
Software Clone Detection
State-of-the-Art Survey

Rainer Koschke
University of Bremen, Germany

Saarbrücken, June 28 2007



No two parts are alike in software. . .

Software entities are more complex for their size than perhaps
any other human construct because no two parts are alike (at
least above the statement level). If they are, we make the two
similar parts into a subroutine — open or closed. In this
respect, software systems differ profoundly from computers,
buildings, or automobiles, where repeated elements abound.

– by Frederick P. Brooks, Jr: No Silver Bullet: Essence and Accidents of
Software Engineering

R. Koschke (Univ. Bremen) Clone Detection 06/28/07 3 / 61



Software Redundancy

copy&paste is common habit:

number 1 on Beck and Fowler’s “Stink Parade of Bad Smells”

typically 5–30 % of code is similar (Baker, 1995; Baxter et al., 1998)

in extreme cases, even up to 50 % (Ducasse et al., 1999)

R. Koschke (Univ. Bremen) Clone Detection 06/28/07 7 / 61



Roadmap I

1 What is a clone?

2 Why do they exist?

3 What are the consequences of cloning?

4 What are costs and benefits of clone removal?

5 How do clones evolve?

6 How can we detect clones?

7 How can we compare clone detectors?



Roadmap II

8 How can we present clones to a user?

9 Clone Detection in Forward Engineering



What is a software clone?

Software clones are segments of code that are similar according
to some definition of similarity.

– Ira Baxter, 2002
There can be different definitions of similarity based on . . .

text

syntax

semantics

pattern

R. Koschke (Univ. Bremen) Clone Detection 06/28/07 10 / 61



What types of clones exist?

Clone detection experiment (Bellon, 2002a):

type 1: identical code segments except for differences in layout and
comments

type 2: structurally identical segments except for differences in
identifiers, literals, layout, and comments

type 3: similar segments (additions, modifications, removals of
statements)

type 4: semantically equivalent segments

→ degree of similarity

properties:

type-1, type-2, and type-4 clones form an equivalence relation

semantic equivalence guaranteed only for type-4 clones

R. Koschke (Univ. Bremen) Clone Detection 06/28/07 11 / 61



Open Issues

What are suitable definitions of similarity for which purpose?

Is there a theory of program redundancy similar to normal forms in
databases?

What other categorizations of clones make sense (e.g., syntax,
semantics, origins, risks, etc.)?

What is the statistical distribution of clone types in real-world
programs?

Which strategies of removal and avoidance, risks of removal, potential
damages, root causes, and other factors are associated with these
categories?

R. Koschke (Univ. Bremen) Clone Detection 06/28/07 12 / 61



Why do clones exist?

Ethnographic study by Kim et al. (2005):

Limitations of programming language designs may result in
unavoidable duplicates in a code.

Programmers often delay code restructuring until they have copied
and pasted several times.

Copy&paste dependencies often reflect important underlying design
decisions, such as crosscutting concerns.

Copied text is often reused as a template and is customized in the
pasted context.

Investigation of clones in large systems by Kapser and Godfrey (2006):
patterns of cloning:

forking

templating

customization

R. Koschke (Univ. Bremen) Clone Detection 06/28/07 13 / 61



Open Issues

More empirical research needed. Other potential reasons:

insufficient information on global change impact

badly organized reuse process (type-4 clones)

questionable productivity measures (LOCs per day)

time pressure

educational deficiencies, ignorance, or shortsightedness

intellectual challenges (e.g., generics)

professionalism/end-user programming (e.g., HTML, Visual Basic,
etc.)

development process (Nickell and Smith (2003): XP yields less
clones?)

organizational issues, e.g., distributed development organizations

→ fight the reasons, not just the symptoms

R. Koschke (Univ. Bremen) Clone Detection 06/28/07 14 / 61



What are the consequences of cloning?

Only plausible arguments, such as clones increase maintenance effort.

Very few empirical studies on effects of cloning

Monden et al. (2002):

2,000 Cobol modules with clones with at least 30 lines (1 MLOC,
20 years old)

max clone length versus change frequency and number of errors

→ most errors in modules with a 200-line clone

→ many errors for modules with clones of less than 30 lines, too

→ lowest error rate for modules with 50-100–line clones

R. Koschke (Univ. Bremen) Clone Detection 06/28/07 15 / 61



What are the consequences of cloning?

Chou et al. (2001) investigate hypothesis that if a function, file, or
directory has one error, it is more likely that is has others

additional observation for Linux and OpenBSD:

this phenomenon can be observed most often where programmer
ignorance of interface or system rules combines with copy-and-paste

→ programmers believe that “working” code is correct code
→ if copied code is incorrect, or it is placed into a context it was not

intended for, the assumption of goodness is violated

R. Koschke (Univ. Bremen) Clone Detection 06/28/07 16 / 61



What are the consequences of cloning?

Li et al. (2006) use clone detection to find bugs when programmers copy
code but rename identifiers in the pasted code inconsistently.

Systems analyzed: Linux kernel, FreeBSD, Apache, and PostgreSQL.

Findings:

13 % of the clones flagged as copy-and-paste bugs turned out to be
real errors

73 % are false positives

14 % of the potential problems are still under analysis by the
developers of the analyzed systems.

R. Koschke (Univ. Bremen) Clone Detection 06/28/07 17 / 61



Open Issues

More empirical research needed on relation of cloning to quality attributes
(bugs, costs, performance, etc.).

R. Koschke (Univ. Bremen) Clone Detection 06/28/07 18 / 61



What are costs and benefits of clone removal?

We know various techniques to remove clones:

automatic refactoring (Fanta and Rajlich, 1999)

functional abstraction (Komondoor and Horwitz, 2002)

macros (e.g., CloneDr by Semantic Designs)

design patterns (Balazinska et al., 1999, 2000)

Cordy (2003) argues that companies are afraid of the risks.

R. Koschke (Univ. Bremen) Clone Detection 06/28/07 19 / 61



What are costs and benefits of clone removal?

clone detection integrated in development process (Lague et al., 1997):

(1) preventive control: addition of a clone is reported for confirmation

(2) problem mining: find other pieces of code to be changed

benefits analyzed post-mortem:

(1) is assessed by the number of functions changed that have clones that
were not changed; i.e., how often a modification was missed
potentially

(2) is assessed by the number of functions added that were similar to
existing functions; i.e., the code that could have been saved

R. Koschke (Univ. Bremen) Clone Detection 06/28/07 20 / 61



What are costs and benefits of clone removal?

Open Issues

Empirical investigations of costs and benefits of clone removal are needed:

clone types and their relation to quality attributes

relevance ranking of clone types

suitable removal techniques with costs and risks

R. Koschke (Univ. Bremen) Clone Detection 06/28/07 21 / 61



How do clones evolve?

Cloning is common and steady practice in Linux kernel (Godfrey and
Tu, 2000, 2001; Antoniol et al., 2001, 2002)

Clone genealogies (Kim et al., 2005):

show how clones derive in time over multiple versions of a program
from common ancestors
many code clones exist in the system for only a short time

→ extensive refactoring of such short-lived clones may not be worthwhile
if they likely diverge from one another very soon
many long-living clones that have changed consistently with other
elements in the same group cannot easily be avoided because of
limitations of the programming language.

R. Koschke (Univ. Bremen) Clone Detection 06/28/07 22 / 61



How do clones evolve?

Open Issues

How do clones evolve in industrial systems?

What does their evolution tell about the development organization?

What affects cloning likelihood over time?

How we can track and manage clones over versions?

Can we use history information to improve clone detectors?

R. Koschke (Univ. Bremen) Clone Detection 06/28/07 23 / 61



How can we detect clones?

Comparison of . . .

text

string comparison (Johnson, 1993, 1994b) based on fingerprints (Karp,
1986; Karp and Rabin, 1987)
line comparison based on dot plots (Ducasse et al., 1999; Rieger, 2005)
for whole files (Manber, 1994)

identifiers (information retrieval techniques)

latent semantic indexing (Marcus and Maletic, 2001)

R. Koschke (Univ. Bremen) Clone Detection 06/28/07 24 / 61



How can we detect clones?

Comparison of . . .

tokens

type-1/-2 clones: suffix trees (McCreight, 1976; Kosaraju, 1995) for
parameterized strings per line (Baker, 1992, 1993, 1995, 1996, 1997,
1999)
type-3: dynamic programming (Baker and Giancarlo, 2002).
per token plus normalization of token stream (Ueda et al., 1999; Inoue
et al., 2001; Kamiya et al., 2002, 2001b; Kamiya, 2001; Nakae et al.,
2001; Ueda et al., 2001, 2002a,b; Kamiya et al., 2001a)
post-processing to find clones fully contained in syntactic unit (Higo
et al., 2002)
pre-processing to find clones fully contained in syntactic unit
(Synytskyy et al., 2003; Cordy et al., 2004) using island parsers
(Moonen, 2001)
parsing to obtain syntactic scopes (Gitchell and Tran, 1999)

R. Koschke (Univ. Bremen) Clone Detection 06/28/07 25 / 61



How can we detect clones?

Comparison of . . .

metrics (Kontogiannis et al., 1994, 1995; Kontogiannis, 1997;
Mayrand et al., 1996; Kontogiannis et al., 1996b,a; Lague et al.,
1997; Balazinska et al., 1999, 2000; Merlo et al., 2002; Patenaude
et al., 1999; Merlo et al., 2004)

for web sites (Di Lucca et al., 2002; Lanubile and Mallardo, 2003)

statements using data mining (Wahler et al., 2004; Li et al., 2004)

R. Koschke (Univ. Bremen) Clone Detection 06/28/07 26 / 61



How can we detect clones?

Comparison of . . .

syntax trees

hashing plus tree matching (Baxter et al., 1998; Leitao, 2003)
tree matching plus dynamic programming (for file comparison) (Yang,
1991)
suffix trees for serialized syntax trees (Falke, Frenzel, and Koschke,
2006)

program dependency graphs (Komondoor and Horwitz, 2001a,b;
Krinke, 2001)

R. Koschke (Univ. Bremen) Clone Detection 06/28/07 27 / 61



How can we detect clones?

Combined approach by Leitao (2003)

syntactic transformations in canonical form

plus semantics in terms of comparison functions for

call graphs
commutative operators
user-defined equivalences that yield degree of evidence

R. Koschke (Univ. Bremen) Clone Detection 06/28/07 28 / 61



How can we compare clone detectors?

Quantitative comparison of clone detectors by Bailey and Burd (2002)

human oracle for 16 KLOC program
comparison of

token-based (Kamiya et al., 2002)
syntax-based (Baxter et al., 1998)
metric-based (Mayrand et al., 1996) (reimplemented)
token-based (plagiarism) (Prechelt et al., 2000)
text-based (plagiarism) (Schleimer et al., 2003)

recall

precision

Kamiya et al.

Baxter et al.

Mayrand et al.
Aiken

Prechelt et al.

R. Koschke (Univ. Bremen) Clone Detection 06/28/07 30 / 61



How can we compare clone detectors?

Quantitative comparison of clone detectors by Bellon and Koschke (2002b;
2007) for 4 Java and 4 C systems of 850 KLOC in total

Baker Baxter Kamiya Krinke Merlo Rieger

Basis Token AST Token PDG Metric Text
Clone type 1, 2 1, 2 1, 2, 3 3 1, 2, 3 1, 2, 3
Speed + + - + - - + + ?
RAM + - + + + + ?
Recall + - + - - +
Precision - + - - + -
Hidden 42 % 28 % 46 % 4 % 24 % 31 %

Later re-used and extended by Falke, Frenzel, and Koschke, 2006

R. Koschke (Univ. Bremen) Clone Detection 06/28/07 31 / 61



How can we compare clone detectors?

Qualitative study by Van Rysselberghe and Demeyer (2004):

text-based Ducasse et al. (1999); Rieger (2005)

token-based Baker (1995)

metric-based Mayrand et al. (1996)

Criteria:

how easy it is to adapt to a new language

recall and precision

effort

suitability for particular task

Conclusions:

text-based detection suitable for first overview

token-based detection suitable for refactoring at statement level

metric-based detection suitable for refactoring at method level

R. Koschke (Univ. Bremen) Clone Detection 06/28/07 32 / 61



Benchmarks

Open Issues

Limitations of current benchmarks

single oracle (until recently)

differences among different human raters for clone candidates
(Walenstein et al., 2003) when clones ought to be removed.

yes/no decision rather than degree of confidence

clones length measured as lines rather than tokens

insists on contiguous lines/tokens

clone pairs rather than clone classes

Benchmarking should become standard procedure of the community.

R. Koschke (Univ. Bremen) Clone Detection 06/28/07 33 / 61



How can we present clones to a user?

Dot plots (Church and Helfman, 1993; Ducasse et al., 1999; Ueda et al.,
2002b):

R. Koschke (Univ. Bremen) Clone Detection 06/28/07 34 / 61



How can we present clones to a user?

Hasse diagram by Johnson (1994a):

R. Koschke (Univ. Bremen) Clone Detection 06/28/07 35 / 61



How can we present clones to a user?

Polymetric view by Rieger et al. (2004):

R. Koschke (Univ. Bremen) Clone Detection 06/28/07 36 / 61



How can we present clones to a user?

Tree map variation by Rieger et al. (2004):

R. Koschke (Univ. Bremen) Clone Detection 06/28/07 37 / 61



How can we present clones to a user?

Arc diagram by Wattenberg (2002):

R. Koschke (Univ. Bremen) Clone Detection 06/28/07 38 / 61



How can we present clones to a user?

Clones visualiser view in Eclipse (Tairas et al., 2006):

R. Koschke (Univ. Bremen) Clone Detection 06/28/07 39 / 61



How can we present clones to a user?

Open Issues

No systematic empirical research on the appropriate type of visualization
for a particular task (clone monitoring, detection, removal, etc.).

R. Koschke (Univ. Bremen) Clone Detection 06/28/07 40 / 61



Tool Support in Forward Engineering

Current software engineering tools have poor support for
identifying reusable code templates or maintaining them during
software evolution.

– Kim et al. (2005)

Cloning is a good strategy if you have the right tools in place.
Let programmers copy and adjust, and then let tools factor out
the differences with appropriate mechanisms.

– Ira Baxter, 2002

R. Koschke (Univ. Bremen) Clone Detection 06/28/07 41 / 61



Further Reading and Resources

http://www.informatik.uni-bremen.de/st/lehredetails.
php?id=&lehre_id=44
Lecture on software reengineering (slides and video) including
techniques for clone detection

http://www.bauhaus-stuttgart.de/clones/
Material on experiment to compare clone detectors

http://drops.dagstuhl.de/portals/index.php?semnr=06301
Dagstuhl seminar on clone detection, slides and proceedings

R. Koschke (Univ. Bremen) Clone Detection 06/28/07 43 / 61

http://www.informatik.uni-bremen.de/st/lehredetails.php?id=&lehre_id=44
http://www.informatik.uni-bremen.de/st/lehredetails.php?id=&lehre_id=44
http://www.bauhaus-stuttgart.de/clones/
http://drops.dagstuhl.de/portals/index.php?semnr=06301


A. Aiken. A system for detecting software plagiarism (moss homepage).
Web Site, 2002. URL
http://www.cs.berkeley.edu/~aiken/moss.html.

G. Antoniol, G. Casazza, M. Di Penta, and E. Merlo. Modeling clones
evolution through time series. In International Conference on Software
Maintenance, pages 273–280. IEEE Computer Society Press, 2001.

G. Antoniol, U. Villano, E. Merlo, and M.D. Penta. Analyzing cloning
evolution in the linux kernel. Information and Software Technology, 44
(13), 2002.

John Bailey and Elizabeth Burd. Evaluating clone detection tools for use
during preventative maintenance. In Workshop Source Code Analysis
and Manipulation, pages 36–43. IEEE Computer Society Press, 2002.
URL http://csdl.computer.org/comp/proceedings/scam/2002/
1793/00/17930036abs.htm.

Brenda Baker. Parameterized duplication in strings: Algorithms and an
application to software maintenance. SIAM Journal on Computing, 26
(5):1343–1362, October 1997.

R. Koschke (Univ. Bremen) Clone Detection 06/28/07 44 / 61

http://www.cs.berkeley.edu/~aiken/moss.html
http://csdl.computer.org/comp/proceedings/scam/2002/1793/00/17930036abs.htm
http://csdl.computer.org/comp/proceedings/scam/2002/1793/00/17930036abs.htm


Brenda S. Baker. A theory of parameterized pattern matching: Algorithms
and applications (extended abstract). In Proc. 25th ACM Symposium
on Theory of Computing, pages 71–80, May 1993.

Brenda S. Baker. On finding duplication and near-duplication in large
software systems. In L. Wills, P. Newcomb, and E. Chikofsky, editors,
Second Working Conference on Reverse Engineering, pages 86–95, Los
Alamitos, California, July 1995. IEEE Computer Society Press. URL
http://citeseer.nj.nec.com/baker95finding.html.

Brenda S. Baker. Parameterized diff. In ACM-SIAM Symp. on Discrete
Algorithms, page S854S855. ACM Press, January 1999.

Brenda S. Baker. Parameterized Pattern Matching: Algorithms and
Applications. Journal Computer System Science, 52(1):28–42, February
1996. URL
http://citeseer.nj.nec.com/baker94parameterized.html.

R. Koschke (Univ. Bremen) Clone Detection 06/28/07 45 / 61

http://citeseer.nj.nec.com/baker95finding.html
http://citeseer.nj.nec.com/baker94parameterized.html


Brenda S. Baker. A program for identifying duplicated code. In Computer
Science and Statistics 24: Proceedings of the 24th Symposium on the
Interface, pages 49–57, March 1992. URL
http://citeseer.nj.nec.com/baker92program.html.

Brenda S. Baker and Raffaele Giancarlo. Sparse dynamic programming for
longest common subsequence from fragments. Journal Algorithms, 42
(2):231–254, February 2002.

M. Balazinska, E. Merlo, M. Dagenais, B. Lague, and K. Kontogiannis.
Partial redesign of java software systems based on clone analysis. In
Working Conference on Reverse Engineering, pages 326–336. IEEE
Computer Society Press, 1999.

Magdalena Balazinska, Ettore Merlo, Michel Dagenais, Bruno Lague, and
Kostas Kontogiannis. Advanced clone-analysis to support
object-oriented system refactoring. In Working Conference on Reverse
Engineering, pages 98–107. IEEE Computer Society Press, October
2000.

R. Koschke (Univ. Bremen) Clone Detection 06/28/07 46 / 61

http://citeseer.nj.nec.com/baker92program.html


Ira D. Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant’Anna, and
Lorraine Bier. Clone Detection Using Abstract Syntax Trees. In T. M.
Koshgoftaar and K. Bennett, editors, International Conference on
Software Maintenance, pages 368–378. IEEE Computer Society Press,
1998. ISBN 0-7803-5255-6, 0-8186-8779-7, 0-8186-8795-9.

Stefan Bellon. Detection of software clones – tool comparison experiment,
2002a. URL http://www.bauhaus-stuttgart.de/clones/. Official
homepage of the experiment.

Stefan Bellon. Vergleich von techniken zur erkennung duplizierten
quellcodes. Diploma thesis, no. 1998, University of Stuttgart
(Germany), Institute for Software Technology, September 2002b.

Stefan Bellon, Rainer Koschke, Giulio Antoniol, Jens Krinke, and Ettore
Merlo. Comparison and evaluation of clone detection tools. IEEE
Computer Society Transactions on Software Engineering, 2007.
Accepted for publication.

R. Koschke (Univ. Bremen) Clone Detection 06/28/07 47 / 61

http://www.bauhaus-stuttgart.de/clones/


Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, and Dawson R.
Engler. An empirical study of operating system errors. In Symposium on
Operating Systems Principles, pages 73–88, 2001. URL
citeseer.ist.psu.edu/chou01empirical.html.

K. W. Church and J. I. Helfman. Dotplot: A program for exploring
self-similarity in millions of lines for text and code. Journal of American
Statistical Association, Institute for Mathematical Statistics and
Interface Foundations of North America, 2(2):153–174, June 1993.

James R. Cordy, Thomas R. Dean, and Nikita Synytskyy. Practical
language-independent detection of near-miss clones. In Conference of
the Centre for Advanced Studies on Collaborative research, pages 1–12.
IBM Press, 2004.

J.R. Cordy. Comprehending reality: Practical challenges to software
maintenance automation. In International Workshop on Program
Comprehension, pages 196–206. IEEE Computer Society Press, 2003.

R. Koschke (Univ. Bremen) Clone Detection 06/28/07 48 / 61

citeseer.ist.psu.edu/chou01empirical.html


G.A. Di Lucca, M. Di Penta, and A.R. Fasolino. An approach to identify
duplicated web pages. In International Computer Software and
Applications Conference, pages 481–486, 2002.

Stéphane Ducasse, Matthias Rieger, and Serge Demeyer. A Language
Independent Approach for Detecting Duplicated Code. In International
Conference on Software Maintenance, pages 109–118, 1999.

Raimar Falke, Pierre Frenzel, and Rainer Koschke. Clone detection using
abstract syntax suffix trees. In Working Conference on Reverse
Engineering. IEEE Computer Society Press, 2006.

Richard Fanta and Václav Rajlich. Removing clones from the code.
Journal on Software Maintenance and Evolution, 11(4):223–243,
July/Aug. 1999.

David Gitchell and Nicholas Tran. Sim: a utility for detecting similarity in
computer programs. In SIGCSE ’99: The proceedings of the thirtieth
SIGCSE technical symposium on Computer science education, pages
266–270. ACM Press, 1999. ISBN 1-58113-085-6. doi:
http://doi.acm.org/10.1145/299649.299783.

R. Koschke (Univ. Bremen) Clone Detection 06/28/07 49 / 61



M. Godfrey and Q. Tu. Growth, evolution and structural change in open
source software. In Workshop on Principles of Software Evolution,
September 2001.

M. Godfrey and Q. Tu. Evolution in open source software: A case study.
In International Conference on Software Maintenance. IEEE Computer
Society Press, 2000.

Yoshiki Higo, Yasushi Ueda, Toshihro Kamiya, Shinji Kusumoto, and
Katsuro Inoue. On software maintenance process improvement based on
code clone analysis. In International Conference on Product Focused
Software Process Improvement, volume 2559 of Lecture Notes In
Computer Science, pages 185–197. Springer, 2002. ISBN
ISBN:3-540-00234-0.

Katsuro Inoue, Toshihiro Kamiya, and Shinji Kusumoto. Method for
detecting code clones. Computer Software, 18(5):47–65, 2001. in
Japanese.

R. Koschke (Univ. Bremen) Clone Detection 06/28/07 50 / 61



J. Howard Johnson. Identifying redundancy in source code using
fingerprints. In Conference of the Centre for Advanced Studies on
Collaborative research, pages 171–183. IBM Press, 1993.

J. Howard Johnson. Visualizing textual redundancy in legacy source. In
Conference of the Centre for Advanced Studies on Collaborative
research, page 32. IBM Press, 1994a.

J. Howard Johnson. Substring matching for clone detection and change
tracking. In International Conference on Software Maintenance, pages
120–126. IEEE Computer Society Press, 1994b.

T. Kamiya, F. Ohata, K. Kondou, S. Kusumoto, and K. Inoue.
Maintenance support tools for java programs: Ccfinder and jaat. In
International Conference on Software Engineering, pages 837–838,
2001a.

Toshihiro Kamiya. Code clone detection method. In Proceedings of Winter
Workshop in Kanazawa, IPSJ SIGSE, pages 21–22, 2001.

R. Koschke (Univ. Bremen) Clone Detection 06/28/07 51 / 61



Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoui. A token-based
code clone detection technique and its evaluation. IEICE SS2000-42,
100(570):41–48, 2001b.

Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. CCFinder: A
Multi-Linguistic Token-based Code Clone Detection System for Large
Scale Source Code. IEEE Computer Society Transactions on Software
Engineering, 28(7):654–670, 2002.

Cory Kapser and Michael W. Godfrey. ”clones considered harmful”
considered harmful. In Working Conference on Reverse Engineering,
2006.

R. M. Karp. Combinatorics, complexity, and randomness. Communications
of the ACM, 29(2):98–109, February 1986.

R. M. Karp and M. 0. Rabin. Efficient randomized pattern-matching
algorithms. IBM Journal Research and Development, 31(2):249–260,
March 1987.

R. Koschke (Univ. Bremen) Clone Detection 06/28/07 52 / 61



Miryung Kim, Vibha Sazawal, David Notkin, and Gail C. Murphy. An
empirical study of code clone genealogies. In European Software
Engineering Conference and Foundations of Software Engineering
(ESEC/FSE, 2005.

R. Komondoor and S. Horwitz. Using slicing to identify duplication in
source code. In Proc. Int. Symposium on Static Analysis, pages 40–56,
July 2001a.

Raghavan Komondoor and Susan Horwitz. Eliminating duplication in
source code via procedure extraction. Technical report 1461,
UW-Madison Dept. of Computer Sciences, December 2002.

Raghavan Komondoor and Susan Horwitz. Tool Demonstration: Finding
Duplicated Code Using Program Dependences. In European Symposium
on Programming, volume 2028 of Lecture Notes in Computer Science,
page 383ff, 2001b. URL
http://citeseer.nj.nec.com/487759.html.

R. Koschke (Univ. Bremen) Clone Detection 06/28/07 53 / 61

http://citeseer.nj.nec.com/487759.html


K. Kontogiannis. Evaluation Experiments on the Detection of
Programming Patterns Using Software Metrics. In Working Conference
on Reverse Engineering, 1997.

K. Kontogiannis, R. DiMori, M. Bernstein, and E. Merlo. Localization of
design concepts in legacy systems. In International Conference on
Software Maintenance, pages 414–423. IEEE Computer Society Press,
1994.

K. Kontogiannis, R. DeMori, M. Bernstein, M. Galler, and E. Merlo.
Pattern matching for design concept localization. In Working
Conference on Reverse Engineering, pages 96–103. IEEE Computer
Society Press, July 1995.

K. Kontogiannis, R. DeMori, E. Merlo, M. Galler, and M.Bernstein.
Pattern matching techniques for clone detection. Journal of Automated
Software Engineering, 3:77–108, 1996a.

K. Kontogiannis, R. De Mori, E. Merlo, M. Galler, and M. Bernstein.
Pattern matching for clone and concept detection. Automated Software
Engineering, 3(1/2):79–108, June 1996b.

R. Koschke (Univ. Bremen) Clone Detection 06/28/07 54 / 61



S. Rao Kosaraju. Faster algorithms for the construction of parameterized
suffix trees. In In Thirty-sixth Annual Symposium on Foundations of
Computer Science (FOCS’95), pages 631–639, 1995.

Jens Krinke. Identifying Similar Code with Program Dependence Graphs.
In Working Conference on Reverse Engineering, pages 301–309, 2001.

B. Lague, D. Proulx, J. Mayrand, E.M. Merlo, and J. Hudepohl. Assessing
the benefits of incorporating function clone detection in a development
process. In International Conference on Software Maintenance, pages
314–321, 1997.

F. Lanubile and T. Mallardo. Finding function clones in web applications.
In European Conference on Software Maintenance and Reengineering,
pages 379–386, 2003.

Antonio Menezes Leitao. Detection of redundant code using r2d2. In
Workshop Source Code Analysis and Manipulation, pages 183–192.
IEEE Computer Society Press, 2003.

R. Koschke (Univ. Bremen) Clone Detection 06/28/07 55 / 61



Z. Li, S. Lu, S. Myagmar, and Y. Zhou. Cp-miner: A tool for finding
copy-paste and related bugs in operating system code. In Operating
System Design and Implementation, pages 289–302, 2004.

Z Li, S Lu, S. Myagmar, and Y. Zhou. Copy-paste and related bugs in
large-scale software code. IEEE Computer Society Transactions on
Software Engineering, 32(3):176–192, March 2006.

Udi Manber. Finding similar files in a large file system. In Proceedings of
the Winter Usenix Technical Conference, pages 1–10, 1994.

A. Marcus and J.I. Maletic. Identification of high-level concept clones in
source code. In International Conference on Automated Software
Engineering, pages 107–114, 2001.

J. Mayrand, C. Leblanc, and E.M. Merlo. Experiment on the automatic
detection of function clones in a software system using metrics. In
International Conference on Software Maintenance, pages 244–253,
1996.

E. McCreight. A space-economical suffix tree construction algorithm.
Journal of the ACM, 32(2):262–272, 1976.

R. Koschke (Univ. Bremen) Clone Detection 06/28/07 56 / 61



E. Merlo, M. Dagenais, P. Bachand, J.S. Sormani, S. Gradara, and
G. Antoniol. Investigating large software system evolution: the linux
kernel. In International Computer Software and Applications
Conference, pages 421–426, 2002.

E. Merlo, G. Antoniol, M. Di Penta, and V.F. Rollo. Linear complexity
object-oriented similarity for clone detection and software evolution
analyses. In International Conference on Software Maintenance, pages
412–416, 2004.

A. Monden, D. Nakae, T. Kamiya, S. Sato, and K. Matsumoto. Software
quality analysis by code clones in industrial legacy software. In
IEEE Symposium on Software Metrics, pages 87–94, 2002.

L. Moonen. Generating robust parsers using island grammars. In
Proceedings of the Working Conference on Reverse Engineering, pages
13–22. IEEE Computer Society Press, Oct. 2001.

Daikai Nakae, Toshihiro Kamiya, Akito Monden, Hiroshi Kato, Shin ichi
Sato, and Katsuro Inoue. Quantitative analysis of cloned code on legacy
software. IEICE, 100(570):57–64, 2001.

R. Koschke (Univ. Bremen) Clone Detection 06/28/07 57 / 61



Eric Nickell and Ian Smith. Extreme programming and software clones. In
Working Conference on Reverse Engineering. IEEE Computer Society
Press, 2003.

J.-F. Patenaude, E. Merlo, M. Dagenais, and B. Lague. Extending
software quality assessment techniques to java systems. In International
Workshop on Program Comprehension, pages 49–56, 1999.

L. Prechelt, G. Malpohl, and M. Philippsen. Jplag: Finding plagiarisms
among a set of programs. Technical report, University of Karlsruhe,
Department of Informatics, 2000.

M. Rieger, S. Ducasse, and M. Lanza. Insights into system-wide code
duplication. In Working Conference on Reverse Engineering, pages
100–109. IEEE Computer Society Press, 2004.

Matthias Rieger. Effective Clone Detection Without Language Barriers.
Dissertation, University of Bern, Switzerland, 2005.

R. Koschke (Univ. Bremen) Clone Detection 06/28/07 58 / 61



S. Schleimer, D. S. Wilkerson, and A. Aiken. Winnowing: local algorithms
for document fingerprinting. In Proceedings of the SIGMOD Aiken
(2002), pages 76–85. URL
http://www.cs.berkeley.edu/~aiken/moss.html. Web Site.

Nikita Synytskyy, James R. Cordy, and Thomas Dean. Resolution of static
clones in dynamic web pages. In Workshop on Website Evolution, pages
49–56, 2003.

Robert Tairas, Jeff Gray, and Ira Baxter. Visualization of clone detection
results. In Proceedings of the 2006 OOPSLA workshop on eclipse
technology eXchange, pages 50–54, 2006.

Yasushi Ueda, Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. On
detection of gapped code clones using gap locations. In Proceedings
Ninth Asia-Pacific Software Engineering Conference (APSEC’02), pages
327–336. IEEE Computer Society Press, December 1999.

Yasushi Ueda, Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue.
Source code analysis system using code clone detection tool. IEICE, 101
(240):17–24, 2001. in Japanese.

R. Koschke (Univ. Bremen) Clone Detection 06/28/07 59 / 61

http://www.cs.berkeley.edu/~aiken/moss.html


Yasushi Ueda, Yoshiki Higo, Toshihiro Kamiya, Shinji Kusumoto, and
Katsuro Inoue. Gemini: Code clone analysis tool. In International
Symposium on Empirical Software Engineering, volume 2, pages 31–32,
2002a.

Yasushi Ueda, Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue.
Gemini: Maintenance support environment based on code clone
analysis. In IEEE Symposium on Software Metrics, pages 67–76. IEEE
Computer Society Press, 2002b.

F. Van Rysselberghe and S. Demeyer. Evaluating clone detection
techniques from a refactoring perspective. In International Conference
on Automated Software Engineering, 2004.

V. Wahler, D. Seipel, Jürgen Wolff von Gudenberg, and G. Fischer. Clone
detection in source code by frequent itemset techniques. In Workshop
Source Code Analysis and Manipulation, pages 128–135, 2004.

R. Koschke (Univ. Bremen) Clone Detection 06/28/07 60 / 61



Andrew Walenstein, Nitin Jyoti, Junwei Li, Yun Yang, and Arun Lakhotia.
Problems creating task-relevant clone detection reference data. In
Working Conference on Reverse Engineering. IEEE Computer Society
Press, 2003.

Martin Wattenberg. Arc diagrams: Visualizing structure in strings. In
Proceedings InfoVis, pages 10–17. IEEE Computer Society Press, 2002.

Wuu Yang. Identifying syntactic differences between two programs.
Software–Practice and Experience, 21(7):739–755, July 1991.

R. Koschke (Univ. Bremen) Clone Detection 06/28/07 61 / 61


	Introduction
	Roadmap
	What is a clone?
	Why do they exist?
	What are the consequences of cloning?
	What are costs and benefits of clone removal?
	How do clones evolve?
	How can we detect clones?
	How can we compare clone detectors?
	How can we present clones to a user?
	Clone Detection in Forward Engineering
	Resources
	References

