
Thomas Z
immermann

Defect D
etectio

n

The First Bug
September 9, 1947

More Bugs

More Bugs

More Bugs

More Bugs

More Bugs

More Bugs

More Bugs

More Bugs

More Bugs

More Bugs

More Bugs

More Bugs

Facts on Debugging

• Software bugs are costing ~60 bln US$/yr

• Improvements could reduce cost by 30%

• Validation (including debugging) can easily
take up to 50-75% of the development time

• When debugging, some people are three
times as efficient than others

How to Debug
(Sommerville 2004)

Locate error Design
error repair

Repair
error

Re-test
program

The Traffic Principle

The Traffic Principle
T
R
A
F
F
I
C

The Traffic Principle
T
R
A
F
F
I
C

rack the problem

The Traffic Principle
T
R
A
F
F
I
C

rack the problem
eproduce

The Traffic Principle
T
R
A
F
F
I
C

rack the problem
eproduce
utomate

The Traffic Principle
T
R
A
F
F
I
C

rack the problem
eproduce
utomate
ind Origins

The Traffic Principle
T
R
A
F
F
I
C

rack the problem
eproduce
utomate
ind Origins
ocus

The Traffic Principle
T
R
A
F
F
I
C

rack the problem
eproduce
utomate
ind Origins
ocus
solate

The Traffic Principle
T
R
A
F
F
I
C

rack the problem
eproduce
utomate
ind Origins
ocus
solate
orrect

✘

1. The programmer creates a
defect – an error in the code.

2. When executed, the defect
creates an infection – an
error in the state.

3. The infection propagates.

4. The infection causes a failure.

From Defect to Failure

Variables

t

✘

1. The programmer creates a
defect – an error in the code.

2. When executed, the defect
creates an infection – an
error in the state.

3. The infection propagates.

4. The infection causes a failure.

From Defect to Failure

✘

✘

Variables

t

✘

1. The programmer creates a
defect – an error in the code.

2. When executed, the defect
creates an infection – an
error in the state.

3. The infection propagates.

4. The infection causes a failure.

From Defect to Failure

✘

✘

✘ ✘

Variables

t

✘

1. The programmer creates a
defect – an error in the code.

2. When executed, the defect
creates an infection – an
error in the state.

3. The infection propagates.

4. The infection causes a failure.

From Defect to Failure

✘

✘

✘

✘ ✘

Variables

t

✘

1. The programmer creates a
defect – an error in the code.

2. When executed, the defect
creates an infection – an
error in the state.

3. The infection propagates.

4. The infection causes a failure.

From Defect to Failure

✘

✘

✘

✘ ✘

Variables

This infection chain must be
traced back – and broken.

t

✘

• Not every defect causes
a failure!

• Testing can only show the
presence of errors – not
their absence.
(Dijkstra 1972)

The Curse of Testing

✘

✘

✘

✘ ✘

Variables

✘
• Every failure can be

traced back to some
infection, and every
infection is caused by
some defect.

• Debugging means to
relate a given failure to the
defect – and to remove
the defect.

Debugging

✘

✘

✘

✘ ✘

Variables

Defect detection

Tool

Program List of defects

Defect localization

Tool+
Location
(Defect)

Failure
Program

Outline

Redundancies
(Engler et al.)

FindBugs
(Pugh et al.)

Models
(Invited talk: A. Wasylkowski)

Statistical
(Liblit et al.)

Dawson Engler

Bill Pugh

Co-founder of Coverity

redundancies
flag errors

Idempotent operations

• variable is assigned to itself: x=x

• variable is divided by itself: x/x

• variable is bitwise or’d with itself: x|x

• variable is bitwise and’d with itself: x&x

Flag idempotent operations.

Idempotent operations

System Bugs Minor False
Linux 7 6 3

...
else { /* We need to make a copy of the entry. */
 da.s_node = sa.s_node;
 da.s_net = da.s_net;
 ...

/* 2.4.1/net/appletalk/aarp.c:aarp_rcv */

Redundant assignments
Flag cases where a value assigned to a variable is
subsequently not used.

System Bugs False Uninspected
Linux 129 26 1840
xgcc 13 1 0

do {
 ...
 if (signal_pending(current)) {
 err = -ERESTARTSYS;
 break;
 }
 SOCK_SLEEP_PRE(sk)
 if (scp->state != DN_RUN)
 schedule();
 SOCK_SLEEP_POST(sk)
} while(scp->state != DN_RUN);
return 0;

/* 2.4.1/net/decnet/af_decnet.c:dn_wait_run */

Redundant assignments

do {
 ...
 if (signal_pending(current)) {
 err = -ERESTARTSYS; /* BUG: lost value */
 break;
 }
 SOCK_SLEEP_PRE(sk)
 if (scp->state != DN_RUN)
 schedule();
 SOCK_SLEEP_POST(sk)
} while(scp->state != DN_RUN);
return 0;

/* 2.4.1/net/decnet/af_decnet.c:dn_wait_run */

Redundant assignments

Unintentionally
discarded

for(entry=priv->lec_arp_tables[i];
 entry != NULL;
 entry=next) {
 next = entry->next;
 if (...) {
 lec_arp_remove(priv->lec_arp_tables, entry);
 kfree(entry);
 }
 lec_arp_unlock(priv);
 return 0;
}

/* 2.4.1/net/atm/lec.c:lec_addr_delete: */

Redundant assignments

for(entry=priv->lec_arp_tables[i];
 entry != NULL;
 entry=next) { /* BUG: never reached */
 next = entry->next;
 if (...) {
 lec_arp_remove(priv->lec_arp_tables, entry);
 kfree(entry);
 }
 lec_arp_unlock(priv);
 return 0;
}

/* 2.4.1/net/atm/lec.c:lec_addr_delete: */

Redundant assignments

Surprising control flow

Dead code

Flag dead code (i.e., code that is never executed).

System Bugs False
Linux 66 26

for (cnt = 0; cnt < min(name1_len, name2_len); ++cnt) {
 c1 = le16_to_cpu(*name1++);
 c2 = le16_to_cpu(*name2++);
 if (ic) {
 if (c1 < upcase_len)
 c1 = le16_to_cpu(upcase[c1]);
 if (c2 < upcase_len)
 c2 = le16_to_cpu(upcase[c2]);
 }

 if (c1 < 64 && legal_ansi_char_array[c1] & 8);
 return err_val;
 if (c1 < c2)
 return -1;
 ...

/* 2.4.5-ac8/fs/ntfs/unistr.c:ntfs_collate_names */

Dead code

for (cnt = 0; cnt < min(name1_len, name2_len); ++cnt) {
 c1 = le16_to_cpu(*name1++);
 c2 = le16_to_cpu(*name2++);
 if (ic) {
 if (c1 < upcase_len)
 c1 = le16_to_cpu(upcase[c1]);
 if (c2 < upcase_len)
 c2 = le16_to_cpu(upcase[c2]);
 }
 /* [META] stray terminator! */
 if (c1 < 64 && legal_ansi_char_array[c1] & 8);
 return err_val;
 if (c1 < c2)
 return -1;
 ...

/* 2.4.5-ac8/fs/ntfs/unistr.c:ntfs_collate_names */

Dead code

Redundant conditionals

Flag redundant branch conditionals from
(1) branch statements with non-constant conditionals
that always evaluate to either true or false
(2) switch statements with impossible cases

System Bugs False Uninspected
Linux 49 52 169

Redundant conditionals

if ((login_state == NODE_LOGGED_IN) ||
 (login_state == NODE_PROCESS_LOGGED_IN)) {
 ...
}
else
if (login_state == NODE_LOGGED_OUT)
 tx_adisc(fi, ELS_ADISC, node_id,
 OX_ID_FIRST_SEQUENCE);
else /* BUG: redundant conditional */
if (login_state == NODE_LOGGED_OUT)
 tx_logi(fi, ELS_PLOGI, node_id);

/* 2.4.1/drivers/fc/iph5526.c:rscn_handler */

Redundant conditionals

if ((login_state == NODE_LOGGED_IN) ||
 (login_state == NODE_PROCESS_LOGGED_IN)) {
 ...
}
else
if (login_state == NODE_LOGGED_OUT)
 tx_adisc(fi, ELS_ADISC, node_id,
 OX_ID_FIRST_SEQUENCE);
else /* BUG: redundant conditional */
if (login_state == NODE_LOGGED_OUT)
 tx_logi(fi, ELS_PLOGI, node_id);

/* 2.4.1/drivers/fc/iph5526.c:rscn_handler */

Overly cautious programming style
(confused programmer)

Single iteration loop

Cut-and-paste errors

Correlation to hard bugs

Hard bugs can crash a system (use of freed memory,
dereferences of null pointers, potential deadlocks,
unreleased locks, and security violations)

Chi-Square test

Null hypothesis: “A and B are
mutually independent”

Correlation to hard bugs

dependan
t

Correlation to hard bugs

dependan
t
dependan

t

Correlation to hard bugs

dependan
t
dependan

t

dependan
t

Correlation to hard bugs

dependan
t
dependan

t

dependan
t
dependan

t

Correlation to hard bugs

Eclipse

FindBugs

Bill Pugh

FindBugs: Bug patterns
AM: Creates an empty jar file entry; AM: Creates an empty zip file entry; BC: Equals method should not assume anything about the type of its argument; BC: Random object created and used only once; CN: Class implements Cloneable but does not define or use clone method;

CN: clone method does not call super.clone(); Co: Abstract class defines covariant compareTo() method; Co: Covariant compareTo() method defined; DE: Method might drop exception; DE: Method might ignore exception; DP: Classloaders should only be created inside
doPrivileged block; DP: Method invoked that should be only be invoked inside a doPrivileged block; Dm: Method invokes System.exit(...); Dm: Method invokes dangerous method runFinalizersOnExit; ES: Comparison of String parameter using == or !=; ES: Comparison of String
objects using == or !=; Eq: Abstract class defines covariant equals() method; Eq: Class defines compareTo(...) and uses Object.equals(); Eq: Covariant equals() method defined; Eq: Covariant equals() method defined, Object.equals(Object) inherited; FI: Empty finalizer should be

deleted; FI: Explicit invocation of finalizer; FI: Finalizer nulls fields; FI: Finalizer only nulls fields; FI: Finalizer does not call superclass finalizer; FI: Finalizer nullifies superclass finalizer; FI: Finalizer does nothing but call superclass finalizer; HE: Class defines equals() but not hashCode();
HE: Class defines equals() and uses Object.hashCode(); HE: Class defines hashCode() but not equals(); HE: Class defines hashCode() and uses Object.equals(); HE: Class inherits equals() and uses Object.hashCode(); IC: Superclass uses subclass during initialization; IMSE: Dubious

catching of IllegalMonitorStateException; ISC: Needless instantiation of class that only supplies static methods; It: Iterator next() method can't throw NoSuchElement exception; J2EE: Store of non serializable object into HttpSession; NP: Clone method may return null; NP: equals()
method does not check for null argument; NP: toString method may return null; NS: Questionable use of non-short-circuit logic; Nm: Class names should start with an upper case letter; Nm: Class is not derived from an Exception, even though it is named as such; Nm: Confusing
method names; Nm: Field names should start with an lower case letter; Nm: Use of identifier that is a keyword in later versions of Java; Nm: Use of identifier that is a keyword in later versions of Java; Nm: Method names should start with an lower case letter; Nm: Very confusing

method names (but intentional); ODR: Method may fail to close database resource; ODR: Method may fail to close database resource on exception; OS: Method may fail to close stream; OS: Method may fail to close stream on exception; RR: Method ignores results of
InputStream.read(); RR: Method ignores results of InputStream.skip(); SI: Static initializer creates instance before all static final fields assigned; SQL: Nonconstant string passed to execute method on an SQL statement; SQL: A prepared statement is generated from a nonconstant

String; SW: Certain swing methods needs to be invoked in Swing thread; Se: Non-transient non-serializable instance field in serializable class; Se: Non-serializable class has a serializable inner class; Se: Non-serializable value stored into instance field of a serializable class; Se:
Comparator doesn't implement Serializable; Se: Serializable inner class; Se: Method must be private in order for serialization to work; Se: serialVersionUID isn't final; Se: serialVersionUID isn't long; Se: serialVersionUID isn't static; Se: Class is Serializable but its superclass doesn't

define a void constructor; Se: Class is Externalizable but doesn't define a void constructor; Se: The readResolve method must be declared with a return type of Object.; Se: Transient field that isn't set by deserialization.; SnVI: Class is Serializable, but doesn't define
serialVersionUID; UI: Usage of GetResource may be unsafe if class is extended; BC: Impossible cast; BC: instanceof will always return false; BIT: Incompatible bit masks; BIT: Check to see if ((...) & 0) == 0; BIT: Incompatible bit masks; BIT: Bitwise OR of signed byte value; BOA: Class
overrides a method implemented in super class Adapter wrongly; Bx: Primitive value is unboxed and coerced for ternary operator; DLS: Overwritten increment; DMI: Bad constant value for month; DMI: hasNext method invokes next; DMI: Invocation of toString on an array; DMI:

Double.longBitsToDouble invoked on an int; Dm: Can't use reflection to check for presence of annotation with default retention; EC: equals() used to compare array and nonarray; EC: Invocation of equals() on an array, which is equivalent to ==; EC: Call to equals() with null
argument; EC: Call to equals() comparing unrelated class and interface; EC: Call to equals() comparing different interface types; EC: Call to equals() comparing different types; Eq: Covariant equals() method defined for enum; FE: Doomed test for equality to NaN; GC: No

relationship between generic parameter and method argument; HE: Use of class without a hashCode() method in a hashed data structure; ICAST: Integer shift by an amount not in the range 0..31; ICAST: int value cast to double and then passed to Math.ceil; ICAST: int value cast
to float and then passed to Math.round; IJU: JUnit assertion in run method will not be noticed by JUnit; IJU: TestCase declares a bad suite method; IJU: TestCase has no tests; IJU: TestCase implements setUp but doesn't call super.setUp(); IJU: TestCase implements a non-static suite
method; IJU: TestCase implements tearDown but doesn't call super.tearDown(); IL: A container is added to itself; IL: An apparent infinite loop; IL: An apparent infinite recursive loop; IM: Integer multiply of result of integer remainder; INT: Bad comparison of nonnegative value with
negative constant; INT: Bad comparison of signed byte; INT: Integer remainder modulo 1; IP: A parameter is dead upon entry to a method but overwritten; JCIP: Fields of immutable classes should be final; MF: Class defines field that masks a superclass field; MF: Method defines a

variable that obscures a field; NP: Null pointer dereference; NP: Null pointer dereference in method on exception path; NP: Method does not check for null argument; NP: Null value is guaranteed to be dereferenced; NP: Value is null and guaranteed to be dereferenced on
exception path; NP: Method call passes null to a nonnull parameter; NP: Method may return null, but is declared @NonNull; NP: A known null value is checked to see if it is an instance of a type; NP: Possible null pointer dereference; NP: Possible null pointer dereference in

method on exception path; NP: Method call passes null for unconditionally dereferenced parameter; NP: Method call passes null for unconditionally dereferenced parameter; NP: Non-virtual method call passes null for unconditionally dereferenced parameter; NP: Store of null
value into field annotated NonNull; NP: Read of unwritten field; NS: Potentially dangerous use of non-short-circuit logic; Nm: Class defines equal(); should it be equals()?; Nm: Class defines hashcode(); should it be hashCode()?; Nm: Class defines tostring(); should it be toString()?;

Nm: Apparent method/constructor confusion; Nm: Very confusing method names; QBA: Method assigns boolean literal in boolean expression; RC: Suspicious reference comparison; RCN: Nullcheck of value previously dereferenced; RE: Invalid syntax for regular expression; RE:
File.separator used for regular expression; RE: "." used for regular expression; RV: Random value from 0 to 1 is coerced to the integer 0; RV: Bad attempt to compute absolute value of signed 32-bit hashcode; RV: Bad attempt to compute absolute value of signed 32-bit random
integer; RV: Method discards result of readLine after checking if it is nonnull; RV: Method ignores return value; SA: Double assignment of field; SA: Self assignment of field; SA: Self comparison of field with itself; SA: Nonsensical self computation involving a field (e.g., x & x); SA:

Double assignment of local variable; SA: Self comparison of value with itself; SA: Nonsensical self computation involving a variable (e.g., x & x); SF: Dead store due to switch statement fall through; SIO: Unnecessary type check done using instanceof operator; SQL: Method attempts
to access a prepared statement parameter with index 0; SQL: Method attempts to access a result set field with index 0; STI: Unneeded use of currentThread() call, to call interrupted(); STI: Static Thread.interrupted() method invoked on thread instance; UCF: Useless control flow

to next line; UMAC: Uncallable method defined in anonymous class; UR: Uninitialized read of field in constructor; UwF: Field only ever set to null; UwF: Unwritten field; VA: Primitive array passed to function expecting a variable number of object arguments; Dm: Consider using
Locale parameterized version of invoked method; EI: May expose internal representation by returning reference to mutable object; EI2: May expose internal representation by incorporating reference to mutable object; FI: Finalizer should be protected, not public; MS: May expose
internal static state by storing a mutable object into a static field; MS: Field isn't final and can't be protected from malicious code; MS: Public static method may expose internal representation by returning array; MS: Field should be both final and package protected; MS: Field is a

mutable array; MS: Field is a mutable Hashtable; MS: Field should be moved out of an interface and made package protected; MS: Field should be package protected; MS: Field isn't final but should be; DC: Possible double check of field; Dm: Monitor wait() called on Condition; Dm: A
thread was created using the default empty run method; ESync: Empty synchronized block; IS: Inconsistent synchronization; IS: Field not guarded against concurrent access; JLM: Synchronization performed on java.util.concurrent Lock; LI: Incorrect lazy initialization of static field;

ML: Method synchronizes on an updated field; MWN: Mismatched notify(); MWN: Mismatched wait(); NN: Naked notify; NP: Synchronize and null check on the same field.; No: Using notify() rather than notifyAll(); RS: Class's readObject() method is synchronized; Ru: Invokes run
on a thread (did you mean to start it instead?); SC: Constructor invokes Thread.start(); SP: Method spins on field; STCAL: Call to static Calendar; STCAL: Call to static DateFormat; STCAL: Static Calendar; STCAL: Static DateFormat; SWL: Method calls Thread.sleep() with a lock
held; TLW: Wait with two locks held; UG: Unsynchronized get method, synchronized set method; UL: Method does not release lock on all paths; UL: Method does not release lock on all exception paths; UW: Unconditional wait; VO: A volatile reference to an array doesn't treat

the array elements as volatile; WS: Class's writeObject() method is synchronized but nothing else is; Wa: Condition.await() not in loop; Wa: Wait not in loop; Bx: Primitive value is boxed and then immediately unboxed; Bx: Primitive value is boxed then unboxed to perform primative
coercion; Bx: Method allocates a boxed primitive just to call toString; Bx: Method invokes inefficient floating-point Number constructor; use static valueOf instead; Bx: Method invokes inefficient Number constructor; use static valueOf instead; Dm: The equals and hashCode

methods of URL are blocking; Dm: Maps and sets of URLs can be performance hogs; Dm: Method invokes inefficient Boolean constructor; use Boolean.valueOf(...) instead; Dm: Explicit garbage collection; extremely dubious except in benchmarking code; Dm: Method allocates an
object, only to get the class object; Dm: Use the nextInt method of Random rather than nextDouble to generate a random integer; Dm: Method invokes inefficient new String(String) constructor; Dm: Method invokes inefficient String.equals(""); use String.length() == 0 instead;

Dm: Method invokes toString() method on a String; Dm: Method invokes inefficient new String() constructor; HSC: Huge string constants is duplicated across multiple class files; ITA: Method uses toArray() with zero-length array argument; SBSC: Method concatenates strings using
+ in a loop; SIC: Should be a static inner class; SIC: Could be refactored into a named static inner class; SIC: Could be refactored into a static inner class; SS: Unread field: should this field be static?; UM: Method calls static Math class method on a constant value; UPM: Private

method is never called; UrF: Unread field; UuF: Unused field; WMI: Inefficient use of keySet iterator instead of entrySet iterator; BC: Questionable cast to abstract collection; BC: Questionable cast to concrete collection; BC: Unchecked/unconfirmed cast; BC: instanceof will always
return true; CI: Class is final but declares protected field; DB: Method uses the same code for two branches; DB: Method uses the same code for two switch clauses; DLS: Dead store to local variable; DLS: Dead store of null to local variable; DMI: Code contains a hard coded
reference to an absolute pathname; DMI: Non serializable object written to ObjectOutput; DMI: Invocation of substring(0), which returns the original value; Dm: Thread passed where Runnable expected; FE: Test for floating point equality; IA: Ambiguous invocation of either an
inherited or outer method; IC: Initialization circularity; ICAST: int division result cast to double or float; ICAST: Result of integer multiplication cast to long; ICAST: Unsigned right shift cast to short/byte; IM: Computation of average could overflow; IM: Check for oddness that
won't work for negative numbers; INT: Vacuous comparison of integer value; MTIA: Class extends Servlet class and uses instance variables; MTIA: Class extends Struts Action class and uses instance variables; NP: Immediate dereference of the result of readLine(); NP: Load of
known null value; NP: Possible null pointer dereference due to return value of called method; PZLA: Consider returning a zero length array rather than null; QF: Complicated, subtle or wrong increment in for-loop; RCN: Redundant comparison of non-null value to null; RCN:
Redundant comparison of two null values; RCN: Redundant nullcheck of value known to be non-null; RCN: Redundant nullcheck of value known to be null; REC: Exception is caught when Exception is not thrown; RI: Class implements same interface as superclass; RV: Method
checks to see if result of String.indexOf is positive; RV: Remainder of hashCode could be negative; RV: Remainder of 32-bit signed random integer; SA: Self assignment of local variable; SF: Switch statement found where one case falls through to the next case; ST: Write to static

field from instance method; Se: Transient field of class that isn't Serializable.; UCF: Useless control flow; UwF: Field not initialized in constructor; XFB: Method directly allocates a specific implementation of xml interfaces

http://findbugs.sourceforge.net/
bugDescriptions.html

FindBugs recognizes
284 different bug patterns

http://findbugs.sourceforge.net/bugDescriptions.html
http://findbugs.sourceforge.net/bugDescriptions.html
http://findbugs.sourceforge.net/bugDescriptions.html
http://findbugs.sourceforge.net/bugDescriptions.html

FindBugs: Infinite Loops

More: http://findbugs.cs.umd.edu/talks/JavaOne2007-TS2007.pdf

• Students are good bug generators:
public WebSpider() {
 WebSpider w = new WebSpider();
}

• Five infinite loops in JDK1.6.0-b13,
27 across all versions of JDK,
31 in Google’s Java code

http://findbugs.cs.umd.edu/talks/JavaOne2007-TS2007.pdf
http://findbugs.cs.umd.edu/talks/JavaOne2007-TS2007.pdf

Use of history

• Track warnings across releases
Jaime Spacco, David Hovemeyer, William Pugh: Tracking defect
warnings across versions. MSR 2006: 133-136

• Rank warnings with historic data
Chadd C. Williams, Jeffrey K. Hollingsworth: Automatic Mining of
Source Code Repositories to Improve Bug Finding Techniques.
IEEE Trans. Software Eng. 31(6): 466-480 (2005)

Sunghun Kim, Michael D. Ernst: "Which Warnings Should I Fix
First?" ESEC/FSE 2007, to appear

Meet & Greet

Andrzej
Wasylkowski

Slides will be available
on the lecture web-page.

Statistical bug isolation

Ben Liblit

PLDI 2005 Slides at
http://pages.cs.wisc.edu/

~liblit/pldi-2005/

http://pages.cs.wisc.edu/~liblit/pldi-2005/
http://pages.cs.wisc.edu/~liblit/pldi-2005/
http://pages.cs.wisc.edu/~liblit/pldi-2005/
http://pages.cs.wisc.edu/~liblit/pldi-2005/

References
• Yichen Xie, Dawson R. Engler: Using redundancies

to find errors. SIGSOFT FSE 2002: 51-60

• Bill Pugh: FindBugs™ - Find Bugs in Java Programs.
http://findbugs.sourceforge.net/

• Andrzej Wasylkowski, Andreas Zeller: Detecting
Object Usage Anomalies. ESEC/FSE 2007, to appear

• Ben Liblit, Mayur Naik, Alice X. Zheng, Alexander
Aiken, Michael I. Jordan: Scalable statistical bug
isolation. PLDI 2005: 15-26

http://findbugs.sourceforge.net
http://findbugs.sourceforge.net

