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abstract data types
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maturity models
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How 
do I decide which tool to 

use?

How do I decide 
which tool to use?



How 
do I decide which tool to 

use?

How do I decide 
which tool to use?

one way to find out...



Experimentation

How 
do I decide which tool to 

use?

How do I decide 
which tool to use?

one way to find out...



Experimentation

How 
do I decide which tool to 

use?

How do I decide 
which tool to use?

one way to find out...

Empirical Software Engineering

or



Empirical means...?



Empirical means...?

• “Relying on or 
derived from 
observation or 
experimentation.”

• “Verifiable or 
provable by means 
of observation or 
experiment.”
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...or Experimental Software Engineering?



Analytical Advocacy Research
trust me... it will work!
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Aeronautical Engineering

Empirical analysis and testing



Formal Methods

Evidence for use in fault
tolerant systems?

Widespread appeal without 
rigourous experimentation.

Adoption requires 
revolutionary change in design.

IBM claimed a saving of $5.5 
million, 9% and 60% fall in 
defects.



What can we borrow from 
other mature disciplines?



Isaac Newton

... law of mechanics described how particles 
respond to forces.

... law of gravity described how mass of objects 
is involved in their attraction for one another.



“most physicists believed that the world works in a 
rational way, and if they tried hard enough, they could 

find the rules by which this behaviour happens.”



Albert Einstein

Theory of Relativity



Goal-Question-Metric



Poor Experimental Design

Later, David Scanlan conducted 
experiments to suggest otherwise. 
He also pointed many design flaws 
in the above experiment.

Ben Schneiderman and 
colleagues showed 
that flowcharts to not 
help progammer’s 
comprehension.



Why Experiment?

Experiments don’t prove a thing.

Experiments can only show the presence of 
bugs in a theory, not their absence.

Edsger Dijstra

University of Texas, Austin



Fallacy 1

Traditional Scientific Experimentation is Inapplicable



Fallacy 2

The current level of experimentation is good enough.



Fallacy 3

Experiments cost too much



Fallacy 4

Demonstrations will suffice.



Fallacy 5

There is too much noise.



Fallacy 6

Experiments will slow progress.



Fallacy 7

Technology changes too fast.



Fallacy 8

You’ll never get it published.
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Conclusions

• ...but, currently little empirical evidence to confirm improvements.
• need to carefully assess costs and benefits.
• Perhaps, a widespread demand for change might change things?
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