
Andreas Zeller

Making Programs Fail

2

Two Views of Testing

• Testing means to execute a program with
the intent to make it fail.

• Testing for validation:
Finding unknown failures (classical view)

• Testing for debugging:
Finding a specific failure (today’s focus)

3

Tests in Debugging

• Write a test to reproduce the problem

• Write a test to simplify the problem

• Run a test to observe the run

• Run a test to validate a fix

• Re-run tests to protect against regression

1

2

3

4

Automated Tests

• Allow for reuse of tests

• Allow tests that are hard to carry out manually

• Make tests repeatable

• Increase confidence in software

5

Automated Tests

• Allow to isolate and simplify

• failure-inducing input

• failure-inducing code changes

• failure-inducing thread schedules

• failure-inducing program state

• More on this in the weeks to come

6

Mozilla Bug #24735
Ok the following operations cause mozilla to crash
consistently on my machine

-> Start mozilla
-> Go to bugzilla.mozilla.org
-> Select search for bug
-> Print to file setting the bottom and right margins to .50
 (I use the file /var/tmp/netscape.ps)
-> Once it's done printing do the exact same thing again on
 the same file (/var/tmp/netscape.ps)
-> This causes the browser to crash with a segfault

How do we automate this?

4

5

6

7

Simulating Interaction

Start Mozilla

Enter URL

Click on
Print

8

Challenges

• Synchronization: How do we know a
window has popped up such that we can
click into it?

• Abstraction: How do we know it’s the right
window?

• Portability: What happens on a display with
different resolution or window placement?

9

Interaction Layers

• The presentation layer handles interaction
with the user (generally: the environment)

• The functionality layer encapsulates the
functionality (independent from a specific
presentation)

• The unit layer splits functionality across
cooperating units

7

8

9

10

Control Layers

Units

Functionality

Presentation

11

Assessing Layers
• Ease of execution. How easy is it to get

control over program execution?

• Ease of interaction. How easy is it to
interact with the program?

• Ease of result assessment. How can we
check results against expectations?

• Lifetime of test case. How robust is my
test when it comes to program changes?

12

Presentation Layer

Units

Functionality

Presentation

10

11

12

13

Presentation Layer

• Low-level: expressing interaction by means
of mouse and keyboard events

• Also applicable at the system level

• High-level: expressing interaction using
graphical controls

14

Low Level Interaction
1. Launch mozilla and wait for 2 seconds
exec mozilla &
send_xevents wait 2000

2. Open URL dialog (Shift+Control+L)
send_xevents keydn Control_L
send_xevents keydn Shift_L
send_xevents key L
send_xevents keyup Shift_L
send_xevents keyup Control_L
send_xevents wait 500

3. Load bugzilla.mozilla.org and wait for 5 seconds
send_xevents @400,100
send_xevents type {http://bugzilla.mozilla.org}
send_xevents key Return
send_xevents wait 5000

15

Low Level Interaction

• Scripts can easily be recorded

• Scripts are write-only
(= impossible to maintain)

• Scripts are fragile
(= must be remade after trivial changes)

13

14

15

16

System Level Interaction

Power on the machine and wait for 5s
power <= true; wait for 5000;

Click mouse button 1
m_b1 <= true; wait for 300; m_b1 <= false;

Click the CDROM change button
cdctrl'shortcut_out_add("/cdrom%change/...");

17

System Level Interaction

• Complete control over machine

• Good for testing and debugging system
properties

• Difficult to use for application programs

18

Higher Level Interaction
-- 1. Activate mozilla
tell application "mozilla" to activate

-- 2. Open URL dialog via menu
tell application "System Events" to ¬
 tell process "mozilla" to ¬
 tell menu bar 1 to ¬
 tell menu bar item "File" to ¬
 click menu item "Open Web Location"

-- 3. Load bugzilla.mozilla.org and wait for 5 seconds
tell window "Open Web Location"
 tell sheet 1 to ¬
 set value of text field 1 to "http://bugzilla.mozilla.org/"
 click button 1
end tell
delay 5

16

17

18

19

Higher Level Interaction

• Scripts reference GUI elements by name
and numbers (rather than coordinates)

• Much more robust against size and position
changes

• But still fragile against layout changes and
renamings

20

Dealing with Output

• We must be able to detect output

• for synchronization (“is the dialog there?”)

• for assessment of results
(“was the test successful?”)

• Issue at entire presentation layer (low level,
system level, and high level interface)

21

Presentation Layer

• Automation is always feasible

• Scripts are more or less fragile

• Dealing with output is greatest weakness

19

20

21

22

Functionality Layer

Units

Functionality

Presentation

23

Design for Automation

tell application "Safari"
 activate
 if not (exists document 1)
 make new document at the beginning of documents
 end if
 set the URL of the front document ¬
 to "http://bugzilla.mozilla.org/"
 delay 5
end tell

Check state
of application

• Each application comes with an API for a
scripting language

24

Windows Scripting

' Load document
Set IE = CreateObject("InternetExplorer.Application")
IE.navigate "http://bugzilla.mozilla.org/"
IE.visible=1

' Wait until the page is loaded
While IE.Busy
 WScript.Sleep 100
Wend

• Most operating systems provide their own
scripting language

22

23

24

25

Emacs Scripting

• Some applications are built around a script
interpreter

(defun ispell-toggle ()
 "Toggle ispell dictionary between english and german"
 (interactive)
 (cond ((equal ispell-local-dictionary nil)
	 (ispell-change-dictionary "american"))
	 ((equal ispell-local-dictionary "deutsch8")
	 (ispell-change-dictionary "american"))
	 (t
	 (ispell-change-dictionary "deutsch8")))
 (ispell-init-process)
 (message (concat "Using " ispell-local-dictionary
 "ispell dictionary")))

26

Scripting Languages

• OS-specific languages (MacOS, Windows)

• Perl, Python, Tcl

• Lisp, Scheme, Guile

• Command-line languages (Unix shell)

• Component languages (.NET, Corba)

• … or roll your own (but beware!)

27

Functionality Layer

• Results can be easily assessed

• Scripts are robust against changes (as long
as automation interface remains stable)

• Requires clear separation between
presentation and functionality

25

26

27

28

Unit Layer

Units

Functionality

Presentation

29

Unit Tests

• Directly access units (= classes, modules,
components…) at their programming
interfaces

• Encapsulate a set of tests as a single
syntactical unit

• Available for all programming languages
(JUNIT for Java, CPPUNIT for C++, etc.)

30

Running a Test

A test case…

1. sets up an environment for the test

2. tests the unit

3. tears down the environment again.

28

29

30

31

Testing a URL Class

http://www.askigor.org/status.php?id=sample

Protocol Host Path Query

32

import junit.framework.Test;
import junit.framework.TestCase;
import junit.framework.TestSuite;

public class URLTest extends TestCase {
 private URL askigor_url;

 // Create new test
 public URLTest(String name) { super(name); }

 // Assign a name to this test case
 public String toString() { return getName(); }

 // Setup environment
 protected void setUp() {
 askigor_url = new URL("http://www.askigor.org/" +
 "status.php?id=sample"); }
 // Release environment
 protected void tearDown() { askigor_url = null;}

33

 // Test for protocol (http, ftp, etc.)
 public void testProtocol() {
	 assertEquals(askigor_url.getProtocol(), "http");
 }

 // Test for host
 public void testHost() {
	 int noPort = -1;
 assertEquals(askigor_url.getHost(), "www.askigor.org");
	 assertEquals(askigor_url.getPort(), noPort);
 }

 // Test for path
 public void testPath() {
	 assertEquals(askigor_url.getPath(), "/status.php");
 }

 // Test for query part
 public void testQuery() {
	 assertEquals(askigor_url.getQuery(), "id=sample");
 }

The test case
can be used
as a specification!

31

32

33

34

 // Set up a suite of tests
 public static Test suite() {
 TestSuite suite = new TestSuite(URLTest.class);
 return suite;
 }

 // Main method: Invokes GUI
 public static void main(String args[]) {
 String[] testCaseName =
 { URLTest.class.getName() };
 // junit.textui.TestRunner.main(testCaseName);
 junit.swingui.TestRunner.main(testCaseName);
 // junit.awtui.TestRunner.main(testCaseName);
 }
}

35

JUnit

36

Isolating Units

void print_to_file(string filename)
{
 if (path_exists(filename)) {
 // FILENAME exists; ask user to confirm overwrite
 bool confirmed = confirm_loss(filename);
 if (!confirmed)
 return;
 }
 // Proceed printing to FILENAME...
}

• How do we deal with classes that depend
on others?

34

35

36

37

Circular Dependency

Core
+print_to_file()

UserPresentation
+confirm_loss()

invokes

invokes

Both units depend on each other!

38

Broken Dependency
void print_to_file(string filename,
 Presentation *presentation)
{
 if (path_exists(filename))
 {
 // FILENAME exists;
 // ask user to confirm overwrite
 bool confirmed =
 presentation->confirm_loss(filename);
 if (!confirmed)
 return;
 }

 // Proceed printing to FILENAME
 ...
}

39

Revised Dependency
Core

+print_to_file()
Presentation

+confirm_loss()

UserPresentation
+confirm_loss()

AutomatedPresentation
+confirm_loss()

return true;ask user

Depend on abstraction rather than details!

37

38

39

40

Dependency Inversion

To break the dependency from A to B,

1. Introduce an abstract superclass B’

2. Set up A such that A depends on B’
(rather than on B)

3. Introduce alternate subclasses of B’ that
can be used with A

41

Design for Debugging

• Basic idea: decompose the system such that
dependencies are minimized

• Each component depends on a minimum of
other components for testing (and
debugging)

42

Model-View-Controller
Black:
Red:

Yellow:
Green:

Pink:
Others:

48%
28%

6%
10%

4%
4%

Black
Red

Yellow
Green

Pink
Others

48
28

6
10

4
4 User

Separate functionality
and presentations

40

41

42

43

MVC
Pattern

Model
-coreData
+attach(Observer)
+detach(Observer)
+notify()
+getData()
+service()

View
+initialize(Model)
+makeController()
+activate()
+display()
+update()

Controller
+initialize(Model,View)
+handleEvent()
+update()

Observer
+update()

observers

0..*

1

1 0..1

Register observers

Notify observers

update view

44

General Design Rules

• High cohesion. Those units that operate on
common data should be grouped together.

• Low coupling. Units that do not share
common data should exchange as little
information as possible.

45

Prevent Problems

Specify Test early Test first

Test often Test enough Have
reviews

Check the
code

Verify Assert

43

44

45

46

Concepts
To test for debugging, one must…

• create a test to reproduce the problem

• run the test several times during
debugging, and

• run the test before new releases to
prevent regression

Automate as much as possible

47

Concepts (2)

To test at the presentation layer, simulate
human interaction

To test at the functionality layer, use an
automation interface

To test units, use the unit API to control it
and assess its results

48

Concepts (3)

To isolate a unit, break dependencies using
the dependency inversion principle

To design for debugging, reduce the amount
of dependencies

A variety of techniques is available to
prevent errors and problems

46

47

48

49

This work is licensed under the Creative Commons Attribution License. To view a copy of this license, visit

http://creativecommons.org/licenses/by/1.0

or send a letter to Creative Commons, 559 Abbott Way, Stanford, California 94305, USA.

49

