
Lecture 1
Introduction to

Empirical Software Engineering

Constantly Evolving
Technology

Constantly Evolving
Technology

structured design

structured programming

abstract data types

CASE tools

maturity models

Research Claims

Research Claims
by Vendors...

Research Claims
by Vendors...

Tool A

Tool B

0 87.5 175.0 262.5 350.0

Productivity

Productivity increases by 250%!

Research Claims
by Vendors...

Tool A

Tool B

0 87.5 175.0 262.5 350.0

Productivity

Productivity increases by 250%!

Tool C

Tool D

0 25 50 75 100

Maintenance Effort

Maintenance Effort decreases by 80%!

How
do I decide which tool to

use?

How do I decide
which tool to use?

How
do I decide which tool to

use?

How do I decide
which tool to use?

one way to find out...

Experimentation

How
do I decide which tool to

use?

How do I decide
which tool to use?

one way to find out...

Experimentation

How
do I decide which tool to

use?

How do I decide
which tool to use?

one way to find out...

Empirical Software Engineering

or

Empirical means...?

Empirical means...?

• “Relying on or
derived from
observation or
experimentation.”

• “Verifiable or
provable by means
of observation or
experiment.”

Empirical Software
Engineering

“...a branch of software engineering where the
focus is to experiment on software systems
including its products and processes.”

Empirical Software
Engineering

“...a branch of software engineering where the
focus is to experiment on software systems
including its products and processes.”

...or Experimental Software Engineering?

Analytical Advocacy Research
trust me... it will work!

Aeronautical Engineering

Aeronautical Engineering

Empirical analysis and testing

Formal Methods

Evidence for use in fault
tolerant systems?

Widespread appeal without
rigourous experimentation.

Adoption requires
revolutionary change in design.

IBM claimed a saving of $5.5
million, 9% and 60% fall in
defects.

What can we borrow from
other mature disciplines?

Isaac Newton

... law of mechanics described how particles
respond to forces.

... law of gravity described how mass of objects
is involved in their attraction for one another.

“most physicists believed that the world works in a
rational way, and if they tried hard enough, they could

find the rules by which this behaviour happens.”

Albert Einstein

Theory of Relativity

Goal-Question-Metric

Poor Experimental Design

Later, David Scanlan conducted
experiments to suggest otherwise.
He also pointed many design flaws
in the above experiment.

Ben Schneiderman and
colleagues showed
that flowcharts to not
help progammer’s
comprehension.

Why Experiment?

Experiments don’t prove a thing.

Experiments can only show the presence of
bugs in a theory, not their absence.

Edsger Dijstra

University of Texas, Austin

Fallacy 1

Traditional Scientific Experimentation is Inapplicable

Fallacy 2

The current level of experimentation is good enough.

Fallacy 3

Experiments cost too much

Fallacy 4

Demonstrations will suffice.

Fallacy 5

There is too much noise.

Fallacy 6

Experiments will slow progress.

Fallacy 7

Technology changes too fast.

Fallacy 8

You’ll never get it published.

Conclusions

Conclusions

• ...but, currently little empirical evidence to confirm improvements.

Conclusions

• ...but, currently little empirical evidence to confirm improvements.
• need to carefully assess costs and benefits.

Conclusions

• ...but, currently little empirical evidence to confirm improvements.
• need to carefully assess costs and benefits.
• Perhaps, a widespread demand for change might change things?

Sources of Material

• W. F. Tichy, "Should Computer Scientists Experiment More?", IEEE
Computer, 31, 1998, pp. 32-40.

• D. E. Perry, A. A. Porter, and L. G. Votta, "Empirical Studies of
Software Engineering: A Roadmap", Limerick. Ireland, 2000.

• Fenton, N., S. L. Pfleeger, et al. (1994). "Science and Substance: A
Challenge to Software Engineers." IEEE Software 11(4): 86-95.

