The Oracle Problem

Executing all the code is not enough
We need to check the functional behavior
Does this thing actually do what we want?
Automated oracles can be spec, model "

Else, manual oracles have to be defined

Mutation Testing

Operators

@O0

Original Program

‘ Test | ‘ ‘ Test 2 ‘ ‘ Test 3

U

‘ Tests

@

X

Mutation Score:

Killed Mutants

Total Mutants - Equivalent mutants

Coverage misses one important
aspect: The Oracle Problem. A test
oracle is the entity that decides
whether a test case passed or
failed.

The mutation testing process:
Mutants are generated from a
program by applying different
mutation operators. The test cases
are executed against the program
and each of its mutants. If a mutant
passes all tests, it is live. If it fails a
test, it is killed.

The mutation score is used to
quantify how good a test suite is at
detecting the faults represented by
the mutants. We only count non-
equivalent mutants, otherwise
100% mutation score would not be
possible.

Competen

Mutation testing focuses on
First Order Mutants

t Programmer .
Hypothesis Coupling Effect
Improvements
)
Do fewer Do smarter Do faster
*Mutant sampling *Parallelize *Mutate bytecode
eSelective mutation *Weak mutation eMutant schemata

*Use coverage

*Impact
int trian(int a, int b, int c) {
if(a<=01 Ib<=01 | c<=0)
return INVALID;
int trian = 0;
ifCa==b) trian = trian+l;
ifCa==c) trian = trian+2;
if(b==c) trian = trian+3;
if (trian == 0)
if(a+b<clla+c<bllb+c<a

return INVALI
else
return SCALEN
if (trian > 3)

if(trian==1 && a+b>c)

D;

E;

if(trian > 1 && a + b > ¢)

return ISOSCELE
else if(trian==2
return ISOSCELE

elseif(trian==3 && b+c>a)

return ISOSCELE

return INVALID;

S
8& a+c>b) if(trian == 1 && a + b <= ¢)
S;

S if(trian > 1 && a + b <= ¢)

CREST Centre, Mark Harman, MUTATION 2010 Keynote|

Because of the competent
programmer hypothesis and
coupling effect mutation testing in
general only considers first order
mutants.

Mutation testing is costly - each
mutation operator results in many
different mutants. Each of the
mutants needs to be compiled, and
all tests potentially have to be
executed against every mutant.
There are several improvements
over the basic approach to reduce
the overall costs.

Here is an example of a strongly
subsuming HOM on a different
implementation of the triangle
program. Only test cases that
satisfy the constraints in the
intersection of the constraints of the
FOMs can kill the HOM.

