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No two parts are alike in software. . .

Software entities are more complex for their size than perhaps
any other human construct because no two parts are alike (at
least above the statement level). If they are, we make the two
similar parts into a subroutine — open or closed. In this
respect, software systems differ profoundly from computers,
buildings, or automobiles, where repeated elements abound.

– by Frederick P. Brooks, Jr: No Silver Bullet: Essence and Accidents of
Software Engineering
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Software Redundancy

copy&paste is common habit:

number 1 on Beck and Fowler’s “Stink Parade of Bad Smells”

typically 5–30 % of code is similar (Baker, 1995; Baxter et al., 1998)

in extreme cases, even up to 50 % (Ducasse et al., 1999)
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What is a software clone?

Software clones are segments of code that are similar according
to some definition of similarity.

– Ira Baxter, 2002
There can be different definitions of similarity based on . . .

text

syntax

semantics

pattern
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What types of clones exist?

Clone detection experiment (Bellon, 2002a):

type 1: identical code segments except for differences in layout and
comments

type 2: structurally identical segments except for differences in
identifiers, literals, layout, and comments

type 3: similar segments (additions, modifications, removals of
statements)

type 4: semantically equivalent segments

→ degree of similarity

properties:

type-1, type-2, and type-4 clones form an equivalence relation

semantic equivalence guaranteed only for type-4 clones
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Open Issues

What are suitable definitions of similarity for which purpose?

Is there a theory of program redundancy similar to normal forms in
databases?

What other categorizations of clones make sense (e.g., syntax,
semantics, origins, risks, etc.)?

What is the statistical distribution of clone types in real-world
programs?

Which strategies of removal and avoidance, risks of removal, potential
damages, root causes, and other factors are associated with these
categories?
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Why do clones exist?

Ethnographic study by Kim et al. (2005):

Limitations of programming language designs may result in
unavoidable duplicates in a code.

Programmers often delay code restructuring until they have copied
and pasted several times.

Copy&paste dependencies often reflect important underlying design
decisions, such as crosscutting concerns.

Copied text is often reused as a template and is customized in the
pasted context.

Investigation of clones in large systems by Kapser and Godfrey (2006):
patterns of cloning:

forking

templating

customization
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Open Issues

More empirical research needed. Other potential reasons:

insufficient information on global change impact

badly organized reuse process (type-4 clones)

questionable productivity measures (LOCs per day)

time pressure

educational deficiencies, ignorance, or shortsightedness

intellectual challenges (e.g., generics)

professionalism/end-user programming (e.g., HTML, Visual Basic,
etc.)

development process (Nickell and Smith (2003): XP yields less
clones?)

organizational issues, e.g., distributed development organizations

→ fight the reasons, not just the symptoms
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What are the consequences of cloning?

Only plausible arguments, such as clones increase maintenance effort.

Very few empirical studies on effects of cloning

Monden et al. (2002):

2,000 Cobol modules with clones with at least 30 lines (1 MLOC,
20 years old)

max clone length versus change frequency and number of errors

→ most errors in modules with a 200-line clone

→ many errors for modules with clones of less than 30 lines, too

→ lowest error rate for modules with 50-100–line clones
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What are the consequences of cloning?

Chou et al. (2001) investigate hypothesis that if a function, file, or
directory has one error, it is more likely that is has others

additional observation for Linux and OpenBSD:

this phenomenon can be observed most often where programmer
ignorance of interface or system rules combines with copy-and-paste

→ programmers believe that “working” code is correct code
→ if copied code is incorrect, or it is placed into a context it was not

intended for, the assumption of goodness is violated
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What are the consequences of cloning?

Li et al. (2006) use clone detection to find bugs when programmers copy
code but rename identifiers in the pasted code inconsistently.

Systems analyzed: Linux kernel, FreeBSD, Apache, and PostgreSQL.

Findings:

13 % of the clones flagged as copy-and-paste bugs turned out to be
real errors

73 % are false positives

14 % of the potential problems are still under analysis by the
developers of the analyzed systems.
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Open Issues

More empirical research needed on relation of cloning to quality attributes
(bugs, costs, performance, etc.).

R. Koschke (Univ. Bremen) Clone Detection 06/28/07 18 / 61



What are costs and benefits of clone removal?

We know various techniques to remove clones:

automatic refactoring (Fanta and Rajlich, 1999)

functional abstraction (Komondoor and Horwitz, 2002)

macros (e.g., CloneDr by Semantic Designs)

design patterns (Balazinska et al., 1999, 2000)

Cordy (2003) argues that companies are afraid of the risks.
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What are costs and benefits of clone removal?

clone detection integrated in development process (Lague et al., 1997):

(1) preventive control: addition of a clone is reported for confirmation

(2) problem mining: find other pieces of code to be changed

benefits analyzed post-mortem:

(1) is assessed by the number of functions changed that have clones that
were not changed; i.e., how often a modification was missed
potentially

(2) is assessed by the number of functions added that were similar to
existing functions; i.e., the code that could have been saved
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What are costs and benefits of clone removal?

Open Issues

Empirical investigations of costs and benefits of clone removal are needed:

clone types and their relation to quality attributes

relevance ranking of clone types

suitable removal techniques with costs and risks
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How do clones evolve?

Cloning is common and steady practice in Linux kernel (Godfrey and
Tu, 2000, 2001; Antoniol et al., 2001, 2002)

Clone genealogies (Kim et al., 2005):

show how clones derive in time over multiple versions of a program
from common ancestors
many code clones exist in the system for only a short time

→ extensive refactoring of such short-lived clones may not be worthwhile
if they likely diverge from one another very soon
many long-living clones that have changed consistently with other
elements in the same group cannot easily be avoided because of
limitations of the programming language.
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How do clones evolve?

Open Issues

How do clones evolve in industrial systems?

What does their evolution tell about the development organization?

What affects cloning likelihood over time?

How we can track and manage clones over versions?

Can we use history information to improve clone detectors?
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How can we detect clones?

Comparison of . . .

text

string comparison (Johnson, 1993, 1994b) based on fingerprints (Karp,
1986; Karp and Rabin, 1987)
line comparison based on dot plots (Ducasse et al., 1999; Rieger, 2005)
for whole files (Manber, 1994)

identifiers (information retrieval techniques)

latent semantic indexing (Marcus and Maletic, 2001)
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How can we detect clones?

Comparison of . . .

tokens

type-1/-2 clones: suffix trees (McCreight, 1976; Kosaraju, 1995) for
parameterized strings per line (Baker, 1992, 1993, 1995, 1996, 1997,
1999)
type-3: dynamic programming (Baker and Giancarlo, 2002).
per token plus normalization of token stream (Ueda et al., 1999; Inoue
et al., 2001; Kamiya et al., 2002, 2001b; Kamiya, 2001; Nakae et al.,
2001; Ueda et al., 2001, 2002a,b; Kamiya et al., 2001a)
post-processing to find clones fully contained in syntactic unit (Higo
et al., 2002)
pre-processing to find clones fully contained in syntactic unit
(Synytskyy et al., 2003; Cordy et al., 2004) using island parsers
(Moonen, 2001)
parsing to obtain syntactic scopes (Gitchell and Tran, 1999)
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How can we detect clones?

Comparison of . . .

metrics (Kontogiannis et al., 1994, 1995; Kontogiannis, 1997;
Mayrand et al., 1996; Kontogiannis et al., 1996b,a; Lague et al.,
1997; Balazinska et al., 1999, 2000; Merlo et al., 2002; Patenaude
et al., 1999; Merlo et al., 2004)

for web sites (Di Lucca et al., 2002; Lanubile and Mallardo, 2003)

statements using data mining (Wahler et al., 2004; Li et al., 2004)
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How can we detect clones?

Comparison of . . .

syntax trees

hashing plus tree matching (Baxter et al., 1998; Leitao, 2003)
tree matching plus dynamic programming (for file comparison) (Yang,
1991)
suffix trees for serialized syntax trees (Falke, Frenzel, and Koschke,
2006)

program dependency graphs (Komondoor and Horwitz, 2001a,b;
Krinke, 2001)
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How can we detect clones?

Combined approach by Leitao (2003)

syntactic transformations in canonical form

plus semantics in terms of comparison functions for

call graphs
commutative operators
user-defined equivalences that yield degree of evidence
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How can we compare clone detectors?

Quantitative comparison of clone detectors by Bailey and Burd (2002)

human oracle for 16 KLOC program
comparison of

token-based (Kamiya et al., 2002)
syntax-based (Baxter et al., 1998)
metric-based (Mayrand et al., 1996) (reimplemented)
token-based (plagiarism) (Prechelt et al., 2000)
text-based (plagiarism) (Schleimer et al., 2003)

recall

precision

Kamiya et al.

Baxter et al.

Mayrand et al.
Aiken

Prechelt et al.
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How can we compare clone detectors?

Quantitative comparison of clone detectors by Bellon and Koschke (2002b;
2007) for 4 Java and 4 C systems of 850 KLOC in total

Baker Baxter Kamiya Krinke Merlo Rieger

Basis Token AST Token PDG Metric Text
Clone type 1, 2 1, 2 1, 2, 3 3 1, 2, 3 1, 2, 3
Speed + + - + - - + + ?
RAM + - + + + + ?
Recall + - + - - +
Precision - + - - + -
Hidden 42 % 28 % 46 % 4 % 24 % 31 %

Later re-used and extended by Falke, Frenzel, and Koschke, 2006
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How can we compare clone detectors?

Qualitative study by Van Rysselberghe and Demeyer (2004):

text-based Ducasse et al. (1999); Rieger (2005)

token-based Baker (1995)

metric-based Mayrand et al. (1996)

Criteria:

how easy it is to adapt to a new language

recall and precision

effort

suitability for particular task

Conclusions:

text-based detection suitable for first overview

token-based detection suitable for refactoring at statement level

metric-based detection suitable for refactoring at method level
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Benchmarks

Open Issues

Limitations of current benchmarks

single oracle (until recently)

differences among different human raters for clone candidates
(Walenstein et al., 2003) when clones ought to be removed.

yes/no decision rather than degree of confidence

clones length measured as lines rather than tokens

insists on contiguous lines/tokens

clone pairs rather than clone classes

Benchmarking should become standard procedure of the community.
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How can we present clones to a user?

Dot plots (Church and Helfman, 1993; Ducasse et al., 1999; Ueda et al.,
2002b):
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How can we present clones to a user?

Hasse diagram by Johnson (1994a):
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How can we present clones to a user?

Polymetric view by Rieger et al. (2004):
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How can we present clones to a user?

Tree map variation by Rieger et al. (2004):
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How can we present clones to a user?

Arc diagram by Wattenberg (2002):
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How can we present clones to a user?

Clones visualiser view in Eclipse (Tairas et al., 2006):
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How can we present clones to a user?

Open Issues

No systematic empirical research on the appropriate type of visualization
for a particular task (clone monitoring, detection, removal, etc.).
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Tool Support in Forward Engineering

Current software engineering tools have poor support for
identifying reusable code templates or maintaining them during
software evolution.

– Kim et al. (2005)

Cloning is a good strategy if you have the right tools in place.
Let programmers copy and adjust, and then let tools factor out
the differences with appropriate mechanisms.

– Ira Baxter, 2002
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Further Reading and Resources

http://www.informatik.uni-bremen.de/st/lehredetails.
php?id=&lehre_id=44
Lecture on software reengineering (slides and video) including
techniques for clone detection

http://www.bauhaus-stuttgart.de/clones/
Material on experiment to compare clone detectors

http://drops.dagstuhl.de/portals/index.php?semnr=06301
Dagstuhl seminar on clone detection, slides and proceedings
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