inputs satisfy constraints, then testing objective
will be satisfied

® Constraint solving:
Solve the constraint system to generate test data

® Static analysis aims at finding runtime
errors (e.g. division-by-zero, overflows, ...)
at compile time

® CBT aims at finding functional faults (e.g. P
returns 3 while 2 was expected)

Looking at the control flow graph of
the cgi_decode example, we see
that in order to reach node E
several conditions have to hold -
conditions on variables that are
altered during the program
execution.

® Model-checking tools explore paths of
software models for proving properties

® CBT looks only for counter-examples

® Dynamic analysis approaches extract likely
invariants

® CBT exploits symbolic reasoning to find
counter-examples to given properties

Overview
Program Test Goal Constraint system
(@b Arc=2)
v (a>5 A
» b>a) v (a<b
Ab<Sana>
0)

| S ——

The ida of constraint based testing
is to transform a program and a
test goal for that program to a
constraint system...

...and then use a constraint solver
to automatically derive a solution to

Ove rview the constraint system - which is our
test data.

Constraint system Constraint solver Test data

(@b Ac=2)

v (@>5 A a=|
b>a) v (a<b b=2
Ab<5Arna> c=3
0)

~——— | S ——

Relevant questions: Does the
constraint system (CS) have a

What iS a Constr’ai nt7 solution? Can we generate a

solution to CS? Can we generate
the best solution to CS?

® A constraint is a condition that a solution
to an optimization problem must satisfy

e x>5y<I10
e a>bab>10

® Constraint satisfaction:
Finding value assignments to variables such that

constraints are satisfied

Relevant Questions

® Does the constraint system (CS) have a solution?
To decide whether the testing objective is reachable or not

® Can we generate a solution to CS?
Test data generation

® Can we generate the best solution to CS?
Test data generation that optimizes a cost function

Constraint solving

® Computational domain, constraint language results from the
choice of programs and properties to be considered

® Booleans - Boolean formula (A&&B&&!C)||(...)
® Integers

® Bounded Integers

® Rationals

® Reals

® Floating-point numbers

[]
The landscape of complexities for
D ecCl dabl | |ty an d different domains (rows) and types
of constraints (columns) looks
CompleXities scary - in practice, however, we
can handle anything involving non-
linear constraints quite well using
Boolean F la | Li traint Polynomial Non-linear T
oolean Frormula Inear constraints constraints constraints heu rIStICS.
2-SAT in P o)
Booleans 3-SATis Np- | - Prosramming ? ?
el is NP-complete
Bounded integers NP-complete NP-complete NP-complete
Integer
Integers programming is
NP complete
. Nonlinear
Rationals and reals Llnea‘r . programming is
programming in P NP-complete

Decision procedures
(best practices)

. . Polynomial Non-linear
Boolean Formula | Linear constraints X X
constraints constraints
Booleans Davis & Putnam
(DPLL)
Cooper’s
Bounded integers procedure fir
Oresburger
1. ith
Constraint Constraint Constraint
Integers . A A ; A N
satisfaction satisfaction satisfaction
Simplex .
. . Groebner basis Interval
Rationals and reals Fourier (Buchberger alg) ropagation
Elimination gerag propag

Constraint Satisfaction

® A constraint system involves a set of variablesV, a set of
finite domains D, and a set of constraints C

® A solution is an assignment of V to values in D that
satisfies C

® A constraint system is unsatisfiable when it has no
solutions

e Constraint satisfaction involves 3 interleaved processes:

Constraint
/'[propagation]\
[Constraint [Variable
labeling

filtering

Constraint filtering

® Given a single constraint, filter the domains
of variables by removing inconsistent values

® Depends on a level of consistency to be
achieved
Domain consistency - bound consistency -
and many more

® Example:
Xin {2,3,4,6,10},Y in {1,2,3,4,6,8}, Z in {6},
xX*Y=2Z

Domain Consistency

For each value in Dx, find a support in Dz and Dy

{2,3.4,6,10) {6}

{1,2,34,6.8

Bound Consistency

For each bound in Dx, find a support in Dz and Dy

{2,3,4,6,)0} {6}

{1,234.68}

Constraint Propagation

® Propagates prunings throughout the constraint system

® |mplemented as a fixpoint algorithm:

Agenda := C;
while(!Agenda.isEmpty()) {
c := POP(Agenda);
D’ := narrow(c,D);
if(D’ != D)
Agenda := Agenda u
{c’ in C | vars(c’) n vars(c)!=0}
D :=D’
ks

return D’;

Domain consistency checks for
each variable of a constraint for
which of its values there is support
in the values of the other variables.

Bound consistency only reduces
the domain bounds, and is
therefore cheaper.

After constraint filtering, the
reduced value domains (result of
function narrow in above source
code) are propagated to other
constraints that involve the same
variables. This process is
implemented as a fixpoint algorithm
that iterates until no more changes
can be propagated.

Constraint Propagation

15

15

X, Y in 0..10, X*Y=6,X+Y=5

Constraint Propagation

0 3 6 9 12 15

XY in 0..10, X*Y=6, X+Y=5

Constraint Propagation

X,Y in 0..10, X*Y=6, X+Y=5

Constraint Propagation

0

3 6 9 12 15

X,Y in 0..10, X*Y=6, X+Y=5

Constraint Propagation

15

12

9
calleda

6

3

0

Fixpoint = X,Y in 2..3

hyper-box (in an n-dimensional space)

0

3 6 9 12 15

X,Y in 0..10, X*¥Y=6, X+Y=5

Variable Labeling

Select a value v from the domain of X and propagate X =v

Solutions:
{X=2,Y=3}
{X=3,Y=2}

0

3 6 9 12 15

X,Y in 0..10, X*¥Y=6, X+Y=5

When heuristics for selecting
values and variables are complete,
labeling is a decision procedure for
constraint satisfaction. But, it is
also the costly part of it (NP-
complete) while constraint filtering
and propagation are polynomial in
the number of constraints (and
values in domains). Routinely in
applications, constraint satisfaction
handles thousands of constraints
and variables

Selection Heuristics

Leftmost
Select the leftmost variable in the list

First-fail
Select the variable with the smallest domain

Most-constrained
Select the var that has the most constraints
suspended on it

And many more

Variable Labeling

When heuristics for selecting values and
variables are complete, labeling is a decision
procedure for constraint satisfaction

But, it is also the costly part of it (NP-
complete) while constraint filtering and
propagation are polynomial in the number of
constraints (and values in domains)

Routinely in applications, constraint satisfaction
handles thousands of constraints and variables

Satisfiability Modulo
Theory (SMT)

To decide the satisfiability of formulas with

respect to deq fothissice ground theories .
b= A0 b

Numerous ap _cluding test data
generation

Used in PEX, through Z3 the SMT-solver of
Microsoft

Satisfiability Modulo
Theories (SMT)

® Example theories:

® R:theory of rationals
SR={<,+,-0,1}

® |:theory of lists
SL = {=, hd, t, nil, cons}

® E:theory of equality
SE: uninterpreted functions and predicate symbols

® Problem:
Isx <y Ay =<x+hd(cons(0, nil)) A P(h(x) - h(y)) A =P(0)
satisfiable in R.L.E ?

X<y Ay <x+ hd(cons(0, nil)) A P(h(x) - h(y)) A =P(0)
— ISR

v v v4
e
R L E
X <=y 'P(0)
y <= x+vl vl=hd(cons(O,nil)) P(v2)
v2 = v3-v4 vli=0 v3 = h(x)
X=y v4 = h(y)
v2=0 v3 = v4
1

gram

ew Project Build Debug Data Tools Test Amalyze Window

Program.cs

ot nValue ("MODEL", "t
using otX = new
- | =
m cn g
fml ‘ x
T, A

Verdy Help _J Full Screen

0
EEEE o

SMT solving builds on the success
of SAT solvers, and generalizes
boolean satisfiability to include
theories.

Z3 is one of the most powerful
SMT solvers currently available. In
this video, the authors of Z3 briefly
describe constraint solving and
demonstrate how to use a
constraint solver via API calls. The
video is available online at http://
channel9.msdn.com/posts/Peli/
The-Z3-Constraint-Solver/

Path-Oriented Generation

Select one or several paths - Path selection

Generate the path conditions - symbolic
evaluation techniques

Solve the path conditions to generate test
data that activate the selected paths

Useful for generating a test suite that covers
a given test criterion (all statements, all
branches, all defs, all uses, ...)

Path Selection

double P(short x, short y) {
short w = abs(y);
double z = 1.0;
while(w != @) {
zZ =2z *X;
w=w-1;
3
ifCy < @)
z=1.0/ z;

return z;

The first step in a path oriented test
generation technique is to select
which path we want to execute in
our test case.

double P

|

(double P(short x, short y) {
short w = abs(y);

| double z = 1.0;

¥
(while(w 1=0) {

)
z=z%x
[w =w- |

iy < 0)

SONTONONGS

(2=10/2 @
(return z} @
double P
) !
double P(short x, short y) { A
short w = abs(y);
| double z = 1.0;
12
—(while(w 1=0) { /@
¥
z=z%x @
w=w- | J
D
if(y < 0) Q
(z =10/z @
F
(return z} Q
double P
,]
double P(short x, short y) { A
short w = abs(y);
| double z = 1.0;
¥
—(while(w 1=0) { CJBD
¥
z=z%x @
w=w- | J
D
iy < 0) Q

(return z}

double P

!
(double P(short x, short y) { @
short w = abs(y);
| double z = 1.0;)
¥
(while(w 1= 0) { @
¥
z=z * % @
w=w- | }
D
—{ify < 0) Q
E
(z =1.0/z Q
(return z} @
double P
!

(double P(short x, short y) {
short w = abs(y);

®

J

®)

J

| double z = 1.0;
v
—{while(w 1= 0) {
v
z=z%x
[w =w-|

ity < 0)

(return z}

double P

(double P(short x, short y) {
short w = abs(y);
| double z = 1.0;

¥
while(w !=0) {
v
z=z%x
w=w-I
if(y < 0)
(z=|0/z

(return z}

double P

|

(double P(short x, short y) { @
short w = abs(y);

\double z=1.0;
v
(while(w 1= 0) { @

v
Zzz*x @
w=w-I

D

iy < 0) Q

F
(return z} Q

There is no guarantee that a path

2D selected from the CFG is actually

- ! 3 executable - paths can be

:ﬁ;ﬁlipfgssr(ty;(o) (2 infeasible, in which there is no input

 double z = 1.0;) that would drive the execution
through the chosen path.

Infeasible! v
nieasible —(while(w 1= 0) { @
v
z=z%x @
w=w- |)
D
ity < 0) Q

F
(return z}

Infeasible Paths

Determining whether an
element is reachable or

not is undecidable in the

general case

Weyuker, 1979

Infeasible Paths

® Determining whether an element is
reachable or not is undecidable in the
general case

® |nfeasible paths are ubiquitous in imperative
programs

® [nfeasible paths can be selected during the
path selection process

double P

Def-use pair (z,A, E) (double P(short x, short y) {
short w = abs(y);

\double z=1.0;)
¥
—(while(w 1=0) { 2
v
z=z%x
w=w-I| /|
ity <0) ;
(z =10/z
(return z} J
double P

|

Equivalent Mutants (double P(short x, short y) {
short w = abs(y);
| double z = 1.0

(return z} J

We have encountered the
infeasible path problem before -
infeasible DU pairs are another
example instance of the same
problem.

The equivalent mutant problem can
also be reduced to the infeasible
path problem.

Symbolic Evaluation

® Three path-oriented techniques:
I. Simple symbolic execution (forward and backward)
2. Dynamic symbolic execution
3. Global symbolic execution

® Exploits algebraic expressions over symbolic inputs to
represent internal states of variables

® Application in software testing, compiler optimization,
specialization, parallel computing, model-checking,
program proving, etc.

Simple forward symbolic execution

|double P

A-B-C-B-C-B-D-F with X,Y T

double P(short x, short y) {
short w = abs(y);

—

e A:w :=abs(Y);z:= 1.0; e

® B:abs(Y) =0 e -

o C:z:=X;w:=abs(Y)- I; [@?;.Xl :]
® B:abs(Y)-1!=0

® Ciz:i=X*X;w:=abs(Y) -2 2)

L4 BZGbS(Y)-Z =0 z=10/z

e D:Y>=0

o F:return (X*X); (ren))

Symbolic State

® <Path, State, Path Conditions>
® Path =nj-..- njis a path of a CFG

® State = {<v,(p>} evar(p) Where @ is an algebraic
expression over x

® Path Condition = ¢j A .. A ¢, Where ¢k is a condition
over x

® x denotes symbolic variables associated to the inputs
of program P and Var(P) denotes internal variables

Given a path, we can derive
constraints by symbolically
executing the path either in a
forward or backward fashion.

During symbolic execution we
maintain a symbolic state of the
execution. If we encounter a
condition along the execution then
the path conditions are updated, if
we encounter assignments, then
the state expressions are updated.

Simple forward symbolic execution

A-B-C-B-C-B-D-F with X.Y [souble P

i

[i:z*::e:t:::z;;m i

o A:w:=abs(Y);z:= I|.0; S J

® B:abs(Y)!=0 whispe =9 { .

o C:z:=X;w:=abs(Y)- | [t;z;_xl j‘]
® B:abs(Y)-1!=0

e C:iz:=X*X;w:= aw N ——

o Babs(Y)-2=0 [st i

e D:Y>=0 —

® F:return (X*X);/ (rewrn =)

Simple forward symbolic execution

A-B-C-B-C-B-D-F with X,Y [doubie :

[double P(short x, short y) {

short w = abs(y);
double z = 1.0;

o A:w :=abs(Y);z:= |.0; v

® B:abs(Y) =0 e -

e C:z:=X;w:=absQ() - |; [5;1:_*,

® B:abs(Y)-1!=0

® C:z:=X*X;w:=abs e I

® B:abs(Y)-2 =0 «———| Path conditions i 5
e D:Y>>=(0 &£Z—— : Z—

® F:return (X*X); (tmree

<Path, State, Path Conditions>

|double P
¥
double P(short x, short y) {
short w = abs(y);
<A, {<z,1>,<w, 1>}, true> L“b'“: - .
<A-B-C-B while(w !=0) {
{<z,X>, <w,abs(Y)-1>}, [z= 2%x *
abs(Y) !'= 0> =
<A-B-C-B-C-B-D-F, ifly < 0)
{<z,X%>, <w,abs(Y)-2>},
(abs(Y)!=0) r(abs(Y)!=1) r(abs(Y) 2=10/z
=2) A(Y>=0)>

Geturn z}

Computing Symbolic States

® <Path,State,PC> is computed by induction over
each statement of Path

® When the path conditions are unsatisfiable then
Path is infeasible

® Example: <A-B-D-E-F{...}, abs(Y)=0 && Y<0 >
® Forward vs backward analysis:
® Forward: Interesting when states are needed

® Backward: Saves memory space as states remain
implicit

Example

Classify triangle by the length of the sides

Equilateral Isosceles Scalene

int triangle(int a, int b, int ¢) {

if (a<=011b<=011 c<=0) {
return 4; // invalid

}

if('(@+b>c& a+c>b& b +c>a)) {
return 4; // invalid

}

if (a =Db & b ==0c) {
return 1; // equilateral <

}
if (a=Db ll b==cll a===¢c) {
return 2; // isosceles

}

return 3; // scalene

(X+YSZ A) A (X==Y A
Y=2> (

A-B-C-E-H |int triangle |
e Acta:=X;b:=Y;c:=Z7 (v ”
e B:!(X<=0]|Y<=0 || Z<=0) T y
o C:(X+Y>Z && ...) (. S
® E:X==Y &&Y ==Z —
(D
¢ J
Symbolic state at end: (JM
<A-B-C-E-H, l '__* —
{<a,X>,<b,Y>, <c,Z>}, (K v
~(X<=0 || Y<=0 || Z<=0)A I)
Dz G

® X>0 &&Y>0 && Z>0 && X+Y>Z && X
+Z7>Y &&Y+Z>X && X==Y &&Y ==

® Example, (1,1,1)

Backward Analysis

|double P

A-B-C-B-C-B-D-F with X,Y)

short w = abs(y);

double P(short x, short y) {
double z = 1.0;

ED:Y >=0

12

while(w !=0) {

B:Y>=0, w=0

17

C:Y>=0,w-1=0

B:Y>=0,w-1=0,w!=0

if(y < 0)

A

C:Y>=0,w-2=0,w-1'!'=0
B:Y>= = 1=0,w!=0

z=10/z

A:Y>=0, abs(Y)-2=0,abs
(Y)-1=0,abs(Y)!=0

Geturn z}

Constraint system

The triangle example does not
change the state along the
execution, so symbolic execution
reduces to collecting path
conditions.

In backward analysis, the state is
not explicit as on forward execution
(which means this needs less
memory). We simply maintain the
set of path conditions, and
whenever we encounter a state
update, we apply this update to the
path conditions collected so far.

Example

Classify triangle by the length of the sides

Equilateral Isosceles Scalene

int triangle(int a, int b, int ¢) {

if (<=0 11 b<=0 1l c<=0) {
return 4; // invalid

3

if (' (a+b>c& a+c>b& b+ c>a)) {
return 4; // invalid

}

if (a==b && b ==) {
return 1; // equilateral

}
if (a=Db llb==clla==c¢c) {
return 2; // isosceles <

}
return 3; // scalene
}
A-B-C-E-G-] with X,Y,Z fin eriangle |
v
(v
|G X==Y||Y==2Z||X== [: v
1 J
oE: ..&& (X!=Y [|Y = 2) B

4\
N <

°«C..88 (X+Y>Z8& |

X+Z>Y &&Y+Z>X) 7 E
v
®B:..&& (X>0 &&Y>0 ()
&& Z>0) | o —
(,) (,)
ROl -
()

[[116/616] fraser@urora:~/minion-8.18 =]
i$

‘ <

Implementing Symbolic
Execution

® Transformation approach
Transform to program that operates only on
symbolic values

® |nstrumentation approach

® Customized runtime approach

Transformation
Approach

® Transform the program to another
program that operates on symbolic values
such that execution of the transformed
program is equivalent to symbolic
execution of the original program

Instrumentation
Approach

® callback hooks are inserted in the program
such that symbolic execution is done in
background during normal execution of
program

® casy to implement for C

Customized runtime
approach

® Customize the runtime (e.g. JVM) to
support symbolic execution

® Java PathFinder (NASA)
® Applicable to Java, .NET

Limitations

® Limited by the power of constraint solver
No non-linear or complex constraints

® Does not scale when number of paths is
large

® Source code or equivalent (Bytecode) is
required for precise symbolic execution

® |nfeasible path problem

Goal-Oriented Testing

'/

o

Goal-oriented testing

® A three step process:
I. Generate a constraint model of the whole program

2. Choose a goal: point to be reached or property to
be refuted

3. Generate test data that respects the model and
satisfies the goal

® Useful for generating test data that reaches a single
testing objective (reach a statement or a branch, find
a counter-example to a property, etc.)

Destructive assignment to variables

A ConStraint mOdel Of makes it necessary to rename
var_iables for representation in a
Imperative programs logic system.

® Viewing an assignment statement as a
relation requires to rename the variables

e i=i+ |l 2ir=i+1

® Static Single Assignment (SSA) form or
single assignment language

SSA form

® Each use of a variable refers to a single

definition

X 1= X +VY; X1 = Xo + Yo;
y =X -Y; Y1 1= X1 - Yo,
X =X -Y,; X2 = X1 - Y1,

¢ Functions

i3:= ¢(i|, i2)

LTzt

|doub|e P

| |doub|e P

!

y

short w = abs(y);
double z = 1.0;

[double P(short x, short y) {

short wi = abs(y);

double P(short x, short y) {
double z; = 1.0;

12

12

while(w != 0) { w3 = P(wi,w2)
¥ 3= $(21,22)
S while(ws 1= 0) {
w=w-| J ¥
[Zz =z3¥x
if(y < 0) 5 w2=ws- |
iy < 0)
z=10/z
z4=10/z
Geturn 7} Y
= d(z423)
(:;turn z::)z3 J

At join points in the control flow, we
need to add phi functions that
represent a choice of the values of
the two branches. In an IF
condition the phi function is simply
added after the if and else
branches, but for loops we need to
add the phi function before loop
condition.

From SSA to a
Constraint System

Variable declaration Domain constraint

unsigned int i ie0...232-1

Assignment, decision Arithmetical constraints {=, <, ...}
Jo=7J1 *1 o =31 *1
i== i=j

i< i<

Al

From SSA to a
Constraint System

Conditional (SSA)

if D then C1 else (2
v 1= o(vi, Vv2)

(DACLAVI=VD vV
('D AC2AvV3=vVv2

Iteration (SSA)

vz = ¢(vi, Vv2) v =vivVv (D1 A C1
while D do C A D2 A V3=v2) v ...
|doub|e P | |doub|e P |
v v
double P(short x, short y) { double P(short x, short y) {
short w = abs(y); short wi = abs(y);
double z = 1.0; double z; = 1.0;
¥ ¥

while(w != 0) { w3 = P(wi,w2)

v n= b(z1,22)
a— while(ws != 0) {
w=w-| J ¥
n=73%x
w2=ws- |

if(y < 0) J

ity < 0))

z=10/z

22=10/23

Geturn z} D,

= bz
(::tu rn Z:}ZK) J

Assignment and comparison have
equal operations due to SSA.

For conditionals and loops we need
to get rid of the phi functions when
converting to a constraint system.
For a conditional this gives us a
disjunction of the two possible
outcomes of the condition (note
that v3 is assigned within this
disjunction). Loops need to be
unrolled.

Conversion of the power function to
SSA.

|doub|e P |

i

Fouble P(short x, short y) {

short wi = abs(y);
double z; = 1.0;

¥

w3 = d(wi,wa)
3= $(z1,22)
while(ws 1= 0) {

n=73%x
w2=ws- |

if(y < 0)

z=10/z

(zs = P(z4,23)

return zs; } J

short wi = abs(y);

double P(short x, short y) {
double z; = 1.0; J

—ifwi 1= 0) {

if(wa 1= 0) {

24 := (22,23)
wa = d(wa,w3)

25 := d(21,24)

ws = (wi,wae)

)

z=10/zs

A,

(v = (z5,26)

return z7; } J

short wi = abs(y);

double P(short x, short y) {
double z; = 1.0;

—{ifwi 1=0) {

24 := P(z2,23)
w4 == b(wa,w3)

25 := P(21,24)

ws = d(wi,wa)
<0

A,

[17 = (z5,26)

return z7; } J

z=10/2s

wi = abs(y) A

z1=1.0A

2=z ¥ XA

w2=wi- 1 A

L= XA

w3=wz-1| A
(W2=0AwWs=Wa2AZ4=173) vV
(W2!=0 AwWs=wW3AZ4=23)) A
(Wi =0Az5=2 AWs=w|)V
(Wi !'=0AzZs=24 A W5 =W4)) A
z6=1.0/2z5 A
(y>=0Az7=25) v (y <0 A 2))

Test Objectives

t

Condition 4 A
Condition 2 A
Condition|

Condition |

Condition 2

Condition 3

Condition 4

Loop unrolling (0,1, or 2 times)

Resulting constraint system.

To reach a certain point in the
control flow the control
dependencies need to be satisfied.
For the constraint system, we add
all the control dependent
conditions.

short wi = abs(y);

double P(short x, short y) {
double z; = 1.0;

—|ifwi 1= 0) {

if(wz 1= 0) {

25 := (z1,24)

ws = b (wi,wa)

if(y < 0) _)

z=10/2s

(17 = P(z5,26)

return z7; }

wil=0Aw!=0

short wi = abs(y);

double P(short x, short y) {
double z; = 1.0;

—ifwi 1=0) {

24 = G(z2,23)
w4 == b(wa,w3)

25 := P(21,24)

ws = d(wi,w4)

if(y < 0) D,

wi = abs(y) A

z1=1.0A

=721 Fx A

w2=wi- | A

3=20%FxA

wi=wz- 1A
(Wa=wa2Az4=22 AW2=0) Vv
Wa=wsAnzs=z3AW2!=0)) A
(Wi=0Azs=2z AWs=W|) Vv
(Wi !'=0AzZs=24 A W5=W4)) A
z6=1.0/25 A
((y>=0Az7=z5) v(y<Onanzs=
Ze))/\

%=10/2 wil=0Aw2!=0
27 := P(z5,26)
[r:ecurn z7;5) J
|double P |double P |

!

double P(short x, short y) {
short w = abs(y);

double z = 1.0;

2
while(w != 0) {

12
z=z%x
w=w-|

¥
ifty < 0)

z=10/z

Geturn z;}

y

[double P(short x, short y) {

short wi = abs(y);
double z; = 1.0;

12

w3 = P(wi,w2)
3= $(21,22)
while(ws 1= 0) {

n=2z3%x
w2=ws- |

if(y < 0)

z=10/z3

= bz
Eﬁ.tu rn Z:)Z3) J

Example

Classify triangle by the length of the sides

Equilateral Isosceles Scalene

int triangle(int a, int b, int ¢) {

if (<=0 11 b<=0 1l c<=0) {
return 4; // invalid

3

if (' (a+b>c&& a+c>b& b+c>a)){
return 4; // invalid

}
if (a==b && b ==) {

return 1; // equilateral <%

}
if (a=Db llb==clla==c¢c) {
return 2; // isosceles

}

return 3; // scalene

int triangle(int a, int b, int ¢) {
int r = 3; // scalene

if(@<=011b<=011c<=0) {
r=4; // invalid
} else {
if (a+b>c&& a+c>b&&b+c>a)){
r=4; // invalid
} else {
if (a==Db & b ==20) {

r =1; // equilateral <

} else {
if (a=Db ll b==cll a==c0c){

r = 2; // isosceles

}

}

1
}

return r;

int triangle(int a, int b, int ¢) {
int r = 3; // scalene

if (<=0 11 b<=011c<=0) {
r =4; // invalid
}

if (Ja+b>c&& a+c>b&b+c>a)){
r=4; // invalid
} <

if (a==Db& b ==20) {
r =1; // equilateral

} else if (a == Il b == [l a==10c) {
r = 2; // isosceles

}

return r;

int triangle(int a, int b, int c) {
int r@ = 3; // scalene

if (<=0 11l b<=011c<=0){
rl = 4; // invalid
} else {
if (l(a+b>c& a+c>b&b+c>a){
r2 = 4; // invalid
} else {
if (a==b& b==0) {
r3 = 1; // equilateral (
} else {
if (a=Dbllb==cll a==20c) {
r4 = 2; // isosceles

}
r5 = ¢(r4, ro);

re = ¢(r5, r3);

r7 = ¢(ro, r2);
r8 = ¢o(r7, rl);
return r8;

int triangle(int a, int b, int c¢) {
int r@ = 3; // scalene

if (<=0 11l b<=011c<=0) {
rl = 4; // invalid
} else {
if (/(a+b>c& a+c>b&b+c>a)){
r2 = 4; // invalid
} else {
if (a==Db & b ==0c) {
r3 = 1; // equilateral
} else {
if (@a=b Il b==clla===c){
r4 = 2; // isosceles

}
r5 = ¢o(r4, ro);
ré = ¢(r5, r3);
r7 = ¢(r6, r2);

r8 = ¢(r7, ri);
return rg;

(r0 = 3) A

((rl=4Ar8=rl A

(@<=0v b <=0vc<=0))v
(r8=r7 A

!(a<=0v b <=0V c <=0))) A

((r2=4Ar7=r2n

(atb<=c v a+c<=b v b+c<=3)) v
(r7=r6 A

!(atb<=c v a+c<=b v b+c<=2))) A

((r3=1Ar6=r3na=bab=c)v
r6=r5Ala=bab=¢)) A

((r4=2Ar5=r4 A (a=b v b=c v a=c)) v
(r5=r0 A !(a=b v b=c v a=c)))

int triangle(int a, int b, int) {
int r@ = 3; // scalene

if (<=0 1l b<=0 11 c<=0) {
rl = 4; // invalid
} else {
if (!(a+b>c&&a+c>b&b+c>a){
r2 = 4; // invalid
1 else {
if (a==b8& b==20) {
r3 = 1; // equilateral
} else {
if (@=bllb=clla=0c {
r4 = 2; // isosceles

}
r5 = ¢(r4, ro);
¥
ré = ¢(r5, r3);
}
r7 = ¢(r6, r2);

3
r8 = ¢(r7, ri);
return r8;

