Testing Tactics

Structural
“white box”

Functional
“black box”

® Tests based on spec ® Tests based on code

® Test covers as much
implemented behavior
as possible

® Test covers as much
specified behavior
as possible

Systematic Functional Testing

identify
Functional

Independently

testable feature

specification

identify derive
Representative

Model
values

derive
generate

Test case
Test case

specifications

Systematic Partition Testing

Failures are sparse in
the space of possible
inputs ...

...but dense in some
parts of the space

M Failure (valuable test case)
O No failure

00 00 O0/800/0d0 0dd o0,0d od Ogog aag
00 00 000000 o0 oooo 0O 00 00oo oo
_ 0o 0000 o0odododeEmooiod o0 onod oo
X |00 00|00 0000 00 O0O0|m0|00|00 00 0000 OO
g 00 00|00 O00/00 00 00 00 O00/80 00 00|00 44
& |00 0000000000 00/00 0000000000 004
% 00 00|00 O00/00 00 00 00 O00/80 00 00|00 44
— |00 0000 00|00 00 00|00 0000 00 O00/00 04
00 O0/00 OO0/00 OO0 o0 00 OO/em 00 00 0g dd
00 O00O/O00 O00O/00 00 o000 O0O/mm 00 00 00 00

The space of possible input values

If we systematically test some
cases from each part, we will
include the dense parts

Functional testing is one way of
drawing orange lines to isolate
regions with likely failures

67

68

69

The main steps of a systematic
approach to functional program testing
(from Pezze + Young, “Software
Testing and Analysis”, Chapter 10)

We can think of all the possible input values to a program
as little boxes ... white boxes that the program processes
correctly, and colored boxes on which the program fails.
Our problem is that there are a lot of boxes ... a huge
number, and the colored boxes are just an infinitesimal
fraction of the whole set. If we reach in and pull out boxes
at random, we are unlikely to find the colored ones.
Systematic testing says: Let’s not pull them out at random.
Let’s first subdivide the big bag of boxes into smaller
groups (the pink lines), and do it in a way that tends to
concentrate the colored boxes in a few of the groups. The
number of groups needs to be much smaller than the
number of boxes, so that we can systematically reach into
each group to pick one or a few boxes.

Functional testing is one variety of partition testing, a way
of drawing the orange lines so that, when one of the boxes
within a orange group is a failure, many of the other boxes
in that group may also be failures. Functional testing
means using the program specification to draw pink lines.
(from Pezze + Young, “Software Testing and Analysis”,
Chapter 10)

Maintenance: The Maintenance function records the history of items undergoing
maintenance.

If the product is covered by warranty or maintenance contract, maintenance can
be requested either by calling the maintenance toll free number, or through the
Web site, or by bringing the item to a designated maintenance station.

If the maintenance is requested by phone or Web site and the customer is a US
or EU resident, the item is picked up at the customer site, otherwise, the customer
shall ship the item with an express courier.

If the maintenance contract number provided by the customer is not valid, the
item follows the procedure for items not covered by warranty.

If the product is not covered by warranty or maintenance contract, maintenance
can be requested only by bringing the item to a maintenance station. The mainte-
nance station informs the customer of the estimated costs for repair. Maintenance
starts only when the customer accepts the estimate. If the customer does not ac-
cept the estimate, the product is returned to the customer.

Small problems can be repaired directly at the maintenance station. If the main-
tenance station cannot solve the problem, the product is sent to the maintenance
regional headquarters (if in US or EU) or to the maintenance main headquarters
(otherwise).

If the maintenance regional headquarters cannot solve the problem, the product
is sent to the maintenance main headquarters.

Maintenance is suspended if some components are not available.

Once repaired, the product is returned to the customer.

NO
Maintenance

L ‘}\
N R
SO ! Y op 90
VS & g Phe, es, return
e S ohong S5t

o V!

o4
o ¥, [
A 58 Cony S0, ey
g0 %38 CE 1y %
~ a 538 U gy
. 55 SE Ber)
Wait for aintenance 5882
\ ge Wait for
returning {no warranty) 23838 :
S X 2335 It pick up
Y
. :[N 588 -~ -
(A T2 2, %0 EB
£ E® 78 %, Vx o
) %8 > JOK
%A 2 0

Finite
State
Machine

(not US or EU resident)

o Wait for accept A I . .
acceptance estimate | = kg =
(e) J L

component g
arrives (a) %, % o

2 NS
R Ve &
Repair \3\
ck component (b (regional qr;_?’
/\ headquarters) S
R

‘component
arrives (b)
o,f.ao%

%o,
component %,r
arrives (c) ©

&

&
X
~N
Wait for |
component |
. S
/e

&
la

-

dreday
0} 8/geun’

Repair‘mw
(main

headquarters)

Decision Tables

Individual

ation account
Current purchase >
Threshold |
Current purchase >
Threshold 2
Special price <
scheduled price
Special price <
Tier |
Special price < F
Tier 2

Tier | Tier 2
discount discount

Education:
E

T

Special
Price

Special No
price |discount

Special
price

Special
price

Out

70

71

72

...based on these (informal)
requirements

(from Pezze + Young, “Software
Testing and Analysis”, Chapter 14)

As an example, consider these steps
modeling a product maintenance
process...

(from Pezze + Young, “Software
Testing and Analysis”, Chapter 14)

A decision table describes under which
conditions a specific outcome comes to
be. This decision table, for instance,
determines the discount for a
purchase, depending on specific
thresholds for the amount purchased.
(from Pezze + Young, “Software
Testing and Analysis”, Chapter 14)

