
Testing and Debugging
Project 1:

Code Coverage

Projects

http://www.st.cs.uni-saarland.de/edu/testingdebugging10/

http://www.st.cs.uni-saarland.de/edu/testingdebugging10/
http://www.st.cs.uni-saarland.de/edu/testingdebugging10/

Public Project

• If you are not yet registered, you should
register and meanwhile you can use the
project:

• User name: 1234567

• Password: tad10

Forum

Forum

• Questions can be asked on the forum:
https://forum.st.cs.uni-sb.de/boards/index

• Password and user name outside the
university: prog2-2010

• Your personal user name and password is
the same as for the project.

https://forum.st.cs.uni-sb.de/boards/index
https://forum.st.cs.uni-sb.de/boards/index

Task

(a) Write a tool that measures statement
coverage.

(b) Create tests that satisfy a coverage goal.

(c) Implement the Tarantula fault localization
technique.

Set up the project

• Check out the project from the given URL

• Use Maven to build it:

• mvn compile

• mvn assembly:assembly

• mvn eclipse:eclipse

(a) Statement coverage

• We recommend Eclipse AST (Abstract
Syntax Tree) to instrument the source
code.

• AST uses visitor pattern - visit and endVisit
methods.

• Instrumentation should log the covered
statements and write the data to disk.

• See lecture: Advanced Coverage Criteria

Running Tests

• ant check-coverage runs integration tests.

• Produces 2 summary files: check-coverage-
passing.txt and check-coverage-failing.txt.

(b) Coverage Goal

• 100% Coverage has to be reached for two
classes in commons-math.

• JUnit 4 Templates in the project have to be
completed.

• Tests from the commons-math project are
allowed.

(c) Fault Localization

(c) Fault Localization

• Implement the Tarantula technique.
(presented in the next lecture)

• Paper can be obtained from our web site.
(Password and user name: tad10)

• ant check-fault-localization runs an
integration test.

Grading

• Version in svn, of 13th May will be graded.

• Public tests have to be passed.

• Secret tests are used for grading.

Grading for lecture

Grading Scheme
for Project 1

Grade Requirement

4

3

2

1

at least 90% of public and 50 % of secret tests

100% of public and at least 50 % of secret tests

100% of public and at least 90 % of secret tests

100% of public and 100 % of secret tests

• Use svn status.

• Do a fresh checkout and check whether project
compiles and passes tests.

Specification is
incomplete

• We try to test only for specified behavior.

• Tests will be made publicly available.

• You can write tests that are run against the
reference implementations.

Example

1. for(int i = 0;
2. i < 2;
3. i++;) {

•We only expect the start
(line 1) to be coverable.

•See Test:
AnotherLoopCoverageTest

Constructors

• this and super constructor
calls are not expected to be
covered

• “The first statement of a
constructor body may be an
explicit invocation of another
constructor of the same class
or of the direct superclass
(§8.8.7.1).”

1. public Foo()
2. super();
3. this.val = 1;

Only line 3 is
expected to be
coverable.

http://java.sun.com/docs/books/jls/third_edition/html/classes.html#229267
http://java.sun.com/docs/books/jls/third_edition/html/classes.html#229267

Miscellaneous

• You are allowed to use 3rd party libraries.

• If you want to use a library not listed in
pom.xml, contact us.

• pom.xml and build.xml and src/test will be
overwritten for secret tests.

