Detecting Anomalies

Andreas Zeller

Tracing Infections

® For every infection, we must find the earlier
infection that causes it.

® Which origin should we focus upon?

Tracing Infections

\\M%_\\\\\\\\\\\\\\\4’_\\‘\\.\

Focusing on Anomalies

® Examine origins and locations where
something abnormal happens

What’s nhormal?

® General idea: Use induction — reasoning
from the particular to the general

® Start with a multitude of runs

® Determine properties that are common
across all runs

What’s abnormal?

® Suppose we determine common properties
of all passing runs.

® Now we examine a run which fails the test.

® Any difference in properties correlates with
failure — and is likely to hint at failure causes

Detecting Anomalies

Properties Properties

Differences correlate with failure

Properties

that hold in all runs:

® “f() is always executed”

”»

® “After open(), we eventually have close()

Comparing Coverage

. Every failure is caused by an infection,
which in turn is caused by a defect

. The defect must be executed to start the
infection

. Code that is executed in failing runs only is
thus likely to cause the defect

The middle program

$ middle 3 3 5
middle: 3

$ middle 2 1 3
middle: 1

int main(int arc, char *argv[])
{

atoiCargv[1]);
atoiCargv[2]);
atoiCargv[3]);
middle(x, y, z);

int x
int y
int z
int m

printf("middle: %d\n", m);

return 0;

int middle(int x, int y, int z) {
tntm = 7;
ifily <iz)
if O <y
ms=ys;
else if (x < z)
(=
} else {
if (x > vy)
=N
else if (x > 2z)
il = %2
ks

return m;

Obtaining Coverage

for C programs

Pippin: cgi_encode — less — 80x24
int ok = 0;

while (*eptr) /* loop to end of string ('\@' character) */
{
char c;
C = *eptr;
if (c=="+') { /* '+' maps to blank */
*dptr = ' '3
} else if (c == '%") { /* '¥xx' is hex for char xx */
int digit_high = Hex_Values[*(++eptr)];
int digit_low = Hex_Values[*(++eptr)];
if (digit_high == -1 || digit_low == -1)
ok = 1; /* Bad return code */
else
*dptr = 16 * digit_high + digit_low;
} else { /7* All other characters map to themselves */
*dptr = *eptr;

++dptr; ++eptr;

dptr = "\Q"; / Null terminator for string */
return ok;

X
Y
z
int middle(int x, int y, int z) {
int m= z;
Wy = 2 4
if (x <y)
m=y;
else if (x < 2)
m=y;
} else {
if (x > y)
m=y;
else if (x > z)
m= Xx;

® & 0 06 06 w N —

}

return m;

Discrete Coloring

executed only in failing runs
highly suspect

. executed in passing and failing runs
ambiguous

executed only in passing runs
likely correct

int middle(int x, int y, int z) {
int m = z;
if (v <2){
if (x <y)
m=y,;
else if (x < 2)
m=y;
1 else {
if (x> y)
m=y;
else if (x > 2)
m= x;

® 06 o 0 0 w N —

}

return m;

int middle(int x, int y, int z) {
int m= z;
if (y <2z) {

® & 0 06 06 w N —

else if (x < z)
m=y;

return m;

Continuous Coloring

executed only in failing runs

. passing and failing runs

executed only in passing runs

Hue

%passed(s)

ducto)s rediiess s o

X hue range

0% passed _ 100% passed

Brightness
W

bright (s) = max(%passed(s),%failed(s))

rarely executed

int middle(int x, int y, int z) {
int m = z;

if (y <2) {

oo 0|0 0 w | —

.

return m;

Source: Jones et al., ICSE 2002

File

() Default) Summary C Passes O Fails O Mixed @
Tesel [l (L0

Passec: 5 § 267
Failed: 20/ 33

Source: Jones et al., ICSE 2002

Evaluation

How well does comparing coverage detect
anomalies?

® How green are the defects? (false negatives)

® How red are non-defects!? (false positives)

Space

® 8000 lines of executable code
® | 000 test suites with156—4700 test cases

® 20 defective versions with one defect each
(corrected in subsequent version)

ion for Faulty

8
]
&
£
]
=
o]
E
-
<
s
4
=
8
=
2
5
2
E=
8
]
-
2
]
o

Faulty Statements

I8 of 20 defects are
correctly classified in the
“reddest” portion of the

code

‘IIDDDDDDDD‘

T T
10 1
Faulty Version

Source: Jones et al., ICSE 2002

Non-faulty Statements

iil

The “reddest” portion is at
most 20% of the code

‘IIDDDDDDDD‘

10 11
Faulty Versions

Source: Jones et al., ICSE 2002

Siemens Suite

® 7 C programs, 170-560 lines

| 32 variations with one defect each
108 all yellow (i.e., useless)

| with one red statement (at the defect)

Source: Renieris and Reiss, ASE 2003

Nearest Neighbor

Nearest Neighbor

: s e
V] &W

Compare with the single run
that has the most similar coverage

Locating Defects

‘O Nearest Neighbor ‘O Intersection
Renieris+Reiss (ASE 2003) Jones et al. (ICSE 2002)

g4 o
a S

(4]
o

% of failing tests

0 <I0 <20 <30 <40 <50 <60 <70 <80 <90 <100
% of executed source code to examine

Sequences

Sequences of locations can correlate with failures:

open() read() close()

open() close() read() .
close() open() read() .

...but all locations are executed in both runs!

The Aspect] Compiler

$ ajc Test3.aj
$ java test.Test3

test.Test3@b8df17.x Unexpected Signal : 11
occurred at PC=0xFA415A00

Function name=(N/A) Library=(N/A) ...
Please report this error at http://

java.sun.com/. ..
$

Coverage Differences

® Compare the failing run with passing runs

® BcelShadow.getThisJoinPointVar() is
invoked in the failing run only

® Unfortunately, this method is correct

Sequence Differences

This sequence occurs only in the failing run:

ThisJoinPointVisitor.isRef(),
ThisJoinPointVisitor.canTreatAsStatic(),

< MethodDeclaration.traverse(), >
ThisJoinPointVisitor.isRef(),
ThisJoinPointVisitor.isRef()

Defect location

Collecting Sequences

Trace
anlnputStreamObj

Imark I read I read I skip I read I read I skip I read l

InputStream

Sequences

IaProducer] aConsumer] [aQueue | I aLinkedList] IaLogger]
T ML T T

removeFirst

size

I
1
|
1
|
|
|
|
I
| firstElement
1
|
|
|
|
|
I
I
1
1

incoming ' outgoing
calls calls

Anomalies

weights ranking by average weight

passing run passing run

failing run

NanoXML

® Simple XML parser written in Java
® 5 revisions, each with 16-23 classes

® 33 errors discovered or seeded

Locating Defects

‘O AMPLE/window size 8
Dallmeier et al. (ECOOP 2005)

(%4 | 6
o (O, o

% of failing tests

N
(0]

on average 0.5 classes
less than window size |

I 2 3 4 5 6 7 8 9

classes to examine (of 16)

Java - ThisJoinPointVisitor java — Eclipse Platform

[#-0-Q- & e @] 18 &l tn o0 v 5 &')ava BaCVS Repos... [{5Resource
Package Explorer |gu JUnit & = B[1) ThisjoinPointVisitor.java 32 =8
Finished after 5.129 seconds =) >
< public boolean visit(MessageSend call, BlockScope scope) {
LU Q, 5B Expression receiver = call.receiver;
if (isRef(receiver, thisloinPointDec)) {
Runs: 2/2 BErors: 1 B Failures: 0 if (canTreatAsStatic(new StringCcall.selector))) {
if (replaceEffectivelyStaticRefs) {
I replaceEffeceivelySeacichefCeall;
} else {
B Eail 1= Hi h //System intln("has sta reg");
e % Hierarchy hasEffectivelyStaticRef = true;
¥ i/ BytecodeOptimizeTest if (call.arguments 1= null) {
¢l testjoinPointOptimizePass int argumentsLength = call.arguments.length;
ElfesyoinPomioptimizerail for (int i = @; i < argumentslength; i++)

call.arguments[i]. traverse(this, scope);

}
return false; [U
}

41 java.lang.IncompatibleClassChangeError return super.visit(call, scope);
= at BytecodeOptimizeTest.testloinPointOptim ¥
at sun.reflect.NativeMethodAccessarimpl.inv

Failure Trace Tk } ¥

- private MethodBinding getEquivalentStaticBinding(MethodBinding template) {
at sun.reflect. NativeMethodAccessarimpl.inv ReferenceBinding b = (ReferenceBinding)thisJoinPointStaticPartec. type;
at sun.reflect. DelegatingMethod Accessorimp return b.getExactMethod(template.selector, template.parameters);
} .
- private void replaceEffectivelyStaticRef(MessageSend call) { v
€ :] v
L Ll L Console| Prablems [& CVS Resource History 82 $SE|%H~=08
® MethodNameAndTypeCache 0.818 m ThinJoimPainiVistor,
@ BeelVar 0.567 A
@ LocalVariablelnstruction 0.500 L Tags Ll REhon e Ent
® LocalVariableTag 0.484 15 3/28/03 1:58 AM Jjhugunin Major changes in order to move to Eclipse-)DT 2.1 as a bas¢™
@ LocalVariableGen 0.400 14 Vil 2/26/03 11:57 AM acolyer Ran "Organize imports” to remove redundant imports etc - [
@ BeelShadow 0.392 13 2/13/03 11:00 PM jhugunin fixed Bug 30168: bad optimization of thisjoinPoint to this)oi
® Range 0318 1.2 1/14/03 8:24 PM Jhugunin fixed initial implementor for code written in 2002 to be justly
® shadow 0.265 1.1 V_1_ 12/16/02 7:02 PM wisherg initial version v
® Compiler 0.260 € <>
@ ThisJoinPointVisitor 0.232 S

fixed Bug 30168: bad optimization of thisjoinPoint to thisJoinPointStaticPart
@ MethodDeclaration 0.217 2

Properties

that hold in all runs:
® “Atf(), x is odd”

® “0 < x < 10 during the run”

Techniques

Dynamic Sampled
Invariants Values

Techniques

Dynamic
Invariants

Dynamic Invariants

At f(), x is odd

Daikon

Determines invariants from program runs
Written by Michael Ernst et al. (1998-)
C++, Java, Lisp, and other languages

analyzed up to 13,000 lines of code

Daikon

public int ex1511(Cint[] b, int n)
{ 2e(h
int s = 0; o
int i = 0 13
while (1 !=n) { 7
s =s + b[i];
L= ;
b[] = orig(b[1)
i return == sum(b)
return s;

® Run with 100 randomly generated arrays
of length 7—13

Daikon

get trace
Trace

filter mvarlants

b[] = orig(b[1)

return == sum(b)

® Records all variable values at all function
entries and exits

® Uses VALGRIND to create the trace

Filtering Invariants

® Daikon has a library of

invariant patterns over
variables and constants \

® Only matching patterns are
preserved

Method Specifications

using primitive data
x=6 x € {2,5,-30} x<y

y=5x+ 10 |z=4x+I12y +3| z=1fn(xY)

using composite data

A subseq B sorted(A)

checked at method entry + exit

Object Invariants

string.content[string.length] = \0’
node.left.value < node.right.value
this.next.last = this

checked at entry + exit of public methods

Matching Invariants

public int ex1511(Cint[] b, int n) A ==
{

int s = 0;

int i = 0;

while (i != n) {
s =s + b[i];
L= 4 g

L | o W | B ||

i

return s;

Variables

FNE? MEEARER
ee0| |] |
ECMNEIE NN
PO 2 o e o

e o

return ...

Variables

Matching Invariants

SFFEr . -
B 2 s
[« [*[x[x
won x|] (%
s | [[x K]
EDEHNE
0 i

Matching Invariants

en| % | x JX] |
o [X %] | %
i

i
ret

s == sum(b[])

S ==ret

N BN -0
oy [X [%] | %]
TP

i ret == sum(b[])

Matching Invariants

public int ex1511(int[] b, int n) s == sum(b[])
{
int s = 0;
int i = 0; S == ret
while (i !'= n) {
s s + b[i];
i=1+1; n == size(b[])
}
return s;
ret == sum(b[])

Enhancing Relevance

Handle polymorphic variables

Check for derived values

Eliminate redundant invariants

Set statistical threshold for relevance

Verify correctness with static analysis

Daikon Discussed

As long as some property can be observed,
it can be added as a pattern

Pattern vocabulary determines the
invariants that can be found (“sum()”, etc.)

Checking all patterns (and combinations!)
is expensive

Trivial invariants must be eliminated

Techniques

polymorphic variables:
treat “object x” like “int x”
if possible

derived values: have “size
(...)" as extra value to
compare against
redundant invariants: like x
>0=>x>=0

statistical threshold: to
eliminate random
occurrences

verify correctness: to make
sure invariants always hold

Dynamic Invariants

Can we check this ! .:;'b"
on the fly? éwi

|
H Property

At f(), x is odd Atf(),x =2

Diduce

® Determines invariants and violations

® Written by Sudheendra Hangal and Monica
Lam (2001)

® Java bytecode

® analyzed > 30,000 lines of code

Diduce

Invariant H Property

Training mode Checking mode

Training Mode

® Start with empty set
of invariants

® Adjust invariants
according to values

. found during run
Invariant

Invariants in Diduce

For each variable, Diduce has a pair (V, M)
® V = initial value of variable

® M = range of values: i-th bit of M is cleared
if value change in i-th bit was observed

® With each assignment of a new value W,
Mis updatedto M :=M A = (W ®YV)

® Differences are stored in same format

Training Example

Code . Values Differences Invariant
v M v M

I (03 [T S R
s Jiou o] ol [[1ozi= 1A=
I 1) B T P P
IS [T 0) N T PP e
IE S I 0) N) A e

During checking, clearing an M-bit is an anomaly

Diduce vs. Daikon

Less space and time requirements
Invariants are computed on the fly
Smaller set of invariants

Less precise invariants

Techniques

Sampled
Values

Detecting Anomalies

\ e ed
\/v LX™
, \/ AR

““d How do we collect

{ datain the field?

__

Properties H Properties

Differences correlate with failure

Liblit’s Sampling

® Ve want properties of runs in the field
® Collecting all this data is too expensive
® Would a sample suffice?

® Sampling experiment by Liblit et al. (2003)

Return Values

® Hypothesis: function return values correlate
with failure or success

® Classified into positive / zero / negative

CCRYPT fails

CCRYPT is an interactive encryption tool

When CCRYPT asks user for information
before overwriting a file, and user responds
with EOF CCRYPT crashes

3,000 random runs

Of 1,170 predicates, only file_exists() > 0
and xreadline() == 0 correlate with failure

Liblit’s Sampling

® Can we apply this
technique to remote
runs, too!

® | out of 1000 return

Properties values was sampled

® Performance loss <4%

n
o

After 3,000 runs,
only five predicates are left
that correlate with failure |

o
=]

=
<@
1]
9]
o
=}
=]
©
)
R
el
1o}
)
ks
=
5]
et
©
Qo
[S
=}
P4

I I I
1000 1500 2000

Number of successful trials used

Web Services

Sampling is first choice for web services

Have | out of 100 users run an
instrumented version of the web service

Correlate instrumentation data with failure

After sufficient number of runs, we can
automatically identify the anomaly

Techniques

Dynamic Sampled
Invariants Values

Anomalies and Causes

® An anomaly is not a cause, but a correlation

® Although correlation # causation,
anomalies can be excellent hints

® Future belongs to those who exploit
® Correlations in multiple runs

® Causation in experiments

NN (Nearest Neighbor)

Locatlng Defects @Brown by Mgnos Renieris
+ Stephen Reiss
‘O NN (Renieris + Reiss,ASE 2003) O CT (Cleve + Zeller, ICSE 2005) CT (Cause Tran5|t|0n5)
SD (Liblit et al., PLDI 2005) ‘O SOBER (Liu et al, ESEC 2005) @Saarland by Holger Cleve

+ Andreas Zeller
SD (Statistical Debugging)
@Berkeley by Ben Liblit
(now Wisconsin), Mayur
Naik (Stanford), Alice
Zheng, Alex Aiken (now
Stanford), Michael Jordan
53392/2 code to ex;i‘(l):/ﬁae SOBER @Urbana—

78 Champaian + Purdue by

(%]
e
(%]
Q
©
()
=
s
Y—
(e]
I

Concepts

* Comparing coverage (or other features)
shows anomalies correlated with failure

* Nearest neighbor or sequences locate
errors more precisely than just coverage

* Low overhead + simple to realize

Concepts (2)

* Comparing data abstractions shows
anomalies correlated with failure

* Variety of abstractions and implementations
* Anomalies can be excellent hints

* Future: Integration of anomalies + causes

