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Facts on Debugging

• Software bugs are costing ~60 bln US$/yr

• Improvements could reduce cost by 30%

• Validation (including debugging) can easily 
take up to 50-75% of the development time

• When debugging, some people are three 
times as efficient than others



How to Debug
(Sommerville 2004)

Locate error Design 
error repair
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✘

1. The programmer creates a 
defect – an error in the code.

2. When executed, the defect 
creates an infection – an 
error in the state.

3. The infection propagates.

4. The infection causes a failure.

From Defect to Failure
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2. When executed, the defect 
creates an infection – an 
error in the state.

3. The infection propagates.

4. The infection causes a failure.

From Defect to Failure
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Variables

This infection chain must be 
traced back – and broken.

t



✘

• Not every defect causes 
a failure!

• Testing can only show the 
presence of errors – not 
their absence.
(Dijkstra 1972)

The Curse of Testing
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✘
• Every failure can be 

traced back to some 
infection, and every 
infection is caused by 
some defect.

• Debugging means to 
relate a given failure to the 
defect – and to remove 
the defect.

Debugging

✘
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✘ ✘
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Defect detection

Tool

Program List of defects



Defect localization

Tool+
Location
(Defect)

Failure
Program



Outline

Redundancies
(Engler et al.)

FindBugs
(Pugh et al.)

Models
(Invited talk: A. Wasylkowski)

Statistical
(Liblit et al.)



Dawson Engler

Bill Pugh

Co-founder of Coverity

redundancies
flag errors



Idempotent operations

• variable is assigned to itself: x=x

• variable is divided by itself: x/x

• variable is bitwise or’d with itself: x|x

• variable is bitwise and’d with itself: x&x

Flag idempotent operations.



Idempotent operations

System Bugs Minor False
Linux 7 6 3

...
else { /* We need to make a copy of the entry. */ 
  da.s_node = sa.s_node; 
  da.s_net = da.s_net;
  ...

/* 2.4.1/net/appletalk/aarp.c:aarp_rcv */



Redundant assignments
Flag cases where a value assigned to a variable is 
subsequently not used.

System Bugs False Uninspected
Linux 129 26 1840
xgcc 13 1 0



do {
  ...
  if (signal_pending(current)) {
     err = -ERESTARTSYS;
     break;
  }
  SOCK_SLEEP_PRE(sk)
  if (scp->state != DN_RUN)
       schedule();
  SOCK_SLEEP_POST(sk)
} while(scp->state != DN_RUN);
return 0;

/* 2.4.1/net/decnet/af_decnet.c:dn_wait_run */

Redundant assignments



do {
  ...
  if (signal_pending(current)) {
     err = -ERESTARTSYS; /* BUG: lost value */
     break;
  }
  SOCK_SLEEP_PRE(sk)
  if (scp->state != DN_RUN)
       schedule();
  SOCK_SLEEP_POST(sk)
} while(scp->state != DN_RUN);
return 0;

/* 2.4.1/net/decnet/af_decnet.c:dn_wait_run */

Redundant assignments

Unintentionally
discarded



for(entry=priv->lec_arp_tables[i];
    entry != NULL;
    entry=next) { 
  next = entry->next;
  if (...) {
      lec_arp_remove(priv->lec_arp_tables, entry);
      kfree(entry);
  }
  lec_arp_unlock(priv);
  return 0;
}

/* 2.4.1/net/atm/lec.c:lec_addr_delete: */

Redundant assignments



for(entry=priv->lec_arp_tables[i];
    entry != NULL;
    entry=next) { /* BUG: never reached */
  next = entry->next;
  if (...) {
      lec_arp_remove(priv->lec_arp_tables, entry);
      kfree(entry);
  }
  lec_arp_unlock(priv);
  return 0;
}

/* 2.4.1/net/atm/lec.c:lec_addr_delete: */

Redundant assignments

Surprising control flow



Dead code

Flag dead code (i.e., code that is never executed).

System Bugs False
Linux 66 26



for (cnt = 0; cnt < min(name1_len, name2_len); ++cnt) {
   c1 = le16_to_cpu(*name1++);
   c2 = le16_to_cpu(*name2++);
   if (ic) {
       if (c1 < upcase_len)
           c1 = le16_to_cpu(upcase[c1]);
       if (c2 < upcase_len)
           c2 = le16_to_cpu(upcase[c2]);
   }

   if (c1 < 64 && legal_ansi_char_array[c1] & 8);
       return err_val;
   if (c1 < c2)
       return -1;
   ...

/* 2.4.5-ac8/fs/ntfs/unistr.c:ntfs_collate_names */

Dead code



for (cnt = 0; cnt < min(name1_len, name2_len); ++cnt) {
   c1 = le16_to_cpu(*name1++);
   c2 = le16_to_cpu(*name2++);
   if (ic) {
       if (c1 < upcase_len)
           c1 = le16_to_cpu(upcase[c1]);
       if (c2 < upcase_len)
           c2 = le16_to_cpu(upcase[c2]);
   }
   /* [META] stray terminator! */
   if (c1 < 64 && legal_ansi_char_array[c1] & 8);
       return err_val;
   if (c1 < c2)
       return -1;
   ...

/* 2.4.5-ac8/fs/ntfs/unistr.c:ntfs_collate_names */

Dead code



Redundant conditionals

Flag redundant branch conditionals from
(1) branch statements with non-constant conditionals 
that always evaluate to either true or false 
(2) switch statements with impossible cases

System Bugs False Uninspected
Linux 49 52 169



Redundant conditionals

if ((login_state == NODE_LOGGED_IN) ||
    (login_state == NODE_PROCESS_LOGGED_IN)) {
    ...
}
else
if (login_state == NODE_LOGGED_OUT)
    tx_adisc(fi, ELS_ADISC, node_id,
             OX_ID_FIRST_SEQUENCE);
else /* BUG: redundant conditional */
if (login_state == NODE_LOGGED_OUT)
    tx_logi(fi, ELS_PLOGI, node_id);

/* 2.4.1/drivers/fc/iph5526.c:rscn_handler */



Redundant conditionals

if ((login_state == NODE_LOGGED_IN) ||
    (login_state == NODE_PROCESS_LOGGED_IN)) {
    ...
}
else
if (login_state == NODE_LOGGED_OUT)
    tx_adisc(fi, ELS_ADISC, node_id,
             OX_ID_FIRST_SEQUENCE);
else /* BUG: redundant conditional */
if (login_state == NODE_LOGGED_OUT)
    tx_logi(fi, ELS_PLOGI, node_id);

/* 2.4.1/drivers/fc/iph5526.c:rscn_handler */

Overly cautious programming style 
(confused programmer)

Single iteration loop

Cut-and-paste errors



Correlation to hard bugs

Hard bugs can crash a system (use of freed memory,
dereferences of null pointers, potential deadlocks, 
unreleased locks, and security violations)

Chi-Square test

Null hypothesis: “A and B are 
mutually independent”



Correlation to hard bugs
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Eclipse



FindBugs

Bill Pugh



FindBugs: Bug patterns
AM: Creates an empty jar file entry; AM: Creates an empty zip file entry; BC: Equals method should not assume anything about the type of its argument; BC: Random object created and used only once; CN: Class implements Cloneable but does not define or use clone method; 

CN: clone method does not call super.clone(); Co: Abstract class defines covariant compareTo() method; Co: Covariant compareTo() method defined; DE: Method might drop exception; DE: Method might ignore exception; DP: Classloaders should only be created inside 
doPrivileged block; DP: Method invoked that should be only be invoked inside a doPrivileged block; Dm: Method invokes System.exit(...); Dm: Method invokes dangerous method runFinalizersOnExit; ES: Comparison of String parameter using == or !=; ES: Comparison of String 
objects using == or !=; Eq: Abstract class defines covariant equals() method; Eq: Class defines compareTo(...) and uses Object.equals(); Eq: Covariant equals() method defined; Eq: Covariant equals() method defined, Object.equals(Object) inherited; FI: Empty finalizer should be 

deleted; FI: Explicit invocation of finalizer; FI: Finalizer nulls fields; FI: Finalizer only nulls fields; FI: Finalizer does not call superclass finalizer; FI: Finalizer nullifies superclass finalizer; FI: Finalizer does nothing but call superclass finalizer; HE: Class defines equals() but not hashCode(); 
HE: Class defines equals() and uses Object.hashCode(); HE: Class defines hashCode() but not equals(); HE: Class defines hashCode() and uses Object.equals(); HE: Class inherits equals() and uses Object.hashCode(); IC: Superclass uses subclass during initialization; IMSE: Dubious 

catching of IllegalMonitorStateException; ISC: Needless instantiation of class that only supplies static methods; It: Iterator next() method can't throw NoSuchElement exception; J2EE: Store of non serializable object into HttpSession; NP: Clone method may return null; NP: equals() 
method does not check for null argument; NP: toString method may return null; NS: Questionable use of non-short-circuit logic; Nm: Class names should start with an upper case letter; Nm: Class is not derived from an Exception, even though it is named as such; Nm: Confusing 
method names; Nm: Field names should start with an lower case letter; Nm: Use of identifier that is a keyword in later versions of Java; Nm: Use of identifier that is a keyword in later versions of Java; Nm: Method names should start with an lower case letter; Nm: Very confusing 

method names (but intentional); ODR: Method may fail to close database resource; ODR: Method may fail to close database resource on exception; OS: Method may fail to close stream; OS: Method may fail to close stream on exception; RR: Method ignores results of 
InputStream.read(); RR: Method ignores results of InputStream.skip(); SI: Static initializer creates instance before all static final fields assigned; SQL: Nonconstant string passed to execute method on an SQL statement; SQL: A prepared statement is generated from a nonconstant 

String; SW: Certain swing methods needs to be invoked in Swing thread; Se: Non-transient non-serializable instance field in serializable class; Se: Non-serializable class has a serializable inner class; Se: Non-serializable value stored into instance field of a serializable class; Se: 
Comparator doesn't implement Serializable; Se: Serializable inner class; Se: Method must be private in order for serialization to work; Se: serialVersionUID isn't final; Se: serialVersionUID isn't long; Se: serialVersionUID isn't static; Se: Class is Serializable but its superclass doesn't 

define a void constructor; Se: Class is Externalizable but doesn't define a void constructor; Se: The readResolve method must be declared with a return type of Object.; Se: Transient field that isn't set by deserialization.; SnVI: Class is Serializable, but doesn't define 
serialVersionUID; UI: Usage of GetResource may be unsafe if class is extended; BC: Impossible cast; BC: instanceof will always return false; BIT: Incompatible bit masks; BIT: Check to see if ((...) & 0) == 0; BIT: Incompatible bit masks; BIT: Bitwise OR of signed byte value; BOA: Class 
overrides a method implemented in super class Adapter wrongly; Bx: Primitive value is unboxed and coerced for ternary operator; DLS: Overwritten increment; DMI: Bad constant value for month; DMI: hasNext method invokes next; DMI: Invocation of toString on an array; DMI: 

Double.longBitsToDouble invoked on an int; Dm: Can't use reflection to check for presence of annotation with default retention; EC: equals() used to compare array and nonarray; EC: Invocation of equals() on an array, which is equivalent to ==; EC: Call to equals() with null 
argument; EC: Call to equals() comparing unrelated class and interface; EC: Call to equals() comparing different interface types; EC: Call to equals() comparing different types; Eq: Covariant equals() method defined for enum; FE: Doomed test for equality to NaN; GC: No 

relationship between generic parameter and method argument; HE: Use of class without a hashCode() method in a hashed data structure; ICAST: Integer shift by an amount not in the range 0..31; ICAST: int value cast to double and then passed to Math.ceil; ICAST: int value cast 
to float and then passed to Math.round; IJU: JUnit assertion in run method will not be noticed by JUnit; IJU: TestCase declares a bad suite method; IJU: TestCase has no tests; IJU: TestCase implements setUp but doesn't call super.setUp(); IJU: TestCase implements a non-static suite 
method; IJU: TestCase implements tearDown but doesn't call super.tearDown(); IL: A container is added to itself; IL: An apparent infinite loop; IL: An apparent infinite recursive loop; IM: Integer multiply of result of integer remainder; INT: Bad comparison of nonnegative value with 
negative constant; INT: Bad comparison of signed byte; INT: Integer remainder modulo 1; IP: A parameter is dead upon entry to a method but overwritten; JCIP: Fields of immutable classes should be final; MF: Class defines field that masks a superclass field; MF: Method defines a 

variable that obscures a field; NP: Null pointer dereference; NP: Null pointer dereference in method on exception path; NP: Method does not check for null argument; NP: Null value is guaranteed to be dereferenced; NP: Value is null and guaranteed to be dereferenced on 
exception path; NP: Method call passes null to a nonnull parameter; NP: Method may return null, but is declared @NonNull; NP: A known null value is checked to see if it is an instance of a type; NP: Possible null pointer dereference; NP: Possible null pointer dereference in 

method on exception path; NP: Method call passes null for unconditionally dereferenced parameter; NP: Method call passes null for unconditionally dereferenced parameter; NP: Non-virtual method call passes null for unconditionally dereferenced parameter; NP: Store of null 
value into field annotated NonNull; NP: Read of unwritten field; NS: Potentially dangerous use of non-short-circuit logic; Nm: Class defines equal(); should it be equals()?; Nm: Class defines hashcode(); should it be hashCode()?; Nm: Class defines tostring(); should it be toString()?; 

Nm: Apparent method/constructor confusion; Nm: Very confusing method names; QBA: Method assigns boolean literal in boolean expression; RC: Suspicious reference comparison; RCN: Nullcheck of value previously dereferenced; RE: Invalid syntax for regular expression; RE: 
File.separator used for regular expression; RE: "." used for regular expression; RV: Random value from 0 to 1 is coerced to the integer 0; RV: Bad attempt to compute absolute value of signed 32-bit hashcode; RV: Bad attempt to compute absolute value of signed 32-bit random 
integer; RV: Method discards result of readLine after checking if it is nonnull; RV: Method ignores return value; SA: Double assignment of field; SA: Self assignment of field; SA: Self comparison of field with itself; SA: Nonsensical self computation involving a field (e.g., x & x); SA: 

Double assignment of local variable; SA: Self comparison of value with itself; SA: Nonsensical self computation involving a variable (e.g., x & x); SF: Dead store due to switch statement fall through; SIO: Unnecessary type check done using instanceof operator; SQL: Method attempts 
to access a prepared statement parameter with index 0; SQL: Method attempts to access a result set field with index 0; STI: Unneeded use of currentThread() call, to call interrupted(); STI: Static Thread.interrupted() method invoked on thread instance; UCF: Useless control flow 

to next line; UMAC: Uncallable method defined in anonymous class; UR: Uninitialized read of field in constructor; UwF: Field only ever set to null; UwF: Unwritten field; VA: Primitive array passed to function expecting a variable number of object arguments; Dm: Consider using 
Locale parameterized version of invoked method; EI: May expose internal representation by returning reference to mutable object; EI2: May expose internal representation by incorporating reference to mutable object; FI: Finalizer should be protected, not public; MS: May expose 
internal static state by storing a mutable object into a static field; MS: Field isn't final and can't be protected from malicious code; MS: Public static method may expose internal representation by returning array; MS: Field should be both final and package protected; MS: Field is a 

mutable array; MS: Field is a mutable Hashtable; MS: Field should be moved out of an interface and made package protected; MS: Field should be package protected; MS: Field isn't final but should be; DC: Possible double check of field; Dm: Monitor wait() called on Condition; Dm: A 
thread was created using the default empty run method; ESync: Empty synchronized block; IS: Inconsistent synchronization; IS: Field not guarded against concurrent access; JLM: Synchronization performed on java.util.concurrent Lock; LI: Incorrect lazy initialization of static field; 

ML: Method synchronizes on an updated field; MWN: Mismatched notify(); MWN: Mismatched wait(); NN: Naked notify; NP: Synchronize and null check on the same field.; No: Using notify() rather than notifyAll(); RS: Class's readObject() method is synchronized; Ru: Invokes run 
on a thread (did you mean to start it instead?); SC: Constructor invokes Thread.start(); SP: Method spins on field; STCAL: Call to static Calendar; STCAL: Call to static DateFormat; STCAL: Static Calendar; STCAL: Static DateFormat; SWL: Method calls Thread.sleep() with a lock 
held; TLW: Wait with two locks held; UG: Unsynchronized get method, synchronized set method; UL: Method does not release lock on all paths; UL: Method does not release lock on all exception paths; UW: Unconditional wait; VO: A volatile reference to an array doesn't treat 

the array elements as volatile; WS: Class's writeObject() method is synchronized but nothing else is; Wa: Condition.await() not in loop; Wa: Wait not in loop; Bx: Primitive value is boxed and then immediately unboxed; Bx: Primitive value is boxed then unboxed to perform primative 
coercion; Bx: Method allocates a boxed primitive just to call toString; Bx: Method invokes inefficient floating-point Number constructor; use static valueOf instead; Bx: Method invokes inefficient Number constructor; use static valueOf instead; Dm: The equals and hashCode 

methods of URL are blocking; Dm: Maps and sets of URLs can be performance hogs; Dm: Method invokes inefficient Boolean constructor; use Boolean.valueOf(...) instead; Dm: Explicit garbage collection; extremely dubious except in benchmarking code; Dm: Method allocates an 
object, only to get the class object; Dm: Use the nextInt method of Random rather than nextDouble to generate a random integer; Dm: Method invokes inefficient new String(String) constructor; Dm: Method invokes inefficient String.equals(""); use String.length() == 0 instead; 

Dm: Method invokes toString() method on a String; Dm: Method invokes inefficient new String() constructor; HSC: Huge string constants is duplicated across multiple class files; ITA: Method uses toArray() with zero-length array argument; SBSC: Method concatenates strings using 
+ in a loop; SIC: Should be a static inner class; SIC: Could be refactored into a named static inner class; SIC: Could be refactored into a static inner class; SS: Unread field: should this field be static?; UM: Method calls static Math class method on a constant value; UPM: Private 

method is never called; UrF: Unread field; UuF: Unused field; WMI: Inefficient use of keySet iterator instead of entrySet iterator; BC: Questionable cast to abstract collection; BC: Questionable cast to concrete collection; BC: Unchecked/unconfirmed cast; BC: instanceof will always 
return true; CI: Class is final but declares protected field; DB: Method uses the same code for two branches; DB: Method uses the same code for two switch clauses; DLS: Dead store to local variable; DLS: Dead store of null to local variable; DMI: Code contains a hard coded 
reference to an absolute pathname; DMI: Non serializable object written to ObjectOutput; DMI: Invocation of substring(0), which returns the original value; Dm: Thread passed where Runnable expected; FE: Test for floating point equality; IA: Ambiguous invocation of either an 
inherited or outer method; IC: Initialization circularity; ICAST: int division result cast to double or float; ICAST: Result of integer multiplication cast to long; ICAST: Unsigned right shift cast to short/byte; IM: Computation of average could overflow; IM: Check for oddness that 
won't work for negative numbers; INT: Vacuous comparison of integer value; MTIA: Class extends Servlet class and uses instance variables; MTIA: Class extends Struts Action class and uses instance variables; NP: Immediate dereference of the result of readLine(); NP: Load of 
known null value; NP: Possible null pointer dereference due to return value of called method; PZLA: Consider returning a zero length array rather than null; QF: Complicated, subtle or wrong increment in for-loop; RCN: Redundant comparison of non-null value to null; RCN: 
Redundant comparison of two null values; RCN: Redundant nullcheck of value known to be non-null; RCN: Redundant nullcheck of value known to be null; REC: Exception is caught when Exception is not thrown; RI: Class implements same interface as superclass; RV: Method 
checks to see if result of String.indexOf is positive; RV: Remainder of hashCode could be negative; RV: Remainder of 32-bit signed random integer; SA: Self assignment of local variable; SF: Switch statement found where one case falls through to the next case; ST: Write to static 

field from instance method; Se: Transient field of class that isn't Serializable.; UCF: Useless control flow; UwF: Field not initialized in constructor; XFB: Method directly allocates a specific implementation of xml interfaces

http://findbugs.sourceforge.net/
bugDescriptions.html

FindBugs recognizes
284 different bug patterns

http://findbugs.sourceforge.net/bugDescriptions.html
http://findbugs.sourceforge.net/bugDescriptions.html
http://findbugs.sourceforge.net/bugDescriptions.html
http://findbugs.sourceforge.net/bugDescriptions.html


FindBugs: Infinite Loops

More: http://findbugs.cs.umd.edu/talks/JavaOne2007-TS2007.pdf

• Students are good bug generators:
public WebSpider() { 
    WebSpider w = new WebSpider(); 
}

• Five infinite loops in JDK1.6.0-b13, 
27 across all versions of JDK, 
31 in Google’s Java code

http://findbugs.cs.umd.edu/talks/JavaOne2007-TS2007.pdf
http://findbugs.cs.umd.edu/talks/JavaOne2007-TS2007.pdf


Use of history

• Track warnings across releases
Jaime Spacco, David Hovemeyer, William Pugh: Tracking defect 
warnings across versions. MSR 2006: 133-136

• Rank warnings with historic data
Chadd C. Williams, Jeffrey K. Hollingsworth: Automatic Mining of 
Source Code Repositories to Improve Bug Finding Techniques. 
IEEE Trans. Software Eng. 31(6): 466-480 (2005)

Sunghun Kim, Michael D. Ernst: "Which Warnings Should I Fix 
First?" ESEC/FSE 2007, to appear



Meet & Greet

Andrzej 
Wasylkowski

Slides will be available
on the lecture web-page.



Statistical bug isolation

Ben Liblit

PLDI 2005 Slides at
http://pages.cs.wisc.edu/

~liblit/pldi-2005/

http://pages.cs.wisc.edu/~liblit/pldi-2005/
http://pages.cs.wisc.edu/~liblit/pldi-2005/
http://pages.cs.wisc.edu/~liblit/pldi-2005/
http://pages.cs.wisc.edu/~liblit/pldi-2005/
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