
Code Search & Reuse

Rahul Premraj

Software Mining
Lecture 5 - 24th May ‘07

What is Reuse?

Always Reuse?

Been here... done
this before!

Always Reuse?

Been here... done
this before! But...

Reuse Requirements

• Creating and maintaining a reuse repository
- takes commitment, effort and investment.

• Enabling software developers to build new
software systems with components from
the reuse repository.

Cognition Issues in Reuse

Task-relevant
Information

L4-L3:
Unanticipated
Information

L4: Entire Information Space

Cognition Issues in Reuse

Task-relevant
Information

L4-L3:
Unanticipated
Information

L4: Entire Information Space

L3:
Belief

Cognition Issues in Reuse

L2: Vaguely
Known

Task-relevant
Information

L4-L3:
Unanticipated
Information

L1: Well Known

L4: Entire Information Space

L3:
Belief

Cognition Issues in Reuse

L2: Vaguely
Known

Task-relevant
Information

L4-L3:
Unanticipated
Information

L1: Well Known

CodeBroker
delivers task relevant and personalised components...

CodeBroker
delivers task relevant and personalised components...

Interface end

CodeBroker
delivers task relevant and personalised components...

Interface end

Back-end
search engine

CodeBroker
delivers task relevant and personalised components...

Interface end

Back-end
search engine

responds to comments

e.g. // generate random numbers

CodeBroker
delivers task relevant and personalised components...

Interface end

Back-end
search engine

responds to comments

e.g. // generate random numbers

clues in method signatures
e.g. void randomNumberGenerator (int x)

CodeBroker
j ,.~,.IComment: Create a random number [

Generate a randoIrt nu.mbet using the default genefatl - - - ~ ~ . 1
wcid n~x~(J~r~ .a ,~ ,Cor l t , o,;n~i- i:,ei'.-n~) P] user updating '~

< ° L . . , , o ,

Figure 3: The system architecture of CodeBroker

Components that match the queries, which are extracted from doc comments and signatures, are delivered after being

filtered with discourse models and user models. Discourse models (see Section 3.2.3) remove irrelevant components

(black dots), and user models (see Section 3.3) remove known components (unshaded dots). Discourse models and

user models can both be updated by users through the S k i p C o m p o n e n t s Menu. User models are also

automatically updated when the system detects the reuse of a component in the workspace. Users who want to know

more about a component can go to the Java documentation by clicking on the delivered component.

The component repository contains indexes created by

CodeBroker from the standard Java documentation that Javadoc

generates from Java source programs, and links to the Java

documentation system.

CodeBroker delivers components whenever a doc comment or a

signature definition is entered. For example, in Figures 2 and 3,

the developer who wants to create a random number between two

integers writes a doc comment. As soon as the rightmost ' / '

(signaling the end of a doc comment) is entered, the contents of

the doc comment are extracted as a query, and components from

the repository that match it are shown immediately in the RCI-

display. Because there are many random number generators that

operate on different data types, the software developer may want

to find the one that takes integers as input. The developer can

continue programming by defining the signature of the method.

As soon as the signature definition is finished (the left bracket ' {'

before the cursor), CodeBroker extracts the signature, which is

then combined with the preceding doc comment as a query to

retrieve matching components. The first component in the RCI-

display in Figure 2 does exactly what the developer wants and can

be reused immediately.

CodeBroker presents information with three different layers of

abstraction. The first layer is the RCl-display in which 20 (the

number can be customized) components are shown according to

their task relevance, and each component is accompanied by its

rank of relevance, relevance value, name, and synopsis. To reduce

the intrusiveness [12], users are not required to interact with the

system if they are not interested in the delivered components. If

they are interested in certain components in the RCl-display, they

can trigger the presentation of the second layer of information

with mouse movements. When the mouse cursor is moved over

the component name, the signature of the component is shown in

the mini-buffer (the last line of Emacs in Figure 2); and when the

mouse cursor is over the synopsis, words contributing to the

relevance between the component and the task-at-hand are shown

in the mini-buffer to reveal why this component is retrieved and to

help software developers refine their queries if necessary. The

third layer of information, which is the most complete description

of a component, is shown in an external HTML browser. A left-

click on the component name brings up the full Javadoc

documentation for the component (Figure 3).

If the software developer feels too many irrelevant components

are delivered in the RCl-display, activating the Skip

Components Menu associated with each component will filter

them out (Figure 3). Filtering can be applied at three levels of

granularity: (1) filtering out the component itself by choosing the

first item in the menu, (2) filtering out all components from its

class by choosing the second item, or (3) filtering out all

components from its package by choosing the third item. Three

commands exist for each chosen item. The first command, This

B u f f e r Only, removes the chosen item from the RCl-display

buffer; the second command, This Session Only, not only

removes the chosen item from the buffer, but also adds it to the

discourse model (see Section 3.2.3); and the third command, A l l

S e s s i o n s , both removes the chosen item from the buffer and

adds it to the user model (see Section 3.3).

517

UltiGPX
A tool for visualising GPS data collected by hikers

UltiGPX
A tool for visualising GPS data collected by hikers

2. Scenario

Consider a pragmatic reuse task involving a tool (called

UltiGPX) for visualizing Global Positioning System (GPS)

data collected by hikers during an excursion. UltiGPX pro-

vides a simple visualization of the latitude/longitude coor-

dinates of the hikers’ route (see Figure 1, upper right). No

display of the changes in elevation (an “elevation profile”)

is provided by UltiGPX, however. The developer considers

such information to be useful to his intended users. The de-

veloper has encountered a visualization within another sys-

tem, the Azureus BitTorrent client, that seems appropriate

for his intent.

Azureus is an open source Java BitTorrent client that

downloads files from a peer-to-peer network. Azureus is

a complex program that provides numerous visual widgets

to help display the download progress of the files that users

are acquiring. Of interest here, the tool provides a line graph

that visualizes network bandwidth.

The UltiGPX developer realizes that this graph is visu-

ally similar to what he requires. The panel at the bottom of

Figure 1 shows the Azureus network visualization widget

superimposed on UltiGPX. However, the goal of Azureus is

to support the downloading of files, not to provide reusable

APIs for its visual widgets. Visually, the Azureus feature

looks exactly right; however, it seems unlikely that a feature

providing real-time network visualization would be appro-

priate to use within a static GPS-data viewing application.

The developer wants more than a high-level intu-

ition whether to pursue this task or not; he wants

to know how dependent the graph visualization feature

is on the rest of Azureus. In order to do this, he

investigates the source code manually within an inte-

grated development environment (IDE). First, he searches

for some part of Azureus involved in network visu-

alization; this quickly leads him to the org.gudy.-

azureus2.ui.swt.components.graphics package, in

which SpeedGraphic seems like the most relevant class.

The developer starts by scrolling through the 322-line class,

trying to identify which lines are useful to reuse and which

are not.

The developer starts with the drawChart(..) method,

as this sounds most relevant to the task he is consider-

ing. To investigate the implications of each dependency

in this 82-line method, the developer must examine each

statement to determine which types are referenced. He

then needs to look at each type to determine its depen-

dencies and to decide whether or not to reuse those types

in addition to SpeedGraphic. In the drawChart(..)

method, 14 different types are referenced. After navigat-

ing through 14 different types, he determines that 7 of the

types are common to both UltiGPX and Azureus (they both

use the SWT framework) which means these dependencies

are already satisfied within UltiGPX. However, for the 7

Figure 1. UltiGPX (profile superimposed).

remaining types, the developer must look more critically

to determine what to do about their dependencies. Two

calls are made to the AEMonitor class, both enter() and

exit(). After looking at the AEMonitor class, the de-

veloper realizes that it provides synchronization functional-

ity within the core of Azureus; this is not necessary within

UltiGPX and the developer decides not to reuse the type

and to eliminate all references to it within the reused code.

Similar situations arise for COConfigurationManager

and ParamaterListener which are involved with the

Azureus preferences architecture. The developer does de-

cide to maintain the dependencies on Scale as well as its

super types ScaledGraphic and BackgroundGraphic.

The developer also notes that the Colors class in Azureus

closely corresponds to a class within UltiGPX and decides

that while he will not reuse Colors, he will remap refer-

ences to it to his own class.

The developer has now investigated 15 different source

files and made decisions about the importance of each

of them (including specific decisions about portions of

SpeedGraphic). While he cannot enumerate the decisions

he has made, he has a sense that the task should be manage-

able and begins to actually carry out the task. He now copies

those classes that he has deemed relevant from Azureus into

UltiGPX. Next he manages the dependencies based on the

decisions he has made, functionality that was rejected is ei-

ther commented out or stubbed out. References to Colors

are updated to the appropriate UltiGPX class. While carry-

ing out the task seems simple, it is difficult for the developer

to remember all of the decisions he made while navigating

between these various source files. Indeed, when he started

to do the task, he had to revisit several files to remember

what decisions he had made. Additionally, the developer

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

UltiGPX

Azureus

Azureus

Azureus

Azureus

Should I reuse or
not?

Classic Code Searching

Azureus

Azureus

By manual inspection, user falls upon
SpeedGraphic class (322 LOC) in package

org.gudy.azureus2.ui.swt.components.graphics.

Azureus

By manual inspection, user falls upon
SpeedGraphic class (322 LOC) in package

org.gudy.azureus2.ui.swt.components.graphics.

• 14 different types references by drawChart() (82 LOC).

• 7 were common to both, Azureus and UltiGPX.

• Remaining 7 types need to be investigated carefully to identify

their dependencies.

What decisions were made?

Reuse Process

Reuse Process

Identification

Reuse Process

Identification

Delineation

Reuse Process

Identification

Delineation

Extraction

Gilligan
a tool to support software reuse...

What does Gilligan do?

What does Gilligan do?

Supports navigation
Annotate structurally

dependent code fragments

What does Gilligan do?

What does Gilligan do?

Feasi
bility

Asses
smen

t

How does Gilligan work?

How does Gilligan work?
Find project

How does Gilligan work?

Select starting point

Find project

How does Gilligan work?

Gillian

1. Investigate feature
 dependencies.

2. Evaluate reuse plan.

Select starting point

Find project

How does Gilligan work?

Gillian

1. Investigate feature
 dependencies.

2. Evaluate reuse plan.

Select starting point

Find project

How does Gilligan work?

Gillian

1. Investigate feature
 dependencies.

2. Evaluate reuse plan.

Select starting point

Find project

Perform reuse plan

How does Gilligan work?

Gillian

1. Investigate feature
 dependencies.

2. Evaluate reuse plan.

Abort Investigation

Select starting point

Find project

Perform reuse plan

How does Gilligan work?

Gillian

1. Investigate feature
 dependencies.

2. Evaluate reuse plan.

Abort Investigation

Select starting point

Find project

Perform reuse plan

How does Gilligan work?

Gillian

1. Investigate feature
 dependencies.

2. Evaluate reuse plan.

Abort Investigation

Select starting point

Find project

Re-implement feature Perform reuse plan

How does Gilligan work?

How does Gilligan work?

Search for dependencies

How does Gilligan work?

How does Gilligan work?

How does Gilligan work?

How does Gilligan work?

Starting point
(package, class or method)

Relevant dependencies

Screenshot of Gilligan

Figure 3. Screenshot of the Gilligan Tool.

quickly see those nodes upon which a particular node is de-

pendent and the edges representing those relationships.

To help manage the complexity of the graph, nodes can

be collapsed into their parents. This collapse functional-

ity simplifies the graph by eliding details the developer is

no longer interested in seeing (such as collapsing methods

into their parent class, or a class into its package). In Fig-

ure 4, the developer has collapsed many nodes into the swt

package. By looking at the tree view (Figure 3, left) the de-

veloper can see that this collapsed node represents 21 other

nodes (2 packages, 5 classes, and 12 methods).

The developer can also request the source code for any

node or edge in the graph (except for package nodes and

contains edges). Gilligan provides the most specific amount

of information possible for any source request (e.g., source

requests for method nodes display only the code for that

method). If the developer requests the source for an edge,

they are presented with an annotated source view. For ex-

ample, for a calls edge, the source for the method in which

the call is made is highlighted with the specific statements

pertaining to that call. By choosing to see the source for

particular edges the developer can quickly determine which

portions of the source are involved with any given structural

relationship; this helps him to focus on the relationship he

is interested in without getting distracted by other structural

relationships (some of which he may have already triaged).

3.3. Triaging Structural Dependencies
While the developer is navigating the structural dependen-

cies, he is making decisions about each node’s applicability

to his reuse task. Gilligan provides a lightweight way for

the developer to record his decisions about these nodes; he

can simply click on the colour tool that corresponds to his

decision for that node. The decisions he makes are recorded

by the colour of the node; these colours allow the developer

to quickly get a sense for the reuse task by just glancing at

the visual view. Nodes that have yet to be decided upon are

shown in plain white. In addition to the graphical represen-

tation of the feature, Gilligan also provides a summary view

(not shown) that enumerates the number of nodes he has in-

vestigated and the decisions he has made to help him better

gauge the scope of his task. The developer can also anno-

tate any node with arbitrary text that records any thoughts or

special instructions. These text annotations are entered and

viewed in the properties view (Figure 3, bottom left) for the

node. Nodes can be annotated with colour in four ways:

Accept. By accepting a dependency, the developer is ac-

knowledging that they wish to reuse the source code the

node corresponds to. This means that the developer intends

to move the source code from its current context into his

own project. This decision is indicated by the colour green

in our visualization.

Reject. Unwanted dependencies are those that provide

functionality that the developer does not want to be reused.

In this case, the developer knows that he does not want these

references in his system and will not reuse them (or anal-

ogous functionality) with the accepted nodes. When the

reuse task is being performed, references from accepted to

rejected nodes must be dealt with by the developer (they are

frequently just commented out). This decision is indicated

by the colour red in our visualization.

Remap. This decision means that, while the functional-

ity is needed conceptually, the developer wishes to re-target

it to an existing piece of code in their own system that can

provide the required service. This decision is indicated by

the colour blue in our visualization.

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

Screenshot of Gilligan

Azureus Reuse Plan

Figure 4. Azureus graphics feature reuse plan. (Screenshot is annotated for greyscale reproduction.)

4.1. Past approaches
While many approaches have advocated refactoring code

into reusable APIs, this is not always possible. The orig-

inal code may no longer be maintained or its maintainers

may not be willing to refactor the code to meet the new

requirements. Indeed it has been shown that reused code

must be frequently modified in some way to work within

its new context [16]. Frakes and Kang note that dedicated

reuse strategies within companies require a large up-front

cost that must be justified in terms of business goals. They

also found that most software systems are variants on pre-

existing systems [5]. As new systems are extensions of the

old, it is natural that pragmatic reuse will take place in sit-

uations where the new requirements do not align perfectly

with the old.

Our tool addresses two issues identified by Frakes [4]

through an industrial reuse questionnaire. First, he iden-

tified that CASE tools may not be effective at promoting

reuse. By extending a popular IDE with features specific to

pragmatic reuse tasks, we hope this can improve the envi-

ronment’s ability to help developers engage in these tasks.

Second, he identified that the lack of process hampers reuse

efforts. Our tool provides developers with a unified ap-

proach for investigating reuse tasks; this approach can help

reduce the ad hoc nature of source traversal inherent in how

developers currently perform unanticipated reuse tasks.

4.2. Developer practices
Parsons and Saunders [15] determined that developers were

able to perform tasks by anchoring their understanding to

existing code and adjusting the code to meet their needs.

While this evaluation was only tested for one small case

(albeit with many developers), it is an encouraging endorse-

ment for so-called “white box” reuse. By providing devel-

opers with a concrete reuse plan, we aim to help developers

anchor the reuse task so they can better understand how the

code needs to be adjusted to meet their needs.

Selby [16] analyzed 25 projects at NASA and discovered

that 32% of the modules within those projects were reused

from prior projects. Of these reused modules, 47% required

modification from their original form; we take this as fur-

ther motivation for our approach which aims to help devel-

opers plan these changes.

Reuse in the manner we are advocating can be seen as

creating code clones. While these clones have in the past

been perceived negatively, recent research has found that

clones are frequently short lived, and when they are long-

lived they are not easily refactored [8]. Short-lived clones

are those that are reused and then modified to meet the new

system’s requirements. Non-refactorable clones indicate

that the original API could not be refactored to meet the re-

quirements of both the old and new usage. These cases are

no worse than implementing the features from scratch but

the developers still get the added benefit of having reused

code (reduced effort and tested code). One problem with

reusing code in this manner, however, is that when bugs are

fixed in the original source they are not automatically prop-

agated to the reused versions; support for such a process is

an active research topic [7].

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

Azureus Reuse Plan

Figure 4. Azureus graphics feature reuse plan. (Screenshot is annotated for greyscale reproduction.)

4.1. Past approaches
While many approaches have advocated refactoring code

into reusable APIs, this is not always possible. The orig-

inal code may no longer be maintained or its maintainers

may not be willing to refactor the code to meet the new

requirements. Indeed it has been shown that reused code

must be frequently modified in some way to work within

its new context [16]. Frakes and Kang note that dedicated

reuse strategies within companies require a large up-front

cost that must be justified in terms of business goals. They

also found that most software systems are variants on pre-

existing systems [5]. As new systems are extensions of the

old, it is natural that pragmatic reuse will take place in sit-

uations where the new requirements do not align perfectly

with the old.

Our tool addresses two issues identified by Frakes [4]

through an industrial reuse questionnaire. First, he iden-

tified that CASE tools may not be effective at promoting

reuse. By extending a popular IDE with features specific to

pragmatic reuse tasks, we hope this can improve the envi-

ronment’s ability to help developers engage in these tasks.

Second, he identified that the lack of process hampers reuse

efforts. Our tool provides developers with a unified ap-

proach for investigating reuse tasks; this approach can help

reduce the ad hoc nature of source traversal inherent in how

developers currently perform unanticipated reuse tasks.

4.2. Developer practices
Parsons and Saunders [15] determined that developers were

able to perform tasks by anchoring their understanding to

existing code and adjusting the code to meet their needs.

While this evaluation was only tested for one small case

(albeit with many developers), it is an encouraging endorse-

ment for so-called “white box” reuse. By providing devel-

opers with a concrete reuse plan, we aim to help developers

anchor the reuse task so they can better understand how the

code needs to be adjusted to meet their needs.

Selby [16] analyzed 25 projects at NASA and discovered

that 32% of the modules within those projects were reused

from prior projects. Of these reused modules, 47% required

modification from their original form; we take this as fur-

ther motivation for our approach which aims to help devel-

opers plan these changes.

Reuse in the manner we are advocating can be seen as

creating code clones. While these clones have in the past

been perceived negatively, recent research has found that

clones are frequently short lived, and when they are long-

lived they are not easily refactored [8]. Short-lived clones

are those that are reused and then modified to meet the new

system’s requirements. Non-refactorable clones indicate

that the original API could not be refactored to meet the re-

quirements of both the old and new usage. These cases are

no worse than implementing the features from scratch but

the developers still get the added benefit of having reused

code (reduced effort and tested code). One problem with

reusing code in this manner, however, is that when bugs are

fixed in the original source they are not automatically prop-

agated to the reused versions; support for such a process is

an active research topic [7].

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

Azureus Reuse Plan

Extraction and integration required 708 LOC (reused).
Within these, 2 methods and 5 LOC were commented.

Strongly Somewhat Somewhat Strongly
Question

Agree
Agree

Agree
Neutral

Disagree
Disagree

Disagree

1 I have reused source code 10 2 0 0 0 0 0

2 I have reused whole classes 7 3 2 0 0 0 0

3 I have reused whole features 4 0 1 1 4 2 0

4 I would rather reimplement a

feature than reuse an existing one
0 0 2 1 3 4 2

5 I reuse code to save time 6 4 2 0 0 0 0

6 I reuse code to increase reliability 4 7 0 1 0 0 0

Keeping track of the relevant details

7 of a piece of source code while 2 6 2 1 0 1 0

navigating its text can be difficult

Understanding what dependencies a

feature has on its context is important
8

for me to determine whether I
7 5 0 0 0 0 0

should reuse it

My organization has a large amount of
9

code available to be reused
5 1 4 1 1 0 0

Portions of features I am developing
10

already exist
1 4 5 0 1 1 0

Table 1. Responses from the industrial reuse questionnaire.

trial developers working in different companies. We identi-

fied these four developers during our survey as they all work

with the the Java programming language within the Eclipse

IDE, the same environment Gilligan currently supports. In

addition to verifying that the developers could plan reuse

tasks, we wanted to know if the developers felt they could

tackle larger reuse tasks with the tool than they would nor-

mally attempt. The four developers applied our tool to their

reuse tasks and filled in a short questionnaire about each

task they tried. Gilligan was also instrumented to record the

developers’ navigation and decision actions as they were in-

vestigating their reuse task.

5.2.1 Case study 1

The first developer undertook two tasks: he extracted code

from the open-source SWT framework for parsing both

BMP and PNG image files. He wanted to reuse these pieces

of code because they involved complex binary file format

I/O that he did not want to have to write himself and he was

unable to reuse all of SWT (which comprises 68 kloc spread

across 458 classes4).

BMP extraction. The developer started Gilligan with the

WinBMPFileFormat class as the initial node. Using the

graphical view, the developer was able to quickly reject

several methods in this class as they pertained to the writ-

ing of these files, which he was not interested in. Fur-

ther exploration led him towards LEDataInputStream

and ImageData. He reused the former in its entirety, and

just the data structure from the latter. In the end, he reused

4http://www.eclipse.org/swt/

497 lines of code and had no latent dependencies on SWT.

Of the 14,081 possible nodes in SWT, the developer only

visited 60. His final view of the feature had 27 visible

nodes. Of the nodes he visited, he accepted 38, rejected 16,

remapped 2, and 4 were already provided.

The developer then demonstrated how he would

have undertaken the task manually. First, he copied

WinBMPFileFormat into his new project. He then went

down the list of compilation problems (there were many)

and dealt with them individually. Any dependency he

could not easily manage he left until later. At the end he

went through the remaining difficult dependencies and also

copied LEDataInputStream and the ImageData data

structure into his workspace. Once the compilation errors

were resolved he was done. His methodology was similar

to what our tool provides: he used the compilation errors

as markers for structural dependencies that were not satis-

fied within his target environment. Unfortunately, doing this

manually forces the developer to undertake the task without

having first determined that it is feasible.

PNG extraction. The developer began his investigation

with the PNGFileFormat class. He was interested in im-

mediately noting all of the class-level dependencies of this

471-line class. Unfortunately, the tool is currently designed

to support a bottom-up investigation style and he had to

open PNGFileFormat’s methods to see these dependen-

cies. After opening these dependencies he had 92 nodes

on the screen and had discovered that there were at least

20 classes of interest to him for this task. During this

investigation the developer was interrupted multiple times

by co-worker questions. After these interruptions he was

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

Reuse in Industry - Survey

Evaluation - Case Study

BMP implementation PNG implementation

From SWT framework (65 kloc in 458 classes),
extract...

Evaluation - Case Study

BMP extraction PNG extraction

Evaluation - Case Study

BMP extraction PNG extraction

Evaluation - Case Study

BMP extraction PNG extraction

• Started with
WinBMPFileFormat.

• Led him to
LEDataInputStream and
ImageData.

• Reused 497 LOC.
• Of 14,081 nodes in SWT,

only 60 visited.
• 38 accepted, 16 rejected,

remapped 2 and 4 already
provided.

Evaluation - Case Study

BMP extraction PNG extraction

• Started with a 471 LOC
class.

• Of 92 nodes on screen,
20 were relevant to him.

• He marked 20 accepted,
2 rejected and 1
remapped.

• Eventually he reused 23
classes (approx 3 kloc).

• Changed mind often!

• Started with
WinBMPFileFormat.

• Led him to
LEDataInputStream and
ImageData.

• Reused 497 LOC.
• Of 14,081 nodes in SWT,

only 60 visited.
• 38 accepted, 16 rejected,

remapped 2 and 4 already
provided.

Strathcona

Java 6 API

Strathcona

To ease the burden of the developer, Strathcona uses
the structure of the source code to find relevant

examples in a repository.

Example Task

fragment. The graphical overview and textual rationale
description can be used by the developer to quickly decide
whether the recommended example is worth examining
more closely.

We have performed a series of empirical studies to
evaluate the approach and the tool. The results of these
studies provide evidence that 1) developers can recognize
and use examples located by Strathcona to complete
development tasks, 2) the approach provides better results
—without needing to formulate explicit queries—than
traditional search tools, and 3) the approach is robust in
its ability to locate relevant examples for a range of queries.

The paper begins, in Section 2, with a scenario where
the use of an example recommendation tool would
benefit the developer. Section 3 compares our approach
to other efforts. Section 4 describes the concept of
approximate structural context matching and how this
concept has been instantiated in a concrete tool, called
Strathcona, for recommending relevant examples. Section
5 presents our evaluation. Remaining issues and future
work are discussed in Section 6.

2 SAMPLE SCENARIO

The user interface of the Eclipse IDE includes a status line
that reports information about the state of the environment
to the user. For example, when the user selects some items
from a tree view in Eclipse, the status line shows the
number of selected items (Fig. 1). Consider a developer who
is writing an extension for the Eclipse environment, called a
plug-in, and who wants to display a message on the status
line from within their view. The first place a developer
might look for help with this task is the Eclipse documenta-
tion. Checking this resource, the developer finds a reference
to an interface called IStatusLineManager. Looking at
the API documentation for IStatusLineManager (Fig. 2),
the developer finds the seemingly appropriately named
method setMessage(String). The API documentation
mentions that there is a concrete implementation Status-

LineManager but does not provide any clues as to how
to obtain an existing instance of that type. The developer
attempts to implement a method, named update-

StatusMessage (String msg), that calls IStatus-

LineManager.setMessage(msg). Unfortunately, this
method will not compile because IStatusLineManager

is an interface type, but setMessage(String) is an
instance method. The API documentation mentions that

there is a concrete class StatusLineManager but contains
no obvious clues as to how to obtain an existing object on
which to call setMessage(String). At this point, the
developer becomes lost, uncertain of the next step needed to
complete the task.

This scenario describes a conceptually simple task of
updating a status line. However, even this simple task
requires knowledge about the interaction between several
types of the framework, including ViewPart, IViewSite,
IActionBars, and IStatusLineManager. This interac-
tion is not described in the Eclipse documentation.2

Although the interactions may be discovered using the
code completion features in Eclipse, the correct sequence of
calls is difficult to find as there are a total of 79 methods
available across the four classes.

Strathcona can help in this situation. As shown in Fig. 3a,
the developer highlights some code they have written and
chooses Query Strathcona from the context menu to request
similar examples. The client portion of Strathcona extracts
the structural context of the source code fragment that the
developer has selected. The structural context comprises the
structural details about the selected code and its containing
class. In this case, the structural context will contain the
facts that the selected code calls IStatusLineManager.

setMessage(String), that it uses IStatusLine-

Manager and String, and that its containing class inherits
from ViewPart. The structural context is sent to the server
portion of Strathcona, which returns 10 structurally related
examples. Each of these examples consists of three parts: a
code fragment, a structural description of the code frag-
ment, and a rationale explaining the relevance of the code
fragment to the problem the developer is facing.

Fig. 3b shows a graphical view of the relevant structure
for one of the returned examples. The rationale for this
example shows that it was selected because its code calls the
IStatusLineManager.setMessage(String) method,
uses IStatusLineManager, and extends ViewPart

(Fig. 3c). The developer requests the code for the example,
and Strathcona highlights the call chain getView-

Site().getActionBars().getStatusLineMana-

ger().setMessage(msg) as shown in Fig. 3d. The
developer assesses this example as useful and attempts to
use it by directly copying the statement into their method.
Testing this code, the developer finds that they have
completed their task.

3 RELATED WORK

We describe previous efforts in three areas related to our
structural context matching approach: other efforts aimed at
easing the use of a complex framework or API, efforts

HOLMES ET AL.: APPROXIMATE STRUCTURAL CONTEXT MATCHING: AN APPROACH TO RECOMMEND RELEVANT EXAMPLES 953

Fig. 1. An example of the behavior of the Eclipse status line.

Fig. 2. API documentation for IStatusLineManager.

2. As of Version 3.2M5.

Status Line

Example Task

fragment. The graphical overview and textual rationale
description can be used by the developer to quickly decide
whether the recommended example is worth examining
more closely.

We have performed a series of empirical studies to
evaluate the approach and the tool. The results of these
studies provide evidence that 1) developers can recognize
and use examples located by Strathcona to complete
development tasks, 2) the approach provides better results
—without needing to formulate explicit queries—than
traditional search tools, and 3) the approach is robust in
its ability to locate relevant examples for a range of queries.

The paper begins, in Section 2, with a scenario where
the use of an example recommendation tool would
benefit the developer. Section 3 compares our approach
to other efforts. Section 4 describes the concept of
approximate structural context matching and how this
concept has been instantiated in a concrete tool, called
Strathcona, for recommending relevant examples. Section
5 presents our evaluation. Remaining issues and future
work are discussed in Section 6.

2 SAMPLE SCENARIO

The user interface of the Eclipse IDE includes a status line
that reports information about the state of the environment
to the user. For example, when the user selects some items
from a tree view in Eclipse, the status line shows the
number of selected items (Fig. 1). Consider a developer who
is writing an extension for the Eclipse environment, called a
plug-in, and who wants to display a message on the status
line from within their view. The first place a developer
might look for help with this task is the Eclipse documenta-
tion. Checking this resource, the developer finds a reference
to an interface called IStatusLineManager. Looking at
the API documentation for IStatusLineManager (Fig. 2),
the developer finds the seemingly appropriately named
method setMessage(String). The API documentation
mentions that there is a concrete implementation Status-

LineManager but does not provide any clues as to how
to obtain an existing instance of that type. The developer
attempts to implement a method, named update-

StatusMessage (String msg), that calls IStatus-

LineManager.setMessage(msg). Unfortunately, this
method will not compile because IStatusLineManager

is an interface type, but setMessage(String) is an
instance method. The API documentation mentions that

there is a concrete class StatusLineManager but contains
no obvious clues as to how to obtain an existing object on
which to call setMessage(String). At this point, the
developer becomes lost, uncertain of the next step needed to
complete the task.

This scenario describes a conceptually simple task of
updating a status line. However, even this simple task
requires knowledge about the interaction between several
types of the framework, including ViewPart, IViewSite,
IActionBars, and IStatusLineManager. This interac-
tion is not described in the Eclipse documentation.2

Although the interactions may be discovered using the
code completion features in Eclipse, the correct sequence of
calls is difficult to find as there are a total of 79 methods
available across the four classes.

Strathcona can help in this situation. As shown in Fig. 3a,
the developer highlights some code they have written and
chooses Query Strathcona from the context menu to request
similar examples. The client portion of Strathcona extracts
the structural context of the source code fragment that the
developer has selected. The structural context comprises the
structural details about the selected code and its containing
class. In this case, the structural context will contain the
facts that the selected code calls IStatusLineManager.

setMessage(String), that it uses IStatusLine-

Manager and String, and that its containing class inherits
from ViewPart. The structural context is sent to the server
portion of Strathcona, which returns 10 structurally related
examples. Each of these examples consists of three parts: a
code fragment, a structural description of the code frag-
ment, and a rationale explaining the relevance of the code
fragment to the problem the developer is facing.

Fig. 3b shows a graphical view of the relevant structure
for one of the returned examples. The rationale for this
example shows that it was selected because its code calls the
IStatusLineManager.setMessage(String) method,
uses IStatusLineManager, and extends ViewPart

(Fig. 3c). The developer requests the code for the example,
and Strathcona highlights the call chain getView-

Site().getActionBars().getStatusLineMana-

ger().setMessage(msg) as shown in Fig. 3d. The
developer assesses this example as useful and attempts to
use it by directly copying the statement into their method.
Testing this code, the developer finds that they have
completed their task.

3 RELATED WORK

We describe previous efforts in three areas related to our
structural context matching approach: other efforts aimed at
easing the use of a complex framework or API, efforts

HOLMES ET AL.: APPROXIMATE STRUCTURAL CONTEXT MATCHING: AN APPROACH TO RECOMMEND RELEVANT EXAMPLES 953

Fig. 1. An example of the behavior of the Eclipse status line.

Fig. 2. API documentation for IStatusLineManager.

2. As of Version 3.2M5.

Status Line

fragment. The graphical overview and textual rationale
description can be used by the developer to quickly decide
whether the recommended example is worth examining
more closely.

We have performed a series of empirical studies to
evaluate the approach and the tool. The results of these
studies provide evidence that 1) developers can recognize
and use examples located by Strathcona to complete
development tasks, 2) the approach provides better results
—without needing to formulate explicit queries—than
traditional search tools, and 3) the approach is robust in
its ability to locate relevant examples for a range of queries.

The paper begins, in Section 2, with a scenario where
the use of an example recommendation tool would
benefit the developer. Section 3 compares our approach
to other efforts. Section 4 describes the concept of
approximate structural context matching and how this
concept has been instantiated in a concrete tool, called
Strathcona, for recommending relevant examples. Section
5 presents our evaluation. Remaining issues and future
work are discussed in Section 6.

2 SAMPLE SCENARIO

The user interface of the Eclipse IDE includes a status line
that reports information about the state of the environment
to the user. For example, when the user selects some items
from a tree view in Eclipse, the status line shows the
number of selected items (Fig. 1). Consider a developer who
is writing an extension for the Eclipse environment, called a
plug-in, and who wants to display a message on the status
line from within their view. The first place a developer
might look for help with this task is the Eclipse documenta-
tion. Checking this resource, the developer finds a reference
to an interface called IStatusLineManager. Looking at
the API documentation for IStatusLineManager (Fig. 2),
the developer finds the seemingly appropriately named
method setMessage(String). The API documentation
mentions that there is a concrete implementation Status-

LineManager but does not provide any clues as to how
to obtain an existing instance of that type. The developer
attempts to implement a method, named update-

StatusMessage (String msg), that calls IStatus-

LineManager.setMessage(msg). Unfortunately, this
method will not compile because IStatusLineManager

is an interface type, but setMessage(String) is an
instance method. The API documentation mentions that

there is a concrete class StatusLineManager but contains
no obvious clues as to how to obtain an existing object on
which to call setMessage(String). At this point, the
developer becomes lost, uncertain of the next step needed to
complete the task.

This scenario describes a conceptually simple task of
updating a status line. However, even this simple task
requires knowledge about the interaction between several
types of the framework, including ViewPart, IViewSite,
IActionBars, and IStatusLineManager. This interac-
tion is not described in the Eclipse documentation.2

Although the interactions may be discovered using the
code completion features in Eclipse, the correct sequence of
calls is difficult to find as there are a total of 79 methods
available across the four classes.

Strathcona can help in this situation. As shown in Fig. 3a,
the developer highlights some code they have written and
chooses Query Strathcona from the context menu to request
similar examples. The client portion of Strathcona extracts
the structural context of the source code fragment that the
developer has selected. The structural context comprises the
structural details about the selected code and its containing
class. In this case, the structural context will contain the
facts that the selected code calls IStatusLineManager.

setMessage(String), that it uses IStatusLine-

Manager and String, and that its containing class inherits
from ViewPart. The structural context is sent to the server
portion of Strathcona, which returns 10 structurally related
examples. Each of these examples consists of three parts: a
code fragment, a structural description of the code frag-
ment, and a rationale explaining the relevance of the code
fragment to the problem the developer is facing.

Fig. 3b shows a graphical view of the relevant structure
for one of the returned examples. The rationale for this
example shows that it was selected because its code calls the
IStatusLineManager.setMessage(String) method,
uses IStatusLineManager, and extends ViewPart

(Fig. 3c). The developer requests the code for the example,
and Strathcona highlights the call chain getView-

Site().getActionBars().getStatusLineMana-

ger().setMessage(msg) as shown in Fig. 3d. The
developer assesses this example as useful and attempts to
use it by directly copying the statement into their method.
Testing this code, the developer finds that they have
completed their task.

3 RELATED WORK

We describe previous efforts in three areas related to our
structural context matching approach: other efforts aimed at
easing the use of a complex framework or API, efforts

HOLMES ET AL.: APPROXIMATE STRUCTURAL CONTEXT MATCHING: AN APPROACH TO RECOMMEND RELEVANT EXAMPLES 953

Fig. 1. An example of the behavior of the Eclipse status line.

Fig. 2. API documentation for IStatusLineManager.

2. As of Version 3.2M5.

API Documentation for IStatusLineManager

Client: Determining
Structural Context

aimed at finding code to reuse, and efforts aimed at
detecting similar code.

3.1 API and Framework Helpers

Several researchers have suggested forms of documentation
to ease the use of frameworks (e.g., [3], [6], [12]). However,
such an approach requires a significant amount of effort on
the part of the original developer to document the frame-
work for the various ways in which a large framework may
be used. To reduce this overhead, others have suggested
encoding information about the intended use of the frame-
work within the framework itself. For example, hooks [5]
concisely enumerate the constraints that must be honored
by the developer, the steps they must follow to use a hook,
and the effect that using a hook will have on the framework
itself. Although hooks are likely easier to evolve with a
framework, they must still be defined manually by the
framework developer.

In the Reuse View Matcher (RVM), Rosson and Carroll
took the approach of providing a set of views within a
development environment to describe how an application
makes use of a particular class in a framework [19]. This
active form of documentation relies on hand-crafted
examples that can be time-consuming to create, that can
become out-of-date with the code, and that may not
describe uses of all of the classes in the framework.

One way to overcome the need to write and access
documentation, whether external or internal to the API, is

through the automated provision of examples, as in our
approach. Jungloids [13] can help in the particular case of
determining a possible call chain between a source type and
target type. A repository of past uses of the API is mined to
help guide an automated search for a call chain that has
previously been used. In contrast to our approach, jungloids
do not infer the developer’s context, but rather require a
specific source and target type to be identified. Detailed
examples are not returned, merely the “best” call chain that
the tool can automatically determine; thus, the developer
cannot use that technique to discover additional issues that
have lead others to choose particular call chains.

The CodeFinder system addressed the problem of
formulating an appropriate query to a repository of
examples by attempting to help developers construct useful
queries [7]. The developer formulates a simple text query,
executes the query, and is then presented with a list of
terms in the repository that are similar to those in the query.
Depending on the terms and options selected by the
developer, a different set of restrictions is presented to
help narrow the search space to a specific class of examples
of interest. In contrast to CodeFinder, our approach aims to
remove the step of formulating the query by creating the
query automatically.

Other tools, such as Component Rank [11] and CodeWeb
[14], [15], use software structure to determine which parts of
a framework are frequently used; knowing which parts are

954 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 12, DECEMBER 2006

Fig. 3. Querying Strathcona for examples, and viewing results. (a) Querying Strathcona. (b) Graphical view of example’s similarity to the queried

source. (c) Textual view of rationale for why the example was chosen. (d) Source view.

Client: Determining
Structural Context

aimed at finding code to reuse, and efforts aimed at
detecting similar code.

3.1 API and Framework Helpers

Several researchers have suggested forms of documentation
to ease the use of frameworks (e.g., [3], [6], [12]). However,
such an approach requires a significant amount of effort on
the part of the original developer to document the frame-
work for the various ways in which a large framework may
be used. To reduce this overhead, others have suggested
encoding information about the intended use of the frame-
work within the framework itself. For example, hooks [5]
concisely enumerate the constraints that must be honored
by the developer, the steps they must follow to use a hook,
and the effect that using a hook will have on the framework
itself. Although hooks are likely easier to evolve with a
framework, they must still be defined manually by the
framework developer.

In the Reuse View Matcher (RVM), Rosson and Carroll
took the approach of providing a set of views within a
development environment to describe how an application
makes use of a particular class in a framework [19]. This
active form of documentation relies on hand-crafted
examples that can be time-consuming to create, that can
become out-of-date with the code, and that may not
describe uses of all of the classes in the framework.

One way to overcome the need to write and access
documentation, whether external or internal to the API, is

through the automated provision of examples, as in our
approach. Jungloids [13] can help in the particular case of
determining a possible call chain between a source type and
target type. A repository of past uses of the API is mined to
help guide an automated search for a call chain that has
previously been used. In contrast to our approach, jungloids
do not infer the developer’s context, but rather require a
specific source and target type to be identified. Detailed
examples are not returned, merely the “best” call chain that
the tool can automatically determine; thus, the developer
cannot use that technique to discover additional issues that
have lead others to choose particular call chains.

The CodeFinder system addressed the problem of
formulating an appropriate query to a repository of
examples by attempting to help developers construct useful
queries [7]. The developer formulates a simple text query,
executes the query, and is then presented with a list of
terms in the repository that are similar to those in the query.
Depending on the terms and options selected by the
developer, a different set of restrictions is presented to
help narrow the search space to a specific class of examples
of interest. In contrast to CodeFinder, our approach aims to
remove the step of formulating the query by creating the
query automatically.

Other tools, such as Component Rank [11] and CodeWeb
[14], [15], use software structure to determine which parts of
a framework are frequently used; knowing which parts are

954 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 12, DECEMBER 2006

Fig. 3. Querying Strathcona for examples, and viewing results. (a) Querying Strathcona. (b) Graphical view of example’s similarity to the queried

source. (c) Textual view of rationale for why the example was chosen. (d) Source view.

Extract structural contexts

Client: Determining
Structural Context

aimed at finding code to reuse, and efforts aimed at
detecting similar code.

3.1 API and Framework Helpers

Several researchers have suggested forms of documentation
to ease the use of frameworks (e.g., [3], [6], [12]). However,
such an approach requires a significant amount of effort on
the part of the original developer to document the frame-
work for the various ways in which a large framework may
be used. To reduce this overhead, others have suggested
encoding information about the intended use of the frame-
work within the framework itself. For example, hooks [5]
concisely enumerate the constraints that must be honored
by the developer, the steps they must follow to use a hook,
and the effect that using a hook will have on the framework
itself. Although hooks are likely easier to evolve with a
framework, they must still be defined manually by the
framework developer.

In the Reuse View Matcher (RVM), Rosson and Carroll
took the approach of providing a set of views within a
development environment to describe how an application
makes use of a particular class in a framework [19]. This
active form of documentation relies on hand-crafted
examples that can be time-consuming to create, that can
become out-of-date with the code, and that may not
describe uses of all of the classes in the framework.

One way to overcome the need to write and access
documentation, whether external or internal to the API, is

through the automated provision of examples, as in our
approach. Jungloids [13] can help in the particular case of
determining a possible call chain between a source type and
target type. A repository of past uses of the API is mined to
help guide an automated search for a call chain that has
previously been used. In contrast to our approach, jungloids
do not infer the developer’s context, but rather require a
specific source and target type to be identified. Detailed
examples are not returned, merely the “best” call chain that
the tool can automatically determine; thus, the developer
cannot use that technique to discover additional issues that
have lead others to choose particular call chains.

The CodeFinder system addressed the problem of
formulating an appropriate query to a repository of
examples by attempting to help developers construct useful
queries [7]. The developer formulates a simple text query,
executes the query, and is then presented with a list of
terms in the repository that are similar to those in the query.
Depending on the terms and options selected by the
developer, a different set of restrictions is presented to
help narrow the search space to a specific class of examples
of interest. In contrast to CodeFinder, our approach aims to
remove the step of formulating the query by creating the
query automatically.

Other tools, such as Component Rank [11] and CodeWeb
[14], [15], use software structure to determine which parts of
a framework are frequently used; knowing which parts are

954 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 12, DECEMBER 2006

Fig. 3. Querying Strathcona for examples, and viewing results. (a) Querying Strathcona. (b) Graphical view of example’s similarity to the queried

source. (c) Textual view of rationale for why the example was chosen. (d) Source view.

Extract structural contexts

•declaring type is View
•declares method updateStatusMessage.java
•extends org.eclipse.ui.part.ViewPart
•...

Server Repository

• Code must be parsable by Eclipse compiler.

• Code must represent good usage of API.

Conditions for addition

Structural contexts are stored in PostGRES tables.

Output Examples

aimed at finding code to reuse, and efforts aimed at
detecting similar code.

3.1 API and Framework Helpers

Several researchers have suggested forms of documentation
to ease the use of frameworks (e.g., [3], [6], [12]). However,
such an approach requires a significant amount of effort on
the part of the original developer to document the frame-
work for the various ways in which a large framework may
be used. To reduce this overhead, others have suggested
encoding information about the intended use of the frame-
work within the framework itself. For example, hooks [5]
concisely enumerate the constraints that must be honored
by the developer, the steps they must follow to use a hook,
and the effect that using a hook will have on the framework
itself. Although hooks are likely easier to evolve with a
framework, they must still be defined manually by the
framework developer.

In the Reuse View Matcher (RVM), Rosson and Carroll
took the approach of providing a set of views within a
development environment to describe how an application
makes use of a particular class in a framework [19]. This
active form of documentation relies on hand-crafted
examples that can be time-consuming to create, that can
become out-of-date with the code, and that may not
describe uses of all of the classes in the framework.

One way to overcome the need to write and access
documentation, whether external or internal to the API, is

through the automated provision of examples, as in our
approach. Jungloids [13] can help in the particular case of
determining a possible call chain between a source type and
target type. A repository of past uses of the API is mined to
help guide an automated search for a call chain that has
previously been used. In contrast to our approach, jungloids
do not infer the developer’s context, but rather require a
specific source and target type to be identified. Detailed
examples are not returned, merely the “best” call chain that
the tool can automatically determine; thus, the developer
cannot use that technique to discover additional issues that
have lead others to choose particular call chains.

The CodeFinder system addressed the problem of
formulating an appropriate query to a repository of
examples by attempting to help developers construct useful
queries [7]. The developer formulates a simple text query,
executes the query, and is then presented with a list of
terms in the repository that are similar to those in the query.
Depending on the terms and options selected by the
developer, a different set of restrictions is presented to
help narrow the search space to a specific class of examples
of interest. In contrast to CodeFinder, our approach aims to
remove the step of formulating the query by creating the
query automatically.

Other tools, such as Component Rank [11] and CodeWeb
[14], [15], use software structure to determine which parts of
a framework are frequently used; knowing which parts are

954 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 12, DECEMBER 2006

Fig. 3. Querying Strathcona for examples, and viewing results. (a) Querying Strathcona. (b) Graphical view of example’s similarity to the queried

source. (c) Textual view of rationale for why the example was chosen. (d) Source view.

aimed at finding code to reuse, and efforts aimed at
detecting similar code.

3.1 API and Framework Helpers

Several researchers have suggested forms of documentation
to ease the use of frameworks (e.g., [3], [6], [12]). However,
such an approach requires a significant amount of effort on
the part of the original developer to document the frame-
work for the various ways in which a large framework may
be used. To reduce this overhead, others have suggested
encoding information about the intended use of the frame-
work within the framework itself. For example, hooks [5]
concisely enumerate the constraints that must be honored
by the developer, the steps they must follow to use a hook,
and the effect that using a hook will have on the framework
itself. Although hooks are likely easier to evolve with a
framework, they must still be defined manually by the
framework developer.

In the Reuse View Matcher (RVM), Rosson and Carroll
took the approach of providing a set of views within a
development environment to describe how an application
makes use of a particular class in a framework [19]. This
active form of documentation relies on hand-crafted
examples that can be time-consuming to create, that can
become out-of-date with the code, and that may not
describe uses of all of the classes in the framework.

One way to overcome the need to write and access
documentation, whether external or internal to the API, is

through the automated provision of examples, as in our
approach. Jungloids [13] can help in the particular case of
determining a possible call chain between a source type and
target type. A repository of past uses of the API is mined to
help guide an automated search for a call chain that has
previously been used. In contrast to our approach, jungloids
do not infer the developer’s context, but rather require a
specific source and target type to be identified. Detailed
examples are not returned, merely the “best” call chain that
the tool can automatically determine; thus, the developer
cannot use that technique to discover additional issues that
have lead others to choose particular call chains.

The CodeFinder system addressed the problem of
formulating an appropriate query to a repository of
examples by attempting to help developers construct useful
queries [7]. The developer formulates a simple text query,
executes the query, and is then presented with a list of
terms in the repository that are similar to those in the query.
Depending on the terms and options selected by the
developer, a different set of restrictions is presented to
help narrow the search space to a specific class of examples
of interest. In contrast to CodeFinder, our approach aims to
remove the step of formulating the query by creating the
query automatically.

Other tools, such as Component Rank [11] and CodeWeb
[14], [15], use software structure to determine which parts of
a framework are frequently used; knowing which parts are

954 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 12, DECEMBER 2006

Fig. 3. Querying Strathcona for examples, and viewing results. (a) Querying Strathcona. (b) Graphical view of example’s similarity to the queried

source. (c) Textual view of rationale for why the example was chosen. (d) Source view.

aimed at finding code to reuse, and efforts aimed at
detecting similar code.

3.1 API and Framework Helpers

Several researchers have suggested forms of documentation
to ease the use of frameworks (e.g., [3], [6], [12]). However,
such an approach requires a significant amount of effort on
the part of the original developer to document the frame-
work for the various ways in which a large framework may
be used. To reduce this overhead, others have suggested
encoding information about the intended use of the frame-
work within the framework itself. For example, hooks [5]
concisely enumerate the constraints that must be honored
by the developer, the steps they must follow to use a hook,
and the effect that using a hook will have on the framework
itself. Although hooks are likely easier to evolve with a
framework, they must still be defined manually by the
framework developer.

In the Reuse View Matcher (RVM), Rosson and Carroll
took the approach of providing a set of views within a
development environment to describe how an application
makes use of a particular class in a framework [19]. This
active form of documentation relies on hand-crafted
examples that can be time-consuming to create, that can
become out-of-date with the code, and that may not
describe uses of all of the classes in the framework.

One way to overcome the need to write and access
documentation, whether external or internal to the API, is

through the automated provision of examples, as in our
approach. Jungloids [13] can help in the particular case of
determining a possible call chain between a source type and
target type. A repository of past uses of the API is mined to
help guide an automated search for a call chain that has
previously been used. In contrast to our approach, jungloids
do not infer the developer’s context, but rather require a
specific source and target type to be identified. Detailed
examples are not returned, merely the “best” call chain that
the tool can automatically determine; thus, the developer
cannot use that technique to discover additional issues that
have lead others to choose particular call chains.

The CodeFinder system addressed the problem of
formulating an appropriate query to a repository of
examples by attempting to help developers construct useful
queries [7]. The developer formulates a simple text query,
executes the query, and is then presented with a list of
terms in the repository that are similar to those in the query.
Depending on the terms and options selected by the
developer, a different set of restrictions is presented to
help narrow the search space to a specific class of examples
of interest. In contrast to CodeFinder, our approach aims to
remove the step of formulating the query by creating the
query automatically.

Other tools, such as Component Rank [11] and CodeWeb
[14], [15], use software structure to determine which parts of
a framework are frequently used; knowing which parts are

954 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 12, DECEMBER 2006

Fig. 3. Querying Strathcona for examples, and viewing results. (a) Querying Strathcona. (b) Graphical view of example’s similarity to the queried

source. (c) Textual view of rationale for why the example was chosen. (d) Source view.

Code Search Engines

MAPO

MAPO

query

MAPO
1. code
search
engine

query

open source
repositories

MAPO
1. code
search
engine

source
files

query

open source
repositories

MAPO
1. code
search
engine

source
files

2. code
analyser

query

open source
repositories

MAPO
1. code
search
engine

source
files

2. code
analyser

call
sequences

query

open source
repositories

MAPO
1. code
search
engine

source
files

2. code
analyser

3. sequence
processor

call
sequences

query

open source
repositories

MAPO
1. code
search
engine

source
files

2. code
analyser

3. sequence
processor

call
sequences

call
sequences

query

open source
repositories

MAPO
1. code
search
engine

source
files

2. code
analyser

3. sequence
processor

call
sequences

4. frequent
sequence

miner

call
sequences

query

open source
repositories

MAPO
1. code
search
engine

source
files

2. code
analyser

3. sequence
processor

call
sequences

4. frequent
sequence

miner

frequent
sequences

call
sequences

query

open source
repositories

MAPO
1. code
search
engine

source
files

2. code
analyser

3. sequence
processor

call
sequences

4. frequent
sequence

miner

frequent
sequences

call
sequences

5. frequent
sequence
processor

query

open source
repositories

MAPO
1. code
search
engine

source
files

2. code
analyser

3. sequence
processor

call
sequences

4. frequent
sequence

miner

frequent
sequences

call
sequences

5. frequent
sequence
processor

API
Usages

query

open source
repositories

