
Measuring Code Coverage

Program
under Test Test CasesCoverage

Criterion

Instrumented
Program

Test
Requirements

Test
Requirement

Test
Requirement

Test
Requirements

Test
Requirement

Covered
Requirement

Coverage Value

Coverage value =
Covered test requirements

Total test requirements

I’ve got 100% statement coverage on my
program. How many bugs are left?

Coverage is dangerous
• Developers write test only to satisfy

coverage

• 100% coverage can detect no faults:
Coverage measures what is executed, not what is checked

• Coverage metrics tell you what code is not
tested, but cannot accurately tell you what
code is tested:

• Low coverage means code is not well tested

• But high coverage does not mean code is well
tested

A coverage criterion can be seen
as a finite set of test requirements
that a test suite should fulfill. There
is usually more than one way to
cover a test requirement, so a
coverage criterion is not a unique
description of a test suite. To make
use of coverage in practice we
need to measure it. This is done by
instrumenting the source code with
an instrument for every single test
requirement, described by the
coverage criterion. When test
cases are run on the instrumented
program the instrumentation keeps
track of what has been executed,
and so at the end of the execution
we can analyze this information to

1

Coverage can be used in three
ways: 1) Adequacy: Have I got
enough tests? 2) Guidance: Where
should I test more? 3) Automation:
Generate test that satisfies a test
requirement
Coverage is usually quantified as
the percentage of test requirements
satisfied. But what does that
mean?

2

The use of coverage has some
dangerous aspects, that might
even reduce the quality of testing. If
success is only quantified in a
coverage metric, developers will
get very efficient and writing test
cases that satisfy the coverage
goals, but not at finding bugs. Also,
it is possible to cover the entire
program without detecting a single
bug - testing is more than just input
generation (see Mutation testing
lecture).

3

Coverage is useful

• It always tells you where you haven’t tested

• Testing everything a bit is better than not
testing most of the program - unless you
know where the faults are

• Coverage != coverage
Stricter criterion → more tests

• More tests = more chances of hitting bugs

Best Effort Strategy

CC PC

GACC

CACC

RACC

CoC

RICC

GICC

Test Generation
Fails

Try this
instead

Statement testing

Branch testing

All-p uses

All-p-some-c

All-defs

All-c-some-p

All-c uses

All uses

All-DU paths

All pathsStructural
+

Data flow
Criteria

Despite itʼs downsides coverage
has some useful sides: It is very
efficient at telling you which parts of
a program you havenʼt tested at all.
Intuitively, testing everything a little
bit should be better than testing
some aspect thoroughly and
neglecting the rest - unless you
already know where the bugs are
(which you donʼt in general).

4

An arrow from one criterion to
another means that the former
subsumes the latter.
This means that if we test for CoC,
we will automatically satisfy all
other coverage criteria as well.
Determining infeasibility is
undecidable, so what can we do in
practice if we canʼt find a test case
for a particular test requirement? A
simple solution is to use a best
effort approach: If, after some time,
we cannot find a test case for a test
requirement, we simply turn to the
next simpler version of the same
predicate in the subsumption
hierarchy.5

All-definitions: One DU path
for each definition
All-c-uses: One DU path for
each definition-c-use pair
All-p-uses: One DU path for
each definition-p-use pair
All-c-uses-some-p-uses:
One DU path for each
definition-p-use pair
If there is no p-use, then one
c-use
All-p-uses-some-c-uses
All-DU-pairs: One DU path
for each def-use pair: = All-
p-uses +all-c-uses, also
known as All-Uses
All-DU-paths: All DU paths
for each def-use pair

6

