
Advanced Coverage
Criteria
Software Engineering

Gordon Fraser • Saarland University

class Roots {
 // Solve ax2 + bx + c = 0
 public roots(double a, double b,
double c)
 { … }

 // Result: values for x
 double root_one, root_two;
}

Testing can show the
presence but not the
absence of errors.

Dijkstra’s law

Remember the Roots example?
Having a million computers doing a
million tests per second would be
sufficient to test the Roots example
four times during the lifetime of the
sun. Clearly, exhaustive testing is
not feasible in practice.

Because we cannot do testing
exhaustively, we can only sample
test cases. Therefore, we can
never be sure that our program is
free of bugs. Because showing the
absence of bugs is impossible, the
aim of testing is to show that there
are bugs. Testing is successful if
we find bugs (even though this is
sometimes indicated with a red
light in a GUI, suggesting
otherwise).

Coverage Criteria
Possible test case

Coverage of...

Coverage criteria

Program
under Test

Coverage
Criterion

Test
Requirements

Test
Requirement

Test
Requirement

= Rules
“Execute

statement 1”

A coverage criterion describes a
finite subset of test cases out of
the vast/infinite number of
possible tests we should
execute.

We can measure coverage on
any artifact produced during
software development, e.g.,
structural coverage of source
code, coverage of input space,
coverage of complex inputs -
e.g., grammar based, coverage
of specification, coverage of test
models, coverage of
requirements, coverage of GUI
elements, ...

A coverage criterion can be seen
as a finite set of test
requirements that a test suite
should fulfill. There is usually
more than one way to cover a
test requirement, so a coverage
criterion is not a unique
description of a test suite.

Using coverage criteria

1. Adequacy: Have I got enough tests?

2. Guidance: Where should I test more?

3. Automation: Generate test that satisfies a
test requirement

Measuring Code Coverage

Program
under Test Test CasesCoverage

Criterion

Instrumented
Program

Test
Requirements

Test
Requirement

Test
Requirement

Test
Requirements

Test
Requirement

Covered
Requirement

Instrumentation
• Instrument: Additional code that does not

change functional behavior but collects
information

public int min(A, B) {
 int m = A;
 if(A>B) {
 m = B;
 }
 return m;
}

public int min(A, B) {
 int m = A;
 if(A>B) {
 Mark: “if body reached”
 m = B;
 }
 return m;

Coverage criteria serve two
main purposes: To measure
adequacy of existing test suites,
and to guide generation of new
test cases. Even though
coverage is often used to
measure the quality of an
existing test suite, coverage is
not a good measurement for
this. Generally, coverage is only
good at telling you which parts
haven’t been covered.

To make use of coverage in
practice we need to measure it.
This is done by instrumenting
the source code with an
instrument for every single test
requirement, described by the
coverage criterion. When test
cases are run on the
instrumented program the
instrumentation keeps track of
what has been executed and
what hasn’t, and so at the end
of the execution we can analyze
this information to point to
uncovered areas and quantify
the coverage.

In general, instrumentation
adds program code that does
not change functional behavior
but collects information. This
instrumentation might,
however, change other aspects
of the program, such as timing,
interleaving, etc.

Instrumentation
public int min(A, B) {
 statement[0]++;
 int m = A;
 statement[1]++;
 if(A>B) {
 statement[2]++;
 m = B;
 }
 statement[3]++;
 return m;
}

public int min(A, B) {
 int m = A;
 if(A>B) {
 m = B;
 }
 return m;
}

Coverage Value

Coverage value =
Covered test requirements

Total test requirements

Coverage Value

Coverage value =
Covered test requirements

Total test requirements

I’ve got 100% statement coverage on my
program. How many bugs are left?

Here is an example of how to
measure statement coverage:
Before executing a statement
we simply trace that the
statement has been executed,
for example by adding a static
method call, incrementing a
counter, etc.

Coverage is usually quantified
as the percentage of test
requirements satisfied. But what
does that mean?

Coverage is usually quantified
as the percentage of test
requirements satisfied. But what
does that mean?

The adequacy of a
coverage criterion

can only be intuitively
defined.

Weyuker’s
Hyopthesis

Coverage is dangerous
• Developers write test only to satisfy

coverage

• 100% coverage can detect no faults:
Coverage measures what is executed, not what is checked

• Coverage metrics tell you what code is not
tested, but cannot accurately tell you what
code is tested:

• Low coverage means code is not well tested

• But high coverage does not mean code is well
tested

Coverage is useful

• It always tells you where you haven’t tested

• Testing everything a bit is better than not
testing most of the program - unless you
know where the faults are

• Coverage != coverage
Stricter criterion → more tests

• More tests = more chances of hitting bugs

...at the end of the day, we still
don’t know what we’ve achieved
by satisfying a coverage
criterion.

The use of coverage has some
dangerous aspects, that might
even reduce the quality of
testing. If success is only
quantified in a coverage metric,
developers will get very efficient
and writing test cases that
satisfy the coverage goals, but
not at finding bugs. Also, it is
possible to cover the entire
program without detecting a
single bug - testing is more
than just input generation (see
Mutation testing lecture).

Despite it’s downsides coverage
has some useful sides: It is very
efficient at telling you which
parts of a program you haven’t
tested at all. Intuitively, testing
everything a little bit should be
better than testing some aspect
thoroughly and neglecting the
rest - unless you already know
where the bugs are (which you
don’t in general).

Structural
Criteria

Statement testing

Branch testing

Basic
condition testing

MCDC testing

Compound
condition testing

Path testing

Loop boundary
testing

Branch and
condition testingLCSAJ testing

Boundary
interior testing

Pr
ac

tic
al

 C
ri

te
ri

a
T

he
or

et
ic

al
 C

ri
te

ri
a

subsumes

These criteria apply to
all logical expressions
(not just source code)

Logic Coverage

if(((a>b) || C) && p(x))

 o.m();

else

 o.n();

Predicate

Clauses

EducationEducation IndividualIndividualIndividualIndividualIndividualIndividual

Education account

Current purchase >
Threshold 1

Current purchase >
Threshold 2

Special price <
scheduled price

Special price <
Tier 1

Special price <
Tier 2

T T F F F F F F

– – F F T T – –

– – – – F F T T

F T F T – – – –

– – – – F T – –

– – – – – – F T

Out Edu
discount

Special
price

No
discount

Special
price

Tier 1
discount

Special
price

Tier 2
discount

Special
Price

PredicateClauses

Coming back to the family of
structural coverage criteria, we can
see that several of these criteria
focus on the logical expressions in
the source code. This is worth
having a closer look at, since this is
a recurring problem in software
testing.

Because the criteria we are
going to consider now are
independent of source code we
will adopt a slightly different
nomenclature, to add some
confusion. A logical expression
is a predicate, and the predicate
consists of clauses, conjoined
by boolean operators (and,
or, ...). A clause contains no
boolean operators.

Predicates and clauses occur
everywhere, not only in source
code. For example, test models
often consist mainly of logical
expressions.

Predicate

Clauses

Translating from English
• “If you leave before 6:30 AM, take Braddock to 495, if you

leave after 7:00 AM, take Prosperity to 50, then 50 to 495”

• time < 6:30 → path = Braddock ∨
• time > 7:00 → path = Prosperity

Incomplete!

Introduction to Software Testing, Ammann and Offut

Predicate Coverage (PC)

• For each predicate:

• Have at least one test where it evaluates to true

• Have at least one test where it evaluates to false

• Also known as:

• Branch coverage

• Decision coverage

• Basic criterion

UML state charts, as another
example, have predicates in
terms of OCL expressions.

Why is testing logical expressions
important? Thatʼs because they are
difficult to get right. Translating
from natural language to predicates
is a process that is error prone, and
natural language requirements are
often incomplete.

Predicate Coverage

if(((a>b) || C) && p(x))

 o.m();

else

 o.n();

Predicate Coverage
a>b C p(x) ((a>b)||C)&&p

(x)1 t t t t
2 t t f f
3 t f t t
4 t f f f
5 f t t t
6 f t f f
7 f f t f
8 f f f f

Predicate Coverage
a>b C p(x) ((a>b)||C)&&p

(x)1 t t t t
2 t t f f
3 t f t t
4 t f f f
5 f t t t
6 f t f f
7 f f t f
8 f f f f

Clause does not
change value

Predicate coverage is the most
basic logical coverage criterion,
and there are usually many
different ways to satisfy it.

Predicate coverage is the most
basic logical coverage criterion,
and there are usually many
different ways to satisfy it.

Predicate coverage is the most
basic logical coverage criterion,
and there are usually many
different ways to satisfy it.

Clause Coverage (CC)

• For each clause in a predicate:

• Evaluate to true

• Evaluate to false

• Also known as:

• Condition coverage

• Basic condition coverage

Clause Coverage
a>b C p(x) ((a>b)||C)&&p

(x)1 t t t t
2 t t f f
3 t f t t
4 t f f f
5 f t t t
6 f t f f
7 f f t f
8 f f f f

Clause Coverage
a>b C p(x) ((a>b)||C)&&p

(x)1 t t t t
2 t t f f
3 t f t t
4 t f f f
5 f t t t
6 f t f f
7 f f t f
8 f f f f

Predicate is
not covered

Note that clause coverage does
not guarantee that predicates
also evaluate to true and false.

• For each predicate:

• All possible valuations for the clauses

• Also known as:

• Multiple condition coverage

• Compound condition coverage

Combinatorial Coverage (CoC)

Combinatorial Coverage
a>b C p(x) ((a>b)||C)&&p

(x)1 t t t t
2 t t f f
3 t f t t
4 t f f f
5 f t t t
6 f t f f
7 f f t f
8 f f f f

2N tests for N clauses

a>b C p(x) ((a>b)||C)&&p
(x)1 t t t t

2 t t f f
3 t f t t
4 t f f f
5 f t t t
6 f t f f
7 f f t f
8 f f f fThe outcome of a<b does not matter

The most thorough logical
coverage criterion is
combinatorial coverage (CoC).
This simply requires to explore
all possible combinations of
truth values.

In terms of our truth table this
means all rows have to be
executed. Note that this does
not mean that the input space is
completely covered: for
example we only need to
consider two possible outcomes
for a>b.

CoC is thorough but
problematic. The number of
necessary tests to satisfy CoC is
exponential to the number of
clauses, and it is therefore not a
practical criterion. To overcome
this problem what we do is to
focus on the most important

The most interesting case for a
clause is when the clause
determines the outcome of the
predicate. A clause determines
the predicate if changing the
truth value of only the clause
will change the truth value of
the predicate.

Clause Determination
• A clause ci in predicate p, called the major

clause, determines p if and only if the values
of the remaining minor clauses cj are such
that changing ci changes the value of p

P = A ∨ B

if B = true, P is always true.

so if B = false, A determines P.

if A = false, B determines P.

P = A ∧ B

if B = false, P is always false.

so if B = true, A determines P.

if A = true, B determines P.

Active Clause Coverage
For each major clause ci,

choose minor clauses cj, j != i, so that ci determines p.
TR has two requirements for each ci:

ci evaluates to true and ci evaluates to false.

p = a ∨ b

1. a = true, b = false

2. a = false, b = false

3. a = false, b = true

4. a = false, b = false

Major clause

Major clause

Introduction to Software Testing, Ammann and Offut

Ambiguity
p = a ∨ (b ∧ c)

Major clause : a

a = true, b = false, c = true

a = false, b = false, c = false Is this allowed?

•This question caused confusion among testers for years
•Three separate criteria :

•Minor clauses do not need to be the same
•Minor clauses do need to be the same
•Minor clauses force the predicate to become true and false

Introduction to Software Testing, Ammann and Offut

ACC is basically what you
already know as MCDC. For
each clause ACC requires that
there are test cases where the
clause determines the outcome
of the predicate, and the clause
is true and false.

But it is not clear how exactly to
interpret this. In fact, there are
three different possible
interpretations, and
programmers have for years
been uncertain which one of
these versions is meant by
“MCDC”.

General Active Clause Coverage

• For each clause c, choose minor clauses
such that c determines the predicate

• Clause c has to evaluate to true and false

• Minor clauses don’t need to be the same

General Active Clause Coverage

a>b C p(x) ((a>b)||C)&&p
(x)1 t t t t

2 t t f f
3 t f t t
4 t f f f
5 f t t t
6 f t f f
7 f f t f
8 f f f f

Minor clauses can be different

Correlated Active Clause Coverage

• For each clause c, choose minor clauses
such that c determines the predicate

• Clause c has to evaluate to true and false

• Predicate p has to evaluate to true and
false

• Minor clauses don’t need to be the same

• Also known as:

• Masking MCDC

In the simplest case (GACC)
there are no restrictions other
than that the clause has to
determine the predicate.

GACC does not guarantee PC,
therefore a stricter version of
GACC is CACC. This criterion
simply adds the PC requirement
to GACC.

Restricted Active Clause Coverage

• For each clause c, choose minor clauses
such that c determines the predicate

• Clause c has to evaluate to true and false

• Predicate p has to evaluate to true and
false

• Minor clauses have to be the same

• Common interpretation in avionic domain

• Why keep minor clauses identical?

CACC vs RACC

a b c a && (b || c)
1 T T T T

2 T T F T

3 T F T T

5 F T T F

6 F T F F

7 F F T F

a b c a && (b || c)
1 T T T T

5 F T T F

2 T T F T

6 F T F F

3 T F T T

7 F F T F

Major clause: a

9 possibilities 3 possibilities
Introduction to Software Testing, Ammann and Offut

Inactive Clause Coverage

• If a clause should not affect outcome
(=inactive), then test whether it really
doesn’t

• Again, question of identical minor clauses

• Also known as:

• Reinforced Condition/Decision Coverage
(RCDC)

Finally, the third interpretation
of MCDC is RACC, in which the
minor clauses between two test
cases for a major clause have to
be identical.

It is not clear what the benefit
of keeping minor clauses fixed
really is, even though this has in
the past been the most common
interpretation. A main effect is
that it makes testing much
harder, so RACC is clearly
preferable in practice.

Inactive clause coverage is
complementary to ACC, in that
it tests for the cases where a
clause should not affect a
predicate. For example, if we
activate the brakes and
accelerate at the same time we
want to make sure that the
acceleration has no effect on the
system.

General Inactive Clause Coverage

• For each clause c in predicate p choose
minor clauses such that c does not
determine p

• c evaluates to true with p true

• c evaluates to false with p true

• c evaluates to true with p false

• c evaluates to false with p false

• Minor clauses may differ

General Inactive Clause Coverage

a>b C p(x) ((a>b)||C)&&p
(x)1 t t t t

2 t t f f
3 t f t t
4 t f f f
5 f t t t
6 f t f f
7 f f t f
8 f f f f

Major clause a>b

Restricted Inactive Clause Coverage

• For each clause c in predicate p choose
minor clauses such that c does not
determine p

• c evaluates to true with p true

• c evaluates to false with p true

• c evaluates to true with p false

• c evaluates to false with p false

• Minor clauses may not differ

There are two different flavors
of ICC: With and without the
requirement on fixed minor
clauses.

Subsumption Hierarchy

CC PC

GACC

CACC

RACC

CoC

RICC

GICC

Infeasibility
• (a > b ∧ b > c) ∨ c > a

• (a > b) = true, (b > c) = true, (c > a) = true
is infeasible

• Infeasible test requirements have to be
recognized and ignored

• Recognizing infeasible test requirements is
hard, and in general, undecidable

• More complex criteria also produce more
infeasible test requirements

Best Effort Strategy

CC PC

GACC

CACC

RACC

CoC

RICC

GICC

Test Generation
Fails

Try this
instead

As always when defining
coverage criteria, these criteria
are related to each other. An
arrow from one criterion to
another means that the former
subsumes the latter. This means
that if we test for CoC, we will
automatically satisfy all other
coverage criteria as well.

Subsumption is, however, not
always given: Sometimes test
requirements are simply
unsatisfiable.

Determining infeasibility is
undecidable, so what can we do
in practice if we can’t find a test
case for a particular test
requirement? A simple solution
is to use a best effort approach:
If, after some time, we cannot
find a test case for a test
requirement, we simply turn to
the next simpler version of the
same predicate in the
subsumption hierarchy.

There’s more!

((a>b) || C) && p(x)

((a>b) && p(x)) || (C && p(x))

D
N

F

Implicant Coverage

Corresponding Unique True Point and Near
False Point Pair Coverage (CUTPNFP)

MUTP CUTP

MAX-A

MAX-BMUMCUT

Minimal
MUMCUT

Logic Criteria on
Source Code

• Predicates are derived from decision
statements in programs

• In programs, most predicates have less than
four clauses

• Wise programmers actively strive to keep
predicates simple

• When a predicate only has one clause,
COC, ACC, ICC, and CC all collapse to
predicate coverage (PC)

• Reachability : Before applying the criteria on
a predicate at a particular statement, we
have to get to that statement

• Controllability : We have to find input
values that indirectly assign values to the
variables in the predicates

Logic Criteria on
Source Code

We have seen a number of
different logical coverage
criteria, but there’s more. For
example, if you assume that
predicates are given in DNF or
you convert the predicates to
DNF there’s a whole new world
of coverage possibilities. These
criteria will not be subject of the
course :-)

Predicates in source code are
usually simple. If a predicate
consists of only one clause, all
of the coverage criteria collapse
to PC.

Generating tests for logical
coverage criteria offers some
challenges: First, we need the
program to execute the path
that leads to the predicate
(reachability). Second, we need
input values that indirectly
assign values such that the
clauses evaluate as needed. For
example, for the clause a<b we
need to find suitable values for
a and b.

Triangle Example

“A program reads three
integer values. The three
values are interpreted as
representing the lengths of
the sides of a triangle. The
program prints a message
that states whether the
triangle is scalene, isosceles,
or equilateral.”

 if (a <= 0 || b <= 0 || c <= 0) {
 return 4; // invalid
 }
 if (! (a + b > c && a + c > b && b + c > a)) {
 return 4; // invalid
 }
 if (a == b && b == c) {
 return 1; // equilateral
 }
 if (a == b || b == c || a == c) {
 return 2; // isosceles
 }
 return 3; // scalene

 if (a <= 0 || b <= 0 || c <= 0) {
 return 4; // invalid
 }
 if (! (a + b > c && a + c > b && b + c > a)) {
 return 4; // invalid
 }
 if (a == b && b == c) {
 return 1; // equilateral
 }
 if (a == b || b == c || a == c) {
 return 2; // isosceles
 }
 return 3; // scalene

P1

P2

P3

P4

Let’s have a look at this
problem in the context of a
simple program. The triangle
example is sort of the testing
“Hello world” example, and
dates back to Myers’s classical
book on software testing.

This is an example
implementation of the triangle
example. If one of the triangle
sides is negative or the inputs
don’t satisfy the triangle
invariant, then we return invalid
(4). If they’re equilateral we
return 1, 2 if two sides are
isosceles, and 3 if the triangle is
scalene.

 if (a <= 0 || b <= 0 || c <= 0) {
 return 4; // invalid
 }
 if (! (a + b > c && a + c > b && b + c > a)) {
 return 4; // invalid
 }
 if (a == b && b == c) {
 return 1; // equilateral
 }
 if (a == b || b == c || a == c) {
 return 2; // isosceles
 }
 return 3; // scalene

Always reachable

!P1

!P1 && !P2

!P1 && !P2 && !P3

P1

P2

P3

P4

Code transformation
if(a && b)

 S1;

else

 S2;

if (a)
{
 if(b)
 S1;
 else
 S2;
}
else
 S2;

Branch coverage:
(a, b), (a, !b), (!a, b)

Branch coverage:
(a, b), (a, !b), (!a, !b)

↯
not MCDC on other code

Branch:
(a,b), (!a, b)

MCDC:
(a, b), (a, !b), (!a, b)

Code transformation
if(a && b)

 S1;

else

 S2;

4: iload_1 // a
5: ifeq 28
8: iload_2 // b
9: ifeq 28
17: invokestatic #3; // S1
20: goto 31
28: invokestatic #4; // S2
31: ...MCDC:

(a, b), (a, !b), (!a, b)

These four predicates are not
independent. In fact, to reach
any of the predicates we depend
on the outcome of the
preceding predicates. This is the
problem of finding the right
path through the control flow
graph, viewed differently.

Where's the error in the
program?

We can influence coverage
criteria by the way we
implement expressions in
source code. For example, the
two code snippets represent the
identical code. In the first case,
we need three test cases to
achieve MCDC, and two to
achieve branch coverage. In the
second, branch coverage
requires three test cases -
branch coverage of the right
snippet therefore means better
testing then branch coverage of
the left snippet.

An example of when this is
relevant is when coverage is
measured on bytecode. This is
actually sometimes required in
industrial settings - but it
affects the way coverage is
defined and measured. In this
example, coverage of the
bytecode gives you less testing
than coverage of the source
code. (But does it make a
difference?)

Logic Instrumentation
if(a && b) {

 // ...

}

Mark_1(a,b);

if(a && b) {

 // ...

}

void Mark_1(a,b) {
 if(a)
 if(b)
 covered[1]++;
 else
 covered[2]++;
 else
 // ...
}

Structural
Criteria

Statement testing

Branch testing

Basic
condition testing

MCDC testing

Compound
condition testing

Path testing

Loop boundary
testing

Branch and
condition testingLCSAJ testing

Boundary
interior testing

Pr
ac

tic
al

 C
ri

te
ri

a
T

he
or

et
ic

al
 C

ri
te

ri
a

subsumes

• Even if the control flow is correct...

• ...data objects might not be available

• ...silly things can be done to data objects

To instrument for logical criteria
we need some more
instrumentation. Because of
short circuit operators not all
clauses might be evaluated in
an expression. We therefore
record the values of all clauses
before entering a conditional
statement.

216 Structural Testing

!" #$%&!'()*&!+!(,#-.(./

#$%&!'.)*&!+!.(#-.(./

0,*!-1!+!2/

#$%&!#/

#!+!'()*&/

03!4#!++!5657!"!!

'.)*&!+!5!5/

8!

9$0:(!4'()*&7!"

;&<(

'.)*&!+!5=25/

&(*<&,!-1/

8

>%:?(

;&<(

0,*!.0@0*A$0@$!+!B(CAD%:<(?E'466()*&7F/

0,*!.0@0*A:-9!+!B(CAD%:<(?E'466()*&7F/

03!4.0@0*A$0@$!++!GH!II!.0@0*A:-9!++!GH7!"

;&<(

-1!+!H/

8

;&<(

(:?(!"

'.)*&!+!HJ!'!.0@0*A$0@$!6!.0@0*A:-9/

8

>%:?(

66.)*&/

66()*&/

8

>%:?(

>%:?(

!(:?(03!4#!++!5K57!"

(:?(

'.)*&!+!'()*&/

8

0,*!#@0A.(#-.(4#$%&!'(,#-.(.L!#$%&!'.(#-.(.7

!

"

#

$ %

& '

()

*

+

Figure 12.2: The control flow graph of function cgi decode from Figure 12.1

Draft version produced August 1, 2006

A

B

C

D E

GF

H I

L
M

Data Flow
• Definition

Variable declaration
Variable initialization
Variable assignment - left hand side of an expression
Values received by a parameter

• Use
Expressions
Parameter passing
Conditional statements
Returns

• P-use: Predicate-use (if, while, ...)

• C-use: Computation-use (anything else)
216 Structural Testing

!" #$%&!'()*&!+!(,#-.(./

#$%&!'.)*&!+!.(#-.(./

0,*!-1!+!2/

#$%&!#/

#!+!'()*&/

03!4#!++!5657!"!!

'.)*&!+!5!5/

8!

9$0:(!4'()*&7!"

;&<(

'.)*&!+!5=25/

&(*<&,!-1/

8

>%:?(

;&<(

0,*!.0@0*A$0@$!+!B(CAD%:<(?E'466()*&7F/

0,*!.0@0*A:-9!+!B(CAD%:<(?E'466()*&7F/

03!4.0@0*A$0@$!++!GH!II!.0@0*A:-9!++!GH7!"

;&<(

-1!+!H/

8

;&<(

(:?(!"

'.)*&!+!HJ!'!.0@0*A$0@$!6!.0@0*A:-9/

8

>%:?(

66.)*&/

66()*&/

8

>%:?(

>%:?(

!(:?(03!4#!++!5K57!"

(:?(

'.)*&!+!'()*&/

8

0,*!#@0A.(#-.(4#$%&!'(,#-.(.L!#$%&!'.(#-.(.7

!

"

#

$ %

& '

()

*

+

Figure 12.2: The control flow graph of function cgi decode from Figure 12.1

Draft version produced August 1, 2006

A

B

C

D E

GF

H I

L
M

encoded
decoded

*eptr, eptr
*dptr, dptr

ok
c

*dptr
*dptr

digit_high
digit_low

eptr

*dptr

dptr
eptr

*dptr

ok

Definitions

Example control flow graph

During the life time of a
variable, it can be defined and
used. We further distinguish
between predicate and
computational use of data.

Here are all the definitions in
the example control flow graph.
Note that for pointers, eptr and
*eptr count as two different
variables.

216 Structural Testing

!" #$%&!'()*&!+!(,#-.(./

#$%&!'.)*&!+!.(#-.(./

0,*!-1!+!2/

#$%&!#/

#!+!'()*&/

03!4#!++!5657!"!!

'.)*&!+!5!5/

8!

9$0:(!4'()*&7!"

;&<(

'.)*&!+!5=25/

&(*<&,!-1/

8

>%:?(

;&<(

0,*!.0@0*A$0@$!+!B(CAD%:<(?E'466()*&7F/

0,*!.0@0*A:-9!+!B(CAD%:<(?E'466()*&7F/

03!4.0@0*A$0@$!++!GH!II!.0@0*A:-9!++!GH7!"

;&<(

-1!+!H/

8

;&<(

(:?(!"

'.)*&!+!HJ!'!.0@0*A$0@$!6!.0@0*A:-9/

8

>%:?(

66.)*&/

66()*&/

8

>%:?(

>%:?(

!(:?(03!4#!++!5K57!"

(:?(

'.)*&!+!'()*&/

8

0,*!#@0A.(#-.(4#$%&!'(,#-.(.L!#$%&!'.(#-.(.7

!

"

#

$ %

& '

()

*

+

Figure 12.2: The control flow graph of function cgi decode from Figure 12.1

Draft version produced August 1, 2006

A

B

C

D E

GF

H I

L
M

*eptr
eptr

encoded
decoded
eptr, dptr

*eptr, eptr
c

c

Hex_Values
eptr
*eptr

digit_high
digit_low

*eptr, eptr
dptr

digit_high
digit_low

dptr

ok, dptr

dptr
eptr

Uses

dptr

216 Structural Testing

!" #$%&!'()*&!+!(,#-.(./

#$%&!'.)*&!+!.(#-.(./

0,*!-1!+!2/

#$%&!#/

#!+!'()*&/

03!4#!++!5657!"!!

'.)*&!+!5!5/

8!

9$0:(!4'()*&7!"

;&<(

'.)*&!+!5=25/

&(*<&,!-1/

8

>%:?(

;&<(

0,*!.0@0*A$0@$!+!B(CAD%:<(?E'466()*&7F/

0,*!.0@0*A:-9!+!B(CAD%:<(?E'466()*&7F/

03!4.0@0*A$0@$!++!GH!II!.0@0*A:-9!++!GH7!"

;&<(

-1!+!H/

8

;&<(

(:?(!"

'.)*&!+!HJ!'!.0@0*A$0@$!6!.0@0*A:-9/

8

>%:?(

66.)*&/

66()*&/

8

>%:?(

>%:?(

!(:?(03!4#!++!5K57!"

(:?(

'.)*&!+!'()*&/

8

0,*!#@0A.(#-.(4#$%&!'(,#-.(.L!#$%&!'.(#-.(.7

!

"

#

$ %

& '

()

*

+

Figure 12.2: The control flow graph of function cgi decode from Figure 12.1

Draft version produced August 1, 2006

A

B

C

D E

GF

H I

L
M

eptr

encoded
decoded
eptr, dptr

*eptr, eptr

Hex_Values
eptr
*eptr

*eptr, eptr
dptr

digit_high
digit_low

dptr

ok, dptr

dptr
eptr

c-Uses

dptr

216 Structural Testing

!" #$%&!'()*&!+!(,#-.(./

#$%&!'.)*&!+!.(#-.(./

0,*!-1!+!2/

#$%&!#/

#!+!'()*&/

03!4#!++!5657!"!!

'.)*&!+!5!5/

8!

9$0:(!4'()*&7!"

;&<(

'.)*&!+!5=25/

&(*<&,!-1/

8

>%:?(

;&<(

0,*!.0@0*A$0@$!+!B(CAD%:<(?E'466()*&7F/

0,*!.0@0*A:-9!+!B(CAD%:<(?E'466()*&7F/

03!4.0@0*A$0@$!++!GH!II!.0@0*A:-9!++!GH7!"

;&<(

-1!+!H/

8

;&<(

(:?(!"

'.)*&!+!HJ!'!.0@0*A$0@$!6!.0@0*A:-9/

8

>%:?(

66.)*&/

66()*&/

8

>%:?(

>%:?(

!(:?(03!4#!++!5K57!"

(:?(

'.)*&!+!'()*&/

8

0,*!#@0A.(#-.(4#$%&!'(,#-.(.L!#$%&!'.(#-.(.7

!

"

#

$ %

& '

()

*

+

Figure 12.2: The control flow graph of function cgi decode from Figure 12.1

Draft version produced August 1, 2006

A

B

C

D E

GF

H I

L
M

*eptr

c

c

digit_high
digit_low

p-Uses

These are all the uses in the
program.

The majority of the uses are
computational uses.

Only few uses are p-uses - they
can be found in if, while, etc
statements.

Definition-Use Pairs

• Definition clear path
Path from def to use without another def

• Definition-Use pair (DU pair)
Definition+use with def clear path

• Definition-Use path (DU path)
A DU pair can have several different definition clear
paths

216 Structural Testing

!" #$%&!'()*&!+!(,#-.(./

#$%&!'.)*&!+!.(#-.(./

0,*!-1!+!2/

#$%&!#/

#!+!'()*&/

03!4#!++!5657!"!!

'.)*&!+!5!5/

8!

9$0:(!4'()*&7!"

;&<(

'.)*&!+!5=25/

&(*<&,!-1/

8

>%:?(

;&<(

0,*!.0@0*A$0@$!+!B(CAD%:<(?E'466()*&7F/

0,*!.0@0*A:-9!+!B(CAD%:<(?E'466()*&7F/

03!4.0@0*A$0@$!++!GH!II!.0@0*A:-9!++!GH7!"

;&<(

-1!+!H/

8

;&<(

(:?(!"

'.)*&!+!HJ!'!.0@0*A$0@$!6!.0@0*A:-9/

8

>%:?(

66.)*&/

66()*&/

8

>%:?(

>%:?(

!(:?(03!4#!++!5K57!"

(:?(

'.)*&!+!'()*&/

8

0,*!#@0A.(#-.(4#$%&!'(,#-.(.L!#$%&!'.(#-.(.7

!

"

#

$ %

& '

()

*

+

Figure 12.2: The control flow graph of function cgi decode from Figure 12.1

Draft version produced August 1, 2006

A

B

C

D E

GF

H I

L
M

Def: eptr

Use: eptr

Def-Use
✔

✔
216 Structural Testing

!" #$%&!'()*&!+!(,#-.(./

#$%&!'.)*&!+!.(#-.(./

0,*!-1!+!2/

#$%&!#/

#!+!'()*&/

03!4#!++!5657!"!!

'.)*&!+!5!5/

8!

9$0:(!4'()*&7!"

;&<(

'.)*&!+!5=25/

&(*<&,!-1/

8

>%:?(

;&<(

0,*!.0@0*A$0@$!+!B(CAD%:<(?E'466()*&7F/

0,*!.0@0*A:-9!+!B(CAD%:<(?E'466()*&7F/

03!4.0@0*A$0@$!++!GH!II!.0@0*A:-9!++!GH7!"

;&<(

-1!+!H/

8

;&<(

(:?(!"

'.)*&!+!HJ!'!.0@0*A$0@$!6!.0@0*A:-9/

8

>%:?(

66.)*&/

66()*&/

8

>%:?(

>%:?(

!(:?(03!4#!++!5K57!"

(:?(

'.)*&!+!'()*&/

8

0,*!#@0A.(#-.(4#$%&!'(,#-.(.L!#$%&!'.(#-.(.7

!

"

#

$ %

& '

()

*

+

Figure 12.2: The control flow graph of function cgi decode from Figure 12.1

Draft version produced August 1, 2006

A

B

C

D E

GF

H I

L
M

Def: eptr

Use: eptr

Def-Use

Kills def

The main concept in data flow
testing is a Definition Use pair.
A definition use pair consists of
a definition of a variable, a use
of the same variable, and at
least one definition-clear path
from with the definition reaches
the use without being redefined.

216 Structural Testing

!" #$%&!'()*&!+!(,#-.(./

#$%&!'.)*&!+!.(#-.(./

0,*!-1!+!2/

#$%&!#/

#!+!'()*&/

03!4#!++!5657!"!!

'.)*&!+!5!5/

8!

9$0:(!4'()*&7!"

;&<(

'.)*&!+!5=25/

&(*<&,!-1/

8

>%:?(

;&<(

0,*!.0@0*A$0@$!+!B(CAD%:<(?E'466()*&7F/

0,*!.0@0*A:-9!+!B(CAD%:<(?E'466()*&7F/

03!4.0@0*A$0@$!++!GH!II!.0@0*A:-9!++!GH7!"

;&<(

-1!+!H/

8

;&<(

(:?(!"

'.)*&!+!HJ!'!.0@0*A$0@$!6!.0@0*A:-9/

8

>%:?(

66.)*&/

66()*&/

8

>%:?(

>%:?(

!(:?(03!4#!++!5K57!"

(:?(

'.)*&!+!'()*&/

8

0,*!#@0A.(#-.(4#$%&!'(,#-.(.L!#$%&!'.(#-.(.7

!

"

#

$ %

& '

()

*

+

Figure 12.2: The control flow graph of function cgi decode from Figure 12.1

Draft version produced August 1, 2006

A

B

C

D E

GF

H I

L
M

Def: eptr

Use: eptr

Def-Use

Kills def

216 Structural Testing

!" #$%&!'()*&!+!(,#-.(./

#$%&!'.)*&!+!.(#-.(./

0,*!-1!+!2/

#$%&!#/

#!+!'()*&/

03!4#!++!5657!"!!

'.)*&!+!5!5/

8!

9$0:(!4'()*&7!"

;&<(

'.)*&!+!5=25/

&(*<&,!-1/

8

>%:?(

;&<(

0,*!.0@0*A$0@$!+!B(CAD%:<(?E'466()*&7F/

0,*!.0@0*A:-9!+!B(CAD%:<(?E'466()*&7F/

03!4.0@0*A$0@$!++!GH!II!.0@0*A:-9!++!GH7!"

;&<(

-1!+!H/

8

;&<(

(:?(!"

'.)*&!+!HJ!'!.0@0*A$0@$!6!.0@0*A:-9/

8

>%:?(

66.)*&/

66()*&/

8

>%:?(

>%:?(

!(:?(03!4#!++!5K57!"

(:?(

'.)*&!+!'()*&/

8

0,*!#@0A.(#-.(4#$%&!'(,#-.(.L!#$%&!'.(#-.(.7

!

"

#

$ %

& '

()

*

+

Figure 12.2: The control flow graph of function cgi decode from Figure 12.1

Draft version produced August 1, 2006

A

B

C

D E

GF

H I

L
M

Def: eptr

Use: eptr

Def-Use
✔

✔

Coverage criteria
• All-definitions

One DU path for each definition

216 Structural Testing

!" #$%&!'()*&!+!(,#-.(./

#$%&!'.)*&!+!.(#-.(./

0,*!-1!+!2/

#$%&!#/

#!+!'()*&/

03!4#!++!5657!"!!

'.)*&!+!5!5/

8!

9$0:(!4'()*&7!"

;&<(

'.)*&!+!5=25/

&(*<&,!-1/

8

>%:?(

;&<(

0,*!.0@0*A$0@$!+!B(CAD%:<(?E'466()*&7F/

0,*!.0@0*A:-9!+!B(CAD%:<(?E'466()*&7F/

03!4.0@0*A$0@$!++!GH!II!.0@0*A:-9!++!GH7!"

;&<(

-1!+!H/

8

;&<(

(:?(!"

'.)*&!+!HJ!'!.0@0*A$0@$!6!.0@0*A:-9/

8

>%:?(

66.)*&/

66()*&/

8

>%:?(

>%:?(

!(:?(03!4#!++!5K57!"

(:?(

'.)*&!+!'()*&/

8

0,*!#@0A.(#-.(4#$%&!'(,#-.(.L!#$%&!'.(#-.(.7

!

"

#

$ %

& '

()

*

+

Figure 12.2: The control flow graph of function cgi decode from Figure 12.1

Draft version produced August 1, 2006

A

B

C

D E

GF

H I

L
M

Def: dptr

Use: dptr

All-Defs

Use: dptr

Use: dptr

Use: dptr

Use: dptr

Coverage criteria
• All-definitions

One DU path for each definition

• All-c-uses
One DU path for each definition-c-use pair

• All-p-uses
One DU path for each definition-p-use pair

• All-c-uses-some-p-uses
One DU path for each definition-p-use pair
If there is no p-use, then one c-use

• All-p-uses-some-c-uses

Coverage criteria

• (All-Uses)
One DU path for each use

• All-DU-pairs
One DU path for each def-use pair
= All-p-uses +all-c-uses
also known as All-Uses

• All-DU-paths
All (simple) DU paths for each def-use pair

All-Def coverage is satisfied by
choosing one definition-clear
path for any of the def-use
pairs for each definition.

All-Uses is sometimes
interpreted as requiring one
def-use path for each use, but
the definition we are sticking to
is the combination of All-P-
Uses and All-C-Uses.

216 Structural Testing

!" #$%&!'()*&!+!(,#-.(./

#$%&!'.)*&!+!.(#-.(./

0,*!-1!+!2/

#$%&!#/

#!+!'()*&/

03!4#!++!5657!"!!

'.)*&!+!5!5/

8!

9$0:(!4'()*&7!"

;&<(

'.)*&!+!5=25/

&(*<&,!-1/

8

>%:?(

;&<(

0,*!.0@0*A$0@$!+!B(CAD%:<(?E'466()*&7F/

0,*!.0@0*A:-9!+!B(CAD%:<(?E'466()*&7F/

03!4.0@0*A$0@$!++!GH!II!.0@0*A:-9!++!GH7!"

;&<(

-1!+!H/

8

;&<(

(:?(!"

'.)*&!+!HJ!'!.0@0*A$0@$!6!.0@0*A:-9/

8

>%:?(

66.)*&/

66()*&/

8

>%:?(

>%:?(

!(:?(03!4#!++!5K57!"

(:?(

'.)*&!+!'()*&/

8

0,*!#@0A.(#-.(4#$%&!'(,#-.(.L!#$%&!'.(#-.(.7

!

"

#

$ %

& '

()

*

+

Figure 12.2: The control flow graph of function cgi decode from Figure 12.1

Draft version produced August 1, 2006

A

B

C

D E

GF

H I

L
M

Def: dptr

Use: dptr

All-Uses

Use: dptr

Use: dptr

Use: dptr

Use: dptr

Structural
Criteria

Statement testing

Branch testing

Basic
condition testing

MCDC testing

Compound
condition testing

Path testing

Loop boundary
testing

Branch and
condition testingLCSAJ testing

Boundary
interior testing

Pr
ac

tic
al

 C
ri

te
ri

a
T

he
or

et
ic

al
 C

ri
te

ri
a

subsumes

Statement testing

Branch testing

All-p uses

All-p-some-c

All-defs

All-c-some-p

All-c uses

All uses

All-DU paths

Structural
+

Data flow
Criteria

Path testing

Here are all the definition-clear
paths we need for All-Uses
coverage of the definition of
dptr in block A.

Data-flow criteria are related to
the structural criteria we already
heard about.

Calculating DU pairs

• Searching all paths is not feasible

• Without loops, number of paths is
exponential to number of nodes

• With loops....forget it

• →Reaching definitions

Reaching Definitions

• Forward analysis

• Definition d reaches use u if there is a
definition clear path from d to u

ReachIn(Node) = ReachOut(Predecessors)
ReachOut(Node) = (ReachIn(Node) \ {Killed}) ∪ {Defined}

Reaching Definitions

• Initialize ReachOut for all nodes as {}

• working set = all nodes

• Repeat until working set is empty:

• Pick some node and recalculate

• If changed, add all successors to working
set

ReachIn(Node) = ReachOut(Predecessors)
ReachOut(Node) = (ReachIn(Node) \ {Killed}) ∪ {Defined}

216 Structural Testing

!" #$%&!'()*&!+!(,#-.(./

#$%&!'.)*&!+!.(#-.(./

0,*!-1!+!2/

#$%&!#/

#!+!'()*&/

03!4#!++!5657!"!!

'.)*&!+!5!5/

8!

9$0:(!4'()*&7!"

;&<(

'.)*&!+!5=25/

&(*<&,!-1/

8

>%:?(

;&<(

0,*!.0@0*A$0@$!+!B(CAD%:<(?E'466()*&7F/

0,*!.0@0*A:-9!+!B(CAD%:<(?E'466()*&7F/

03!4.0@0*A$0@$!++!GH!II!.0@0*A:-9!++!GH7!"

;&<(

-1!+!H/

8

;&<(

(:?(!"

'.)*&!+!HJ!'!.0@0*A$0@$!6!.0@0*A:-9/

8

>%:?(

66.)*&/

66()*&/

8

>%:?(

>%:?(

!(:?(03!4#!++!5K57!"

(:?(

'.)*&!+!'()*&/

8

0,*!#@0A.(#-.(4#$%&!'(,#-.(.L!#$%&!'.(#-.(.7

!

"

#

$ %

& '

()

*

+

Figure 12.2: The control flow graph of function cgi decode from Figure 12.1

Draft version produced August 1, 2006

A

B

C

D E

GF

H I

L
M

ReachIn(I) = ReachOut(G)
ReachOut(I) =
 ReachIn(I) \ {ok/A} ∪ {ok/I}

ReachIn(L) = ReachOut(H) ∪
 ReachOut(I) ∪ ReachOut(E)
ReachOut(L) = ReachIn(L) \
 {dptr/A, eptr/A, dptr/L, eptr/L,
 eptr/G} ∪
 {dptr/L, eptr/L, *dptr/L, *eptr/L}

ReachIn(G) = ReachOut(D)
ReachOut(G) =
 ReachIn(G) \ {eptr/A, eptr/L}
∪ {eptr/G, *eptr/G,
 digit_high/G, digit_low/G}

a[i] = 13;

k = a[j]; Is this a DU pair?

a[i] = 13;

if(i == j)

 k = a[i];

else

 k = a[j];

We can think of the snippet as
follows to identify the possible
def-use pair.

a[2] = 42;

i = b[2]; Is this a DU pair?

int[] a = new int[3];

int[] b = a;

Aliasing

• Aliasing of variables causes serious
problems!

• Working things out by hand for anything
but small methods is hopeless

• Compiler-based tools help in determining
all DU paths

Instrumentation
1: int x = 0;

2: if(a && b) {

3: // ...

4: y = 2*x;

5: }

1: int x = 0;

 defCover[x] = 1;

2: if(a && b) {

3: // ...

4: y = 2*x;

 useCover[4, x,
 defCover[x]]++;

5: }

Instrumentation for data flow
criteria is simple, but requires
to instrument at two spots: First
we need to keep track of all
currently active definitions, and
then we keep track of the actual
uses that were found.

Testing can show the
presence but not the
absence of errors.

Dijkstra’s law

Coverage of...

Subsumption Hierarchy

CC PC

GACC

CACC

RACC

CoC

RICC

GICC

216 Structural Testing

!" #$%&!'()*&!+!(,#-.(./

#$%&!'.)*&!+!.(#-.(./

0,*!-1!+!2/

#$%&!#/

#!+!'()*&/

03!4#!++!5657!"!!

'.)*&!+!5!5/

8!

9$0:(!4'()*&7!"

;&<(

'.)*&!+!5=25/

&(*<&,!-1/

8

>%:?(

;&<(

0,*!.0@0*A$0@$!+!B(CAD%:<(?E'466()*&7F/

0,*!.0@0*A:-9!+!B(CAD%:<(?E'466()*&7F/

03!4.0@0*A$0@$!++!GH!II!.0@0*A:-9!++!GH7!"

;&<(

-1!+!H/

8

;&<(

(:?(!"

'.)*&!+!HJ!'!.0@0*A$0@$!6!.0@0*A:-9/

8

>%:?(

66.)*&/

66()*&/

8

>%:?(

>%:?(

!(:?(03!4#!++!5K57!"

(:?(

'.)*&!+!'()*&/

8

0,*!#@0A.(#-.(4#$%&!'(,#-.(.L!#$%&!'.(#-.(.7

!

"

#

$ %

& '

()

*

+

Figure 12.2: The control flow graph of function cgi decode from Figure 12.1

Draft version produced August 1, 2006

A

B

C

D E

GF

H I

L
M

Def: dptr

Use: dptr

Def-Use
!

!

Kills def

Kills def

Kills def

