Simplifying Problems

Andreas Zeller

Simplifying

® Once one has tracked and reproduced a
problem, one must find out what’s relevant:

® Does the problem really depend on
10,000 lines of input?

® Does the failure really require this exact
schedule?

® Do we need this sequence of calls?

Why simplify?

http://
www.concordesst.com/
accident/
accidentindex.html

Simplifying

® For every circumstance of the problem,
check whether it is relevant for the
problem to occur.

® If it is not, remove it from the problem
report or the test case in question.

Circumstances

® Any aspect that may influence a problem is
a circumstance:

® Aspects of the problem environment

® Individual steps of the problem history

Experimentation

® By experimentation, one finds out whether a
circumstance is relevant or not:

® Omit the circumstance and try to
reproduce the problem.

® The circumstance is relevant iff the
problem no longer occurs.

Mozilla Bug #24735

Ok the following operations cause mozilla to crash
consistently on my machine

-> Start mozilla

-> Go to bugzilla.mozilla.org

-> Select search for bug

-> Print to file setting the bottom and right margins to .50
(T use the file /var/tmp/netscape.ps)

-> Once it's done printing do the exact same thing again on
the same file (/var/tmp/netscape.ps)

-> This causes the browser to crash with a segfault

"Bugzilla.mozillaorg

cCICVAlll il 1]

Why simplify?

A simplified test
case is easier to communicate.

Smaller test cases result
in smaller states and shorter executions.

° Simplified test cases
subsume several duplicates.

The Gecko BugAThon

® Download the Web page to your machine.

® Using a text editor, start removing HTML
from the page. Every few minutes, make
sure it still reproduces the bug.

® Code not required to reproduce the bug
can be safely removed.

® When you’ve cut away as much as you can,
you'’re done.

Rewards

5 bugs - invitation to the Gecko launch party

10 bugs - the invitation, plus an attractive Gecko
stuffed animal

12 bugs - the invitation, plus an attractive Gecko
stuffed animal autographed by Rick Gessner, the
Father of Gecko

15 bugs - the invitation, plus a Gecko T-shirt

20 bugs - the invitation, plus a Gecko T-shirt signed by
the whole raptor team

Binary Search

® Proceed by binary search. Throw away half
the input and see if the output is still wrong.

® If not, go back to the previous state and
discard the other half of the input.

HTML input

v

Simplified Input

® Simplified from 896 lines to one single line

® Required 12 tests only

Benefits

All one needs is
“Printing <SELECT> crashes”.

° We can directly focus on
the piece of code that prints <SELECT>.

° Check other test cases
whether they’re <SELECT>-related, too.

Why automate?

® Manual simplification is tedious.
® Manual simplification is boring.

® We have machines for tedious and boring
=N CH

Basic Idea

® We set up an automated test that checks
whether the failure occurs or not
(= Moizilla crashes when printing or not)

® We implement a strategy that realizes the
binary search.

Automated Test

|. Launch Mozilla

2. Replay (previously recorded) steps from
problem report

3. Wait to see whether
® Mozilla crashes (= the test fails)
® Moizilla still runs (= the test passes)

4. If neither happens, the test is unresolved

Binary Search

What do we do if both halves pass?

Configuration

Circumstance

All circumstances
C = {07,025 000 1
Configuration ¢ < C
c=1{061,02,...0n}

“

Tests

Testing function

test(c) € {v, ,?}

Failure-inducing configuration
test(c) =

Relevant configuration ¢’ <c
Y0 & c'itestic W 1o =

Binary Strategy

Split input
Gfiiciillies

If removing first half fails. ..

testiGalEcivi=at= s cila=seiiliey
If removing second half fails. ..

testicaiciiti=icliiailc
Otherwise, increase granularity:

Gl CliicoallCaul iy

C =C1UcCpUcCz3UcCq4UCsUCgUC7UCg

General Strategy

Split input into n parts (initially 2)
C=C1UC2U"UC;1

If some removal fails...
Gi=sculue

s il cnlastodieilu it - n =max(n—1,2)

Otherwise, increase granularity

n =2n

ddmin in a Nutshell

¢/ = ddmin(c.) is a relevant configuration

ddmin(c.) = ddmin’ (c¢’,2) with ddmin’ (¢’,n) =

c i e’ = 1

ddmin’ (¢’ \ ¢;,max(n — 1,2)) elseif 3i € {1..n} - test(c’ \ ¢;) =
(“some removal fails”)

ddmin’ (¢’,min(2n, |c’|)) else if n < |¢’| (“increase granularity”)

’

c otherwise

where ¢’ =ci1ucaU---Ucy

Vei,cj-cincj =D A |cil = |cjl

def _ddmin(circumstances, n):
while len(circumstances) >= 2:
subsets = split(circumstances, n)

some_complement_is_failing = @
for subset in subsets:
complement = listminus(circumstances, subset)
if test(complement) == FAIL:
circumstances = complement
n = max(n - 1, 2)
some_complement_is_failing = 1
break

if not some_complement_is_failing:
if n == len(circumstances):
break
n = min(n * 2, len(circumstances))

return circumstances

ddmin at Work

Input: (40 characters) X
(0 characters) v/

CTCRCACCCNCCCRCCRIXEIRIRRRS

O RERESRRRER]

Result:

Complexity

® The maximal number of ddmin tests is

(Ic 12+ 7lc 1)
2

Worst Case Details

First phase: every test is unresolved

=i Bl 2 e

lexl | lexl sy
=2 e T =D e
lcxl + |kl > 1

Second phase: testing last set always fails
e = e e e Do
Sl e Clan e)
sdcllelmlgileliadlel]
2 “

Binary Search

If

® there is only one failure-inducing
circumstance, and

® all configurations that include this
circumstance fail,

the number of tests is t < log,(|c |)

More Simplification

Simplified failure-inducing fuzz input:

® FLEX crashes on 2,121 or more non-
newline characters

® NROFF crashes on “\D?J%0F” or “\302\n”
® CRTPLOT crashes on “t”

Minimal Interaction

Ok the following operations cause mozilla fo crash
consistently on my machine

-> Start mozilla

-> 6o to bugzilla.mozilla.org

-> Select search for bug

-> Print to file setting the bottom and right margins to .50
(T use the file /var/tmp/netscape.ps)

-> Once it's done printing do the exact same thing again on
the same file (/var/tmp/netscape.ps)

-> This causes the browser to crash with a segfault

Minimal Interaction

Basic idea:
Apply ddmin to recorded user interaction

® To reproduce the Mozilla printing crash:
® Press P while holding Alt
® Press mouse button |

® Release mouse button |

Optimization

Caching
Stop Early
Syntactic Simplification

Isolate Differences, not Circumstances

Caching

® Basic idea: store the results of earlier test()

® Saves 8 out of 48 tests in <SELECT>
example

Stop Early

One may stop simplification when
® a certain granularity has been reached
® no progress has been made

® a certain amount of time has elapsed

Syntactic Simplification

0

SELECT

e 8

Differences

The extra “<” is failure-inducing!

N\
v4

More Circumstances

Randomness Operating System

More Automation

Failure-Inducing Input
Failure-Inducing Code Changes
Failure-Inducing Schedules
Failure-Inducing Program States

Failure-Inducing Method Calls

e 00
Eile Edit Yiew Utilities Help

= Local Addressbooks Narne or email contains:
[E Personal Addrasshook
[collected Ada
{2 Remote Addressbooks

Display Name ¥ _|[First Name

plumba

http:ffcobimbasource forge.net/
L

Failure Cause

Now, the idea is

Failure Cause that we can easily
automate the

whole process.

Schafer, Christa, +49 6897 71167, +49 68130264011,

Problem:

Simulating user interaction
IS cumbersome.

Isolating Relevant Calls

Step I:Record

Vector()
add()
add()

remove()

remove()

remove()

Isolating Relevant Calls
Step 2: Replay
Vector()
add()
add(Q)
remove()
remove()

remove()

Isolating Relevant Calls

Step 3: Simplify

Vector()
add()
add(Q)

remove()

remove()

remove()

Isolating Relevant Calls

Step 4: Create Unit Test

testVector()
{

Vector v = new Vector();
v.remove(obj);

Columba ContactModel

ContactModel ()
setSortString()
setFormattedName()
setNickName()
setFamilyName()
setGivenName()

and 18732 more...

Columba ContactModel

ContactModel ()
—>

getPreferredEmail() [C:Contactfiodel
—>

Unit Test

testContactModel ()

{
ContactModel c¢ = new ContactModel();

String s = c.getPreferredEmail();

getPreferredEmail

public String getPreferredEmail() {
Iterator it = getEmailIterator();

// get first item
TEmailModel model = (IEmailModel) 1';

// backwards compatiblity
// -> its not possible anymore to create a
// contact model without email address
if (model == null)
return null;

return model.getAddress();

Concepts

* The aim of simplification is to create a
simple test case from a problem report.

* Simplified test cases...
® are easier to communicate
® facilitate debugging

® identify duplicate problem reports

Concepts (2)

* To simplify a test case, remove all irrelevant
circumstances.

* A circumstance is irrelevant if the problem
occurs regardless of whether the
circumstance is present or not.

Concepts (3)

* To automate simplification, set up
® an automated test

® a strategy to determine the relevant
circumstances

* One such strategy is the ddmin delta
debugging algorithm

