
Defect Prediction
Thomas Zimmermann

Register for exam!

• Deadline for registration is TOMORROW!
Tomorrow is June 22nd.

• You will need an RZ account and a TAN list.
Get them in the Mensa building.

• To register log on to the following website:
https://www.lsf.uni-saarland.de/

Tuesday are meetings

• 13:20 - 13:40 (TBA) Team QUALITY

• 13:40 - 14:00 (TBA) Team DUPLICATES

• 14:00 - 14:20 (Zeichensaal) Team VISUALIZE

• 14:20 - 14:20 (Zeichensaal) Team TRIAGE

Modules

Modules

Modules

Which should you
test most?

Complexity Metrics

• Measure “complexity” of the source code:

• #Lines

• #Classes

• #Parameters

• Higher metric = greater complexity

McCabe Metrics

• Measure complexity
of control flow

• V(G) = e – n + 2p

• e: #edges

• n: #statements

• p: #entries

ggT

while (x != y)

if (x > y)

x -= y

return x

y -= x

Maintainability Index

Oman, P. & Hagemeister, J. "Constructing and Testing of Polynomials Predicting Software Maintainability."
Journal of Systems and Software 24, 3 (März 1994): 251–266.

Maintainability Index

Maintainability =

Oman, P. & Hagemeister, J. "Constructing and Testing of Polynomials Predicting Software Maintainability."
Journal of Systems and Software 24, 3 (März 1994): 251–266.

Maintainability Index

171 − 5.2 ln(V) − 0.23V (G) − 16.2 ln(L)Maintainability =

Oman, P. & Hagemeister, J. "Constructing and Testing of Polynomials Predicting Software Maintainability."
Journal of Systems and Software 24, 3 (März 1994): 251–266.

Maintainability Index

171 − 5.2 ln(V) − 0.23V (G) − 16.2 ln(L)Maintainability =

Size of vocabulary

Oman, P. & Hagemeister, J. "Constructing and Testing of Polynomials Predicting Software Maintainability."
Journal of Systems and Software 24, 3 (März 1994): 251–266.

Maintainability Index

171 − 5.2 ln(V) − 0.23V (G) − 16.2 ln(L)Maintainability =

Size of vocabulary McCabe complexity

Oman, P. & Hagemeister, J. "Constructing and Testing of Polynomials Predicting Software Maintainability."
Journal of Systems and Software 24, 3 (März 1994): 251–266.

Maintainability Index

171 − 5.2 ln(V) − 0.23V (G) − 16.2 ln(L)Maintainability =

Size of vocabulary McCabe complexity

code lines

Oman, P. & Hagemeister, J. "Constructing and Testing of Polynomials Predicting Software Maintainability."
Journal of Systems and Software 24, 3 (März 1994): 251–266.

Maintainability Index

171 − 5.2 ln(V) − 0.23V (G) − 16.2 ln(L)

+50 sin

(√

2.4C

)

Maintainability =

Size of vocabulary McCabe complexity

code lines
Percentage of comment lines

Oman, P. & Hagemeister, J. "Constructing and Testing of Polynomials Predicting Software Maintainability."
Journal of Systems and Software 24, 3 (März 1994): 251–266.

Complexity Metrics

7.335

8.997
12.656

8.503

6.354

0.976

1.303

0.004

4.550

3.987
0.003

0.007

1.543

Bugs

Bugs

Bugs Changes

Bugs Changes

Bugs Changes

Map bugs to code
locations

Eclipse Bugs

Past Defects

Past Defects

What can we use to
predict defects?

Complexity Metrics

if we have some
if we can afford them

if we know which
ones to choose

Past Failures

What can we use to
predict defects?

Combined approach

Combined approach
Past
defects

Combined approach
Past
defects

• Collect failures occurring in the field within 6
months after release

• Map failures back to fixes and thus
defects in modules (binaries)

• We can tell how failure-prone a module is

Combined approach
Past
defects

Metrics

Combined approach
Past
defects

#Lines #Vars #Classes

#Params #Reads #Writes

#Arcs #Blocks McCabe

Fan In Fan Out …

Metrics

Combined approach
Past
defects

Metrics
#Lines #Vars #Classes

#Params #Reads #Writes

#Arcs #Blocks McCabe

Fan In Fan Out …

Combined approach
Past
defects

Metrics
#Lines #Vars #Classes

#Params #Reads #Writes

#Arcs #Blocks McCabe

Fan In Fan Out …

#Lines #Vars #Classes

#Params #Reads #Writes

#Arcs #Blocks McCabe

Fan In Fan Out …

Combined approach
Past
defects

Metrics
#Lines #Vars #Classes

#Params #Reads #Writes

#Arcs #Blocks McCabe

Fan In Fan Out …

#Lines #Vars #Classes

#Params #Reads #Writes

#Arcs #Blocks McCabe

Fan In Fan Out …

#Lines #Vars #Classes

#Params #Reads #Writes

#Arcs #Blocks McCabe

Fan In Fan Out …

Combined approach
Past
defects

#Lines #Vars #Classes

#Params #Reads #Writes

#Arcs #Blocks McCabe

Fan In Fan Out …

#Lines #Vars #Classes

#Params #Reads #Writes

#Arcs #Blocks McCabe

Fan In Fan Out …

#Lines #Vars #Classes

#Params #Reads #Writes

#Arcs #Blocks McCabe

Fan In Fan Out …

Correlation

Metrics

Combined approach
Past
defects

#Lines #Vars #Classes

#Params #Reads #Writes

#Arcs #Blocks McCabe

Fan In Fan Out …

#Lines #Vars #Classes

#Params #Reads #Writes

#Arcs #Blocks McCabe

Fan In Fan Out …

#Lines #Vars #Classes

#Params #Reads #Writes

#Arcs #Blocks McCabe

Fan In Fan Out …

McCabe Defects~Correlation

Metrics

Predicting defects

Correlation McCabe Defects~

Predicting defects

Correlation McCabe Defects~

Predicting defects

Correlation McCabe Defects~

#Lines #Vars #Classes

#Params #Reads #Writes

#Arcs #Blocks McCabe

Fan In Fan Out …

Predicting defects

Correlation McCabe Defects~

#Lines #Vars #Classes

#Params #Reads #Writes

#Arcs #Blocks McCabe

Fan In Fan Out …

Projects Researched

• Internet Explorer 6

• IIS Server

• Windows Process Messaging

• DirectX

• NetMeeting

>1,000,000 Lines of Code

Projects Researched

A B C D E

Do metrics correlate
with defects?

Do metrics correlate
with defects?

Project Metrics correlated w/ defects

Do metrics correlate
with defects?

Project Metrics correlated w/ defects

A #Classes and 5 derived

Do metrics correlate
with defects?

Project Metrics correlated w/ defects

A #Classes and 5 derived

B almost all

Do metrics correlate
with defects?

Project Metrics correlated w/ defects

A #Classes and 5 derived

B almost all

C all except MaxInheritanceDepth

Do metrics correlate
with defects?

Project Metrics correlated w/ defects

A #Classes and 5 derived

B almost all

C all except MaxInheritanceDepth

D only #Lines

Do metrics correlate
with defects?

Project Metrics correlated w/ defects

A #Classes and 5 derived

B almost all

C all except MaxInheritanceDepth

D only #Lines

E #Functions, #Arcs, Complexity

Project Metrics correlated w/ defects

A #Classes and 5 derived

B almost all

C all except MaxInheritanceDepth

D only #Lines

E #Functions, #Arcs, Complexity

Do metrics correlate
with defects?

YES

Is there a set of metrics that
fits all projects?

Is there a set of metrics that
fits all projects?

Project Metrics correlated w/ defects

Is there a set of metrics that
fits all projects?

Project Metrics correlated w/ defects

A #Classes and 5 derived

Is there a set of metrics that
fits all projects?

Project Metrics correlated w/ defects

A #Classes and 5 derived

B almost all

Is there a set of metrics that
fits all projects?

Project Metrics correlated w/ defects

A #Classes and 5 derived

B almost all

C all except MaxInheritanceDepth

Is there a set of metrics that
fits all projects?

Project Metrics correlated w/ defects

A #Classes and 5 derived

B almost all

C all except MaxInheritanceDepth

D only #Lines

Is there a set of metrics that
fits all projects?

Project Metrics correlated w/ defects

A #Classes and 5 derived

B almost all

C all except MaxInheritanceDepth

D only #Lines

E #Functions, #Arcs, Complexity

Is there a set of metrics
that fits all projects?

NO
Project Metrics correlated w/ defects

A #Classes and 5 derived

B almost all

C all except MaxInheritanceDepth

D only #Lines

E #Functions, #Arcs, Complexity

Can we predict
defect-prone modules?

Can we predict
defect-prone modules?

• Basic idea: Combine metrics

Can we predict
defect-prone modules?

• Basic idea: Combine metrics

• Give most weight to most predictive metrics

Can we predict
defect-prone modules?

• Basic idea: Combine metrics

• Give most weight to most predictive metrics

• Problem: Metrics are intercorrelated

Can we predict
defect-prone modules?

• Basic idea: Combine metrics

• Give most weight to most predictive metrics

• Problem: Metrics are intercorrelated

• Solution: Principal Component Analysis (PCA)

• 1/3 of the modules

• ranked according to
predictor built from 2/3
of the modules

• can be evaluated against
actual ranking

A Ranking

6
4
8
1
5
7
3
9
10
2

• 1/3 of the modules

• ranked according to
predictor built from 2/3
of the modules

• can be evaluated against
actual ranking

A Ranking

6
4
8
1
5
7
3
9
10
2

4
8
3
5
1
7
10
2
6
9

predicted actual

6
4
8
1
5
7
3
9
10
2

4
8
3
5
1
7
10
2
6
9

predicted actual

4
8
3
5
1
7
10
2
6
9

6
4
8
1
5
7
3
9
10
2

predicted actual

4
8
3
5
1
7
10
2
6
9

6
4
8
1
5
7
3
9
10
2

predicted actual

Project #Components R2 value
A 9 0.741
B 6 0.779
C 7 0.579
D 7 0.684
E 5 0.919

Can we predict
defect-prone modules?

YES
Project #Components R2 value

A 9 0.741
B 6 0.779
C 7 0.579
D 7 0.684
E 5 0.919

Can we predict
defect-prone modules?

`

BugCache
Predicting Defects

(ASE 2006, ICSE 2007)

 Sung Kim • MIT
Tom Zimmermann • Saarland University

Jim Whitehead • Univ. of California SC
 Andreas Zeller • Saarland University

The Problem

How should we
allocate our resources
for quality assurance?

Localities

• Temporal locality
Hypothesis: Defects occur in bursts → Cache model

• Spatial locality
Hypothesis: Entities that are near defect-prone elements are
likely to have defects as well

• Changed-entities locality
Code churn (Nagappan et al)
Most recently modified (Hassan et al.)

• New-entities locality
New entities likely contain defects (Graves et al.)

One Solution

List with elements that
(will) have defects

List is adaptive, i.e.,
it changes over time

One Solution

List with elements that
(will) have defects

List is adaptive, i.e.,
it changes over time

Cache

The BugCache Model

Cache size: 2

Hypothesis: Temporal locality between defects

The BugCache Model

Cache size: 2

Hypothesis: Temporal locality between defects

The BugCache Model

Cache size: 2

Hypothesis: Temporal locality between defects

The BugCache Model

Cache size: 2

Hypothesis: Temporal locality between defects

The BugCache Model

Cache size: 2

Hypothesis: Temporal locality between defects

The BugCache Model

Miss

Cache size: 2

Hypothesis: Temporal locality between defects

The BugCache Model

Miss

Cache size: 2

Hypothesis: Temporal locality between defects

...
if (foo==null) {
 foo.bar();
...

BUG-INTRODUCING

if (foo==null) {

Bug-introducing Changes

...
if (foo!=null) {
 foo.bar();
...

FIX

if (foo!=null) {
...
if (foo==null) {
 foo.bar();
...

BUG-INTRODUCING

if (foo==null) { later fixed

Bug-introducing Changes

Changes that lead to problems
as indicated by later fixes.

...
if (foo!=null) {
 foo.bar();
...

FIX

if (foo!=null) {
...
if (foo==null) {
 foo.bar();
...

BUG-INTRODUCING

if (foo==null) { later fixed

Bug-introducing Changes

Cache Update

Load missed and nearby elements (spatial locality)

Cache Update

Load missed and nearby elements (spatial locality)

Entity
Number of common

changes with .
1
4
0

Cache Update

Parameter: Block size

Load missed and nearby elements (spatial locality)

Entity
Number of common

changes with .
1
4
0

The BugCache Model

Miss

Cache size: 2

The BugCache Model

Miss

Cache size: 2

The BugCache Model

Miss Hit

Cache size: 2

The BugCache Model

Miss Hit

Cache size: 2

The BugCache Model

Miss Hit Miss

Cache size: 2

The BugCache Model

Miss Hit Miss

Cache size: 2

The BugCache Model

Miss Hit Miss

Cache size: 2

Hit rate = #Hits / #Defects = 33.3%

Replacement Policies

• Least recently used (LRU)
Unload the entities that have the least recently found defect.

• Least frequently changed (CHANGE)
Unload the entities that have the least number of changes.

• Least frequent defects (BUG)
Unload the entities that have the least number of defects.

Parameter: Replacement Policy

Block size: 1

The BugCache Model

Miss Hit MissNew

Cache size: 2

Block size: 1

The BugCache Model

Miss Hit Miss FixNew

Cache size: 2

Block size: 1

The BugCache Model

Miss Hit Miss MissFixNew

Cache size: 2

Block size: 1

The BugCache Model

Miss Hit Miss MissFixNew

Cache size: 2

Block size: 1

The BugCache Model

Miss Hit Miss MissFixNew

Cache size: 2

Entity Last change #Changes #Bugs
−1 4 2
−2 2 1

Block size: 1

The BugCache Model

Miss Hit Miss MissFixNew

Cache size: 2

LRU

Entity Last change #Changes #Bugs
−1 4 2
−2 2 1

Entity Last change #Changes #Bugs
−1 4 2
−2 2 1

Block size: 1

The BugCache Model

Miss Hit Miss MissFixNew

Cache size: 2

LRU CHANGE

Entity Last change #Changes #Bugs
−1 4 2
−2 2 1

Entity Last change #Changes #Bugs
−1 4 2
−2 2 1

Entity Last change #Changes #Bugs
−1 4 2
−2 2 1

Block size: 1

The BugCache Model

Miss Hit Miss MissFixNew

Cache size: 2

LRU CHANGE BUG

Entity Last change #Changes #Bugs
−1 4 2
−2 2 1

Entity Last change #Changes #Bugs
−1 4 2
−2 2 1

Entity Last change #Changes #Bugs
−1 4 2
−2 2 1

Entity Last change #Changes #Bugs
−1 4 2
−2 2 1

Block size: 1

The BugCache Model

Miss Hit Miss MissFixNew

Cache size: 2

Block size: 1

The BugCache Model

Miss Hit Miss MissFixNew

Cache size: 2

Loading Elements

Temporal locality – as shown before

Spatial locality – load “nearby” elements
(i.e., co-changed before)

Changed-entity locality – load changed elements

New-entity locality – load new elements

Initial pre-fill – start with a loaded cache

Evaluation

PostgreSQL
jEdit

Mozilla

Columba

Exhaustive Evaluation

• Cache size: fixed

• Vary block size:
0% to 100% of cache size

• Vary pre-fetch size:
0% to 100% of cache size

• Vary replacement: LRU, CHANGE, BUG

several thousand experiments per project

Optimal Hit Rates

Project
Apache 1.3
Columba
Eclipse
JEdit
Mozilla
PostgreSQL
Subversion

Methods

BugCache
59.6%
58.9%
64.5%
50.5%
49.3%
61.9%
68.3%

FixCache
61.5%
67.6%
71.6%
48.9%
55.0%
59.2%
43.8%

Cache size = 10%

Optimal Hit Rates

Project
Apache 1.3
Columba
Eclipse
JEdit
Mozilla
PostgreSQL
Subversion

Methods

BugCache
59.6%
58.9%
64.5%
50.5%
49.3%
61.9%
68.3%

FixCache
61.5%
67.6%
71.6%
48.9%
55.0%
59.2%
43.8%

Files

BugCache
83.9%
83.5%
95.1%
85.7%
93.3%
73.9%
82.0%

FixCache
81.5%
83.0%
95.0%
85.4%
88.0%
71.0%
81.3%

Cache size = 10%

BugCache vs FixCache

Subversion

PostgreSQL

Mozilla

JEdit

Eclipse

Columba

Apache 1.3

0 0.25 0.50 0.75

0.60

0.59

0.64

0.50

0.49

0.62

0.68

0.62

0.68

0.72

0.49

0.55

0.59

0.46

Fix Cache Bug CacheMethod level

Optimal Hit Rates

Project Hit rate Block Pre-fetch Policy
Apache 1.3
Columba
Eclipse
JEdit
Mozilla
PostgreSQL
Subversion

83.9%
83.5%
95.1%
85.7%
93.3%
73.9%
82.0%

46.7%
32.2%
99.4%
40.5%
42.5%
 1.7%
23.1%

0%
0%
0%
0%
0%
0%
0%

LRU
BUG
BUG
LRU
LRU
LRU
LRU

Cache size = 10% of all files

Optimal Hit Rates

Project Hit rate Block Pre-fetch Policy
Apache 1.3
Columba
Eclipse
JEdit
Mozilla
PostgreSQL
Subversion

59.6%
58.9%
64.5%
50.5%
49.3%
61.9%
68.3%

60.2%
99.9%
20.0%
 0.2%
79.9%
40.1%
99.2%

11.4%
15.7%
 0.0%
 7.7%
12.0%
11.8%
14.6%

BUG
BUG
BUG
BUG
LRU
BUG
BUG

Cache size = 10% of all functions/methods

Reasons for Hits

Spatial locality
18%

Temporal locality
60%

Initial pre-fetch
18%

Initial pre-fetch
Temporal locality
Spatial locality
Changed-entity locality
New-entity locality

Warning Developers

“Safe” Location
(not in FixCache)

Risky Location
(red, in FixCache)

Conclusion

• Imports correlate with defects/vulnerabilities

• Metrics also correlate with defects

• But no universal predictor for defects,
use historic data to train predictors.

• Localities between defects

Register for exam!

• Deadline for registration is TOMORROW!
Tomorrow is June 22nd.

• You will need an RZ account and a TAN list.
Get them in the Mensa building.

• To register log on to the following website:
https://www.lsf.uni-saarland.de/

