
Software Bugs and Evolution:
A Visual Approach to Uncover Their Relationship

Marco D’Ambros and Michele Lanza
Faculty of Informatics

University of Lugano, Switzerland

Abstract

Versioning systems such as CVS exhibit a large poten-
tial to investigate and understand the evolution of large
software systems. Bug Reporting systems such as Bugzilla
help to understand which parts of the system are affected
by problems. In this article we present a novel visual ap-
proach to uncover the relationship between evolving soft-
ware and the way it is affected by software bugs. By visu-
ally putting the two aspects close to each other, we can char-
acterize the evolution of software artifacts. We validate our
approach on 3 very large open source software systems.

1.. Introduction

Studying the evolution and understanding the structure
of large legacy systemsare two key issues in software in-
dustry that are being tackled by academic research.

These problems are strongly coupled for various reasons:
(i) examining the structure of subsystems allows us to gain a
better understanding of the whole system evolution [7, 13];
(ii) the histories of software entities can reveal hidden rela-
tionships among them [6, 8] and (iii) analyzing several ver-
sions of a system improves our understanding of it [9–12].

Many studies were done and many approaches were pro-
posed to tackle the problem of studying the evolution of
software systems [7, 11, 21], the understanding of systems
structures [16, 17] and both of them [4, 12]. However, only
few approaches [18] simultaneously provide structural and
historical information.

In this paper we introduce theDiscrete Time Figure, a vi-
sualization technique in which both historical and structural
data are embedded into one simple figure.

The evolution of a software system is not only about the
histories of its software artifacts, but also includes other
kinds of information concerning its development, such as
documentation, use cases, test suites,etc.

We consider, in addition to the development infor-
mation as retrieved from a versioning system, data re-

garding the history of software problemswhich are
stored in bug reporting systems, such as Bugzilla (see
http://www.bugzilla.org/).

Structure of the paper. In Section 2 we discuss goals
and challenges in this research domain. We then present the
principles behind our approach, which allow us to charac-
terize the evolution of software artifacts using both evolu-
tionary information and bug information. We then validate
our approach on three large systems (Apache, gcc, Mozilla).
Before concluding and looking at related work, we present
the implementation details behind our approach.

2.. Bugs and Evolution

The main problem in combining structural information
obtained from the source code and versioning systems with
other kinds of information (bug reports, documentation,
etc.) is that the latter is largely unstructured. This prevents
us from automating the process of combining them.

Specifically, in this paper we target information obtained
from bug reports that we combine with structural and evo-
lutionary information. The objective is to make sense of the
integrated information to accomplish the following goals:

• Show the evolution of software entities at different
granularity levels in the same way,i.e.,using the same
visualization.

• Show both structural information (such as software
metrics) and bug-related information.

• Merge all these kinds of information to obtain a clearer
picture of the evolution of a system’s entities. This is a
key knowledge for a reengineering activity, since it al-
lows us to detect the critical parts of the system which
represent the starting point for a reengineering process.

There are technical challenges in achieving the above
goals, such as:

1. Data retrieval: Retrieving the histories of files and
bugs and combining them.

2. Visualization: Showing a large amount of information
in a condensed, yet useful way. This also relates to
scalability,i.e., the visualization must work at all gran-
ularity levels of systems of millions of lines of code.

3.. Visualizing Evolving software

Our approach is largely based on visualization, because
it can help (if correctly used) to condense complex informa-
tion into figures that humans can easily interpret.

Figure 1. A TimeLine View of revisions and
bugs.

A possible way to visualize the evolution of software en-
tities in terms of revisions and bugs is depicted in Figure 1:
It shows aTimeLine View(time on the horizontal axis from
left to right) where the visualized rectangles and crosses
represent respectively revisions and bugs on CVS products
(i.e., files). In this figure we see the evolution of 2 specific
files between 2001 and 2003: The exact horizontal position
of rectangles is determined using the CVS commit time-
stamp, while for the positions of the crosses the bug report
time-stamp is used. The colors represent the different au-
thors (i.e., the person who committed the file revision to the
CVS repository) for the revisions. For the bugs they repre-
sent the status [2].

Using this figure we detect the files having a lot of re-
visions (and/or bugs) and which are those characterized by
small amount of them. Still, it is limited in the following
ways: (1) It does not provide neither a qualitative nor a
quantitative impression about the productions of bugs and
revisions over time; (2) It is applicable only to files; and (3)
It does not scale well, if the number of products, bugs or re-
visions is high.

To have a scalable view we devised a figure that encap-
sulates all the production-related (bugs and commits) infor-
mation of a software entity:The Discrete Time Figure.

The Discrete Time Figure gives an immediate view of the
history of a software entity. This history includes the grow-

ing / shrinking in terms of number of commits1 and in terms
of number of bugs. The history can be enriched with a soft-
ware metric and structural information given by the view
layout (e.g.,the directory hierarchy).

Figure 2. The Discrete Time Figure structure.

Figure 2 depicts the structure of a Discrete Time Fig-
ure. It is composed of five subfigures: The first and the sec-
ond are composed by a sequence of rectangles which repre-
sent aDiscretization of time. It means that each rectangle is
associated to a precise and parametrizable interval of time,
where rectangles having the same horizontal position (be-
longing to different subfigures) represent the same time pe-
riod.

Figure 3. The Discrete Time Figure color
mapping.

These sequences of rectangles are then colored accord-
ing to a “temperature / production” policy (see Figure 3).
Hot colors (in the red gamma) are used for time periods dur-
ing which a lot of revision were commited (or a lot of bugs
were reported), while cold colors (in the blue gamma) rep-
resent few commits (or few reported bugs).

In Table 1 we have summarized all colors we use in our
figures.

The choice of the color is based on a set of thresholds,
which can be either manually chosen or automatically com-
puted. For the latter we distinguish two different scenarios:

1 If the software entity is a directory (or module) the number of com-
mits is the sum of the number of commits of all the files included in
the directory (or module).

Color Inner area Border Meaning
Red X High production
Blue X Low production
White X No production
Black X Dead
Gray X No production
Red X Dead
Orange X High Stable
Green X Stable
Pink X Spike

Table 1. The colors used in the Discrete Time
Figure and their meanings.

1. Local threshold. The threshold values are computed
“locally” for each figure, taking into account only the
bugs and the revisions belonging to the target entity.
The local thresholds, as we will see in Section 4, are
used to characterize software entities.

2. Global threshold. The threshold values are computed
“globally”, taking into account all the bugs and the
revisions belonging to the visualized entities. These
thresholds can be used for comparisons, since all the
visualized figures refer to the same thresholds.

The third and the fourth subfigures are colored respec-
tively with the “average” color of the first (revisions) and the
second (bugs) subfigures. They provide an immediate and
course-grained idea of the history of the artifacts: For the re-
visions box, a color in the red gamma implies high activity,
as opposed to low activity (blue gamma). For the bugs box a
color close to black signifies that the entity was ”dead” (not
present) most of the lifetime of the system; close to white
implies that the entity has only recently been created in the
system. This allows us to compare more easily the differ-
ent entities.

The fifth subfigure is used to map a metric measurement
on its color, using the grayscale values. The darker the color
is, the highest the metric measurement is. We do not always
make use of it, but it proved efficient for higher-level enti-
ties like directories, where this box can be used to represent
the number of contained files, etc.

Scalability issues.The Discrete Time Figure provides a
lot of evolution information in “one shot”, but it still does
not scale well (i.e., the color of the inner rectangle becomes
undecipherable if the whole figure is small).

A first solution to this problem consists in coloring not
only the rectangle area but also the border. However in this
way the figure is difficult to read, because of the high den-
sity of different colors in small areas.

The solution is to aggregate a sequence of rectangles into
a bigger rectangle. We do this by introducing the concept of
Phases. In Figure 4 we see a Discrete Time Figure with the
phase layer.

We define the following phases:

Figure 4. Introducing phases in a Discrete
Time Figure.

• Stable. A Stable phase is defined as a sequence of (at
least four) adjacent time intervals during which the
number of revisions (or bugs) remains constant or has
small variations around a low value (i.e.,a sequence of
at least four blue rectangles).

• High Stable Phase. It is the same as a Stable phase
with the only difference that the number of revisions
(or bugs) must remain high (i.e.,a sequence of at least
four red rectangles).

• Spike. This phase is characterized by the presence of:
(i) an initial sequence of (at least two) time intervals
during which the number of revisions (or bugs) re-
mains low (i.e.,a sequence of at least two blue rectan-
gles) (ii) a basic time interval during which this num-
ber is high (i.e., a red rectangle) and (iii) a final se-
quence similar (with the same characteristics) to the
initial one.

We also display the fact the entities are born and die
within a system: We use different colors for both the in-
ner part and the boundary of the rectangles representing pe-
riods of time preceding the birth or following the dead of the
artifact. In Figure 3 we see that white rectangles with gray
boundary are used for the former2 while black rectangles
with red boundary are used for the latter. Since this infor-
mation is mapped on the border it is readable at any scale.
In this case the problem of having a high density of differ-
ent colors in small areas does not subsist since these time
intervals are usually composed of several basic periods.

Figure 5 shows a tree of Discrete Time Figures with the
phase layer applied: Only the phases and the born/death in-
formation is readable.

Coloring the rectangle boundary is useful in large scale
views, but at the same time it makes the figure slightly con-
fusing in small scale views, especially for inexperienced

2 White rectangles with gray boundary represent also no production (0
commit or 0 bug report) if they are after the birth.

Figure 5. Looking at many figures at the same
time does not affect the readability and the
means of interpretation.

users. To address this problem in our tool implementation
the user can dynamically set the boundary coloring accord-
ing to how big is the part of the system he is analyzing.

4.. Characterizing the Evolution of Software
Entities

Using the previously described figure we can charac-
terize the evolution of software entities by taking into ac-
count and combining both the development activity and
the problems affecting them. We distinguish the follow-
ing types:

Persistent. An artifact is defined as Persistent if (i) it is still
alive (in the current version of the software) and (ii) its life-
time is greater than the 80% of the system lifetime. These
kind of entities are likely to play important roles in the sys-
tem because they survived most of the system changes.
We distinguish two types of persistent entities:
(1) Bug Persistent. The bug coverage is at least 80% of the
revision coverage3. On one hand the presence of this pattern
can be a good symptom because it indicates that the most of
the development of the artifact was done together with test-
ing. On the other hand the pattern can indicate that the en-

3 Since the revision coverage for a Persistent entity is at least 80% of
the system lifetime, the bug coverage is at least80%× 80% = 64%
of the system lifetime.

tity was affected by problem for most of its lifetime, which
is a symptom of bad design.
(2) High Production Persistent. At least 80% of the basic
time intervals (represented by rectangles) are characterized
by a large number of revisions (represented by red colors).
The High Production Persistent entities have key roles in
the system because the changes are concentrated on them.
They are a good place to start reverse engineering activi-
ties.

Figure 6 shows examples of Bug Persistent and High
Production persistent entities.

Figure 6. Examples of the various type of Per-
sistent patterns.

Day-Fly. An entity is defined as Day-Fly if its revision cov-
erage is no more than 20% of the system lifetime. We de-
fined also aDead Day-Flyas an artifact removed from the
system which lasted in it at most 20% of the entire lifetime
of the system.

A Dead Day-Fly can be a symptom of: (i) renaming4, (ii)
fast prototyping and (iii) a new implementation quickly re-
moved because it violated the design.

A Day-Fly can indicate: (i) a spike solution no more un-
der development or (ii) a forgotten part of the system.
Figure 7 shows examples of Day-Fly and Dead Day-Fly en-
tities.

4 In CVS a renaming appears as a removal of an artifact (the old name)
and an addition of another artifact (the new name).

Figure 7. Examples of a Day-Fly and a Dead
Day-Fly.

Introduced for Fixing . We define an entity as Intro-
duced for Fixing if its first revision was introduced
in the system after the first bug affecting it was re-
ported5, i.e., the first colored rectangle in the bug subfigure
precedes the first colored rectangle in the revision subfig-
ure (as shown in Figure 8).

Figure 8. An example of the Introduced for
Fixing pattern.

Stabilization. We define an entity as Stabilization if: (i)
it is still living, (ii) it had an intense development (at
least five basic intervals characterized by a high produc-
tion and at least one High Stable or Spike phase) for

5 It is possible because a bug can affect many entities.

both revisions and bugs and (iii) the end of its histo-
ries for both bugs and revisions are characterized by Stable
phases. Figure 9 shows an example of the Stabilization pat-
tern.

Figure 9. An example of the Stabilization pat-
tern.

The following patterns, differently from the previ-
ous, are not related to the entire entity but only on parts of
it. This means that more than one pattern can be found on
the same figure,i.e., the same artifact.

Addition of Features. An Addition of Features in the sys-
tem consists in an increasing of the number of revisions (a
lot of commits) together with an increasing of the number
of bugs. Introducing new features is likely to introduce new
bugs. Graphically this pattern can be detected by the pres-
ence of the pairs of phases listed below. We describe also
the time relations between phases wheret1begin andt1end

are respectively the beginning and the end of the first phase,
while t2begin andt2end have the same meaning for the sec-
ond phase.

• Spike - SpikeandSpike - High Stable.

t1begin ≤ t2begin ≤ t1end + 2 basic time interval

• High Stable - High StableandHigh Stable - Spike

t1begin ≤ t2begin ≤ t1end − 2 basic time interval

Examples of this pattern are shown in Figure 10.

Bug Fixing. A Bug Fixing pattern is characterized by an
increasing number of revisions (a lot of commits) together
with a decreasing number of bugs. The effort revealed by
the increasing number of revisions was spent to fix prob-
lems. The pairs of phases which indicate this pattern are:

• Spike - Stable.

t1begin ≤ t2begin ≤ t1end + 2 basic time interval

Figure 10. An example of the Addition of Fea-
tures pattern with the High Stable - High Sta-
ble pair of phases.

• High Stable - Stable.

t1begin ≤ t2begin ≤ t1end − 2 basic time interval

Examples of this pattern are shown in Figure 11.

Figure 11. An example of the Bug Fixing pat-
tern with the High Stable - Stable pair of
phases.

Refactoring / Code Cleaning. A Refactoring or a Code
Cleaning in the system consists in an increasing number of
commits while the number of bugs remains fixed to a low
value. In fact both Refactoring and Code Cleaning require a
lot of effort in term of revisions, while they should not intro-
duce new problems. Graphically this pattern is highlighted
by the following pairs of phases:
• High Stable - Unchanged StableandSpike - Unchanged Sta-

ble.
t1begin > t2begin ∧ t1end < t2end

Examples of this pattern are shown in Figure 12.

Figure 12. An example of the Refactoring /
Code Cleaning pattern with the High Stable
Unchanged Stable pair of phases.

This characterization allows an analyst to (i) argue about
the entire system (in terms of the percentage of each cate-
gory it includes) (ii) compare entities according to the cat-
egorization (iii) detect artifacts which need a further analy-
sis.

5.. Validation

To validate our approach we applied the follow-
ing methodology on three case studies:

1. Build a view containing all the directories of the tar-
get system. Each directory is represented as a Discrete
Time Figure if it includes at least one file, or it is rep-
resented as a white rectangle otherwise.

2. Apply a query engine (provided in our tool implemen-
tation) on the view to detect all the patterns defined in
the previous Section. This allows us to characterize the
system in terms of number of patterns it contains.

3. Analyze the view to understand how and where the
various patterns are distributed within the system. We
can also identify entities of particular interest which
need further inspection (with our tool implementation
the user can interactively navigate back and forth be-
tween different views).

Case studies.The three systems used as case studies are
Apache, gcc, and Mozilla (see Table 2).

We analyzed only the .cpp and .c files. Hence the num-
bers depicted in Table 2 are referred to these parts of the
systems.

System Files Revisions Bugs Bugs ref.

Apache 393 15524 377 717
gcc 18150 254785 3347 12936

Mozilla modules
SeaMonkeyCore 4656 69391 4694 16889
RaptorDist 3446 50033 2753 10028
RaptorLayout 2925 99899 5797 22865
CalendarClient 1860 32468 2550 7001

Table 2. The dimensions of the case studies.

Pattern Apache gcc

Not empty directory 92 1145

Bug Persistent 0 0
High Prod. Persistent 0 5
Persistent 1 54

Dead Day-Fly 9 101
Day-Fly 12 465
Tot. Day-Fly 21 566

Intro. for Fixing 2 163

Stabilization 2 1

Spike - Spike phase 1 13
High Stable - High Stable 0 10
Spike - High Stable 0 0
High Stable - Spike 1 23
Tot. Add. of Feature 2 46

Spike - Stable 2 16
High Stable - Stable 9 52
Tot. Bug Fixing 11 68

High Stable - Unchanged Stable 0 8
Spike - Unchanged Stable 0 7
Tot. Refact. / Code Clean. 0 15

Table 3. The characterization of the Apache
and gcc systems in terms of patterns found.

5.1.. Characterization of systems

In Table 3 we summarize the number of detected evolu-
tionary patterns in gcc and Apache.

Apache. The evolution of the Apache Web Server is char-
acterized by:

1. A relatively large number of Day-Fly (21) and Bug
Fixing (11).

2. A small number (between 0 and 2) of all the other pat-
terns.

In this case we cannot formulate any conclusion on
the system because the number of bugs we have are
not enough to study the relationship between the evo-
lution of the entities and the way they are affected by
software bugs. This is the reason why the number of pat-
terns detected is so small.

gcc. The most interesting data regarding the evolution of
gcc is:

Patterns Sea-
Monkey-
Core

Raptor-
Dist

Raptor-
Layout

Calendar-
Client

Not empty directory 476 520 382 269

Bug Persistent 47 35 36 25
High Prod. Persistent 15 0 10 3
Persistent 59 60 46 29

Dead Day-Fly 68 98 68 37
Day-Fly 62 26 39 49
Tot. Day-Fly 130 124 107 86

Intro. for Fixing 77 50 57 50

Stabilization 16 25 14 12

Spike - Spike phase 10 8 6 2
High Stable - High Stable 56 15 41 12
Spike - High Stable 3 0 2 2
High Stable - Spike 46 11 30 13
Tot. Add. of Feature 115 34 79 29

Spike - Stable 7 10 7 5
High Stable - Stable 20 13 20 11
Tot. Bug Fixing 27 23 27 16

High Stable - Unchanged Sta-
ble

32 11 20 11

Spike - Unchanged Stable 21 13 10 5
Tot. Refact. / Code Clean. 53 24 30 16

Table 4. The characterization of the four
biggest module (with respect to the number
of files included) of Mozilla in terms of pat-
ters found.

1. The number of Day-Fly is the 49% of the not empty
directories (566 on 1145).

2. The number of Introduced for Fixing is the 14% of the
not empty directories (163 on 1145).

3. The Stabilization pattern is only one over 1145
(0.0009%).

4. The percentage of all the other patterns (Persistent, Ad-
dition of Features, Bug Fixing and Refactoring / Code
Cleaning) ranges from 0.01% to 0.06%.

We conclude that the gcc system was changed a lot and
rapidly during its lifetime. This system is likely to con-
tain a lot of spike solutions, while the number of enti-
ties survived to all its changes is small.

Mozilla . Table 4 shows the patterns detected in four mod-
ules of Mozilla. In this data facts of particular interest are:

1. The SeaMonkeyCore module is the one having the
most intense development history. Even if it is not the
biggest in terms of number of not empty directotories,
it contains the maximum number of most of the pat-
terns (all but Persistent and Stabilization).

2. The RaptorDist, which is the biggest module, is the
most stable module since it has the maximum number
of Persistent and Stabilization patterns.

3. The percentage of Persistent pattern varies from 11%
(RaptorDist) to 12% (RaptorLayout) in all the mod-
ules; for the Stabilization pattern the values are 0.03%
(SeaMonkeyCore) and 0.04% (CalendarClient) while
for the Day-Fly pattern the percentage ranges from
23% (RaptorDist) to 31% (CalendarClient). We con-
clude that the Mozilla system includes a lot of spike
solutions while the artifacts which survived for most
of the system history are few.

4. The Mozilla system has gone through substan-
tial changes during its lifetime, since the Addition of
Features pattern are much more than the Bug Fix-
ing and Refactoring / Code Cleaning patterns.

5. The SeaMonkeyCore module includes a lot of features
(115 Addition of Features pattern) but most of them
are likely to be spike solutions, taking into account the
high number of Day-Fly it contains (130).

5.2.. View analysis

For lack of space we cannot present neither a complete
and in-depth analysis of one system, nor the views for all
the case studies. Therefore we present a view for the Calen-
darClient module of Mozilla, shown in Figure 13, followed
by a brief analysis.

The view in Figure 13 can be divided into the following
parts:

• Removed directories, concentrated in the areas marked
as 1, 3, 5, 6 and 9.

• Day-Fly, concentrated in the 2 and 7 areas.

• Persistent, concentrated in the 4 and 8 areas. This is the
most interesting part of the module: In it we can find
Addition of Features, Bug Fixing, Refactoring / Code
Cleaning, Stabilization and Introduced for Fixing pat-
terns.

6. BugCrawler: Implementation

We implemented the approach presented in this paper in
a tool called BugCrawler, a major extension of the Code-
Crawler tool [16, 17] with respect to two main components
(see Figure 14), namely (1) the Release History Database
and (2) a greatly extended visualization engine.

The Release History Database (RHDB).This compo-
nent is completely new with respect to the original tool
CodeCrawler. The RHDB, which is defined in [5] and ex-
tended in [4], contains the history of a system extracted
from a CVS repository. To populate the database we use
a set of perl and shell scripts. The scripts are responsible for
the following tasks, run in completely autonomous batch
mode:

CVS
Repository

Bugzilla
database

Parsing of
CVS logs

Parsing of
bugs (XML)

RHDB

Store

Looking for
bug

references

CVS
logsDownload

Read Download

Store

Read

Software System

1 2 3

4

Read

BugCrawler Framework Polymetric views

Figure 14. The BugCrawler framework struc-
ture and its interaction with a system.

1. Downloading and parsing the CVS log files. The pro-
cessed information, concerning files, revisions of files,
directories and modules, is stored in the database.

2. The comments inserted by the authors during the com-
mits are analyzed looking for bug references by means
of pattern matching techniques.

3. Each time a bug reference is found, the bug descrip-
tion is retrieved from the Bugzilla Database, parsed
and stored in the RHDB.

7. Related Work

Visualization has long been adopted as a means to un-
derstand in a synthetic way large amounts of information,
such as the one given by evolving software systems. All of
the listed approaches do not take into account information
given by bug reporting systems, this being one of the ma-
jor contributions of this paper.

Ball and Eick [1] concentrated on the visualization of
different aspects related to code-level such as code ver-
sion history, difference between releases, static properties
of code, code profiling and execution hot spots, and pro-
gram slices. In [20], Tu and Godfrey tackle the issue of vi-
sualizing structural changes by studying the differences be-
tween releases of a system. In [15] Gallet al. presented an
approach to use color and 3D to visualize the evolution his-
tory of large software systems. Jazayeriet al. analyzed the

Figure 13. The Discrete Time Figure applied on the entire CalendarClient module of Mozilla.

stability of the architecture [14] by using colors to depict
the changes. Wuet al. [22] used the spectograph metaphor
to visualize how changes occur in software systems. Tay-
lor and Munro [19] visualized CVS data with a technique
called revision towers. Collberget al. [3] focused on the
visualization of the evolution of software using a tempo-
ral graph model. Rysselberghe and Demeyer [21] used a
simple visualization based on information in version con-
trol systems (CVS) to provide an overview of the evolution
of systems. In [18] Pinzgeret al. proposed a visualization
technique based on Kiviat diagrams to study the evolution
of large software systems. The approach provides integrated
condensed graphical views on source code and release his-
tory data of many releases. In [12] Girbaet al. use visu-

alization to characterize the evolution of class hierarchies.
In [11] Girbaet al. analyze how developers drive software
evolution by visualizing code ownership based on informa-
tion extracted from CVS.

8. Conclusion

In this paper we have presented a visual approach to
study the relationship between the evolution of software ar-
tifacts and the way they are affected by problems. The ap-
proach is based on the application ofDiscrete Time Figures
at any level of granularity. The scalability issue is tackled
by abstracting the revisions and bugs trends by means of
Phases.

The Discrete Time Figure indicates patterns of particu-
lar interest in the study of the evolution of software sys-
tems such as:Persistent, Day-Fly, Introduced for Fixing,
Stabilization, Addition of Features, Bug Fixing, Refactor-
ing / Code Cleaning.

These patterns include some of the possible relationships
between the histories of revisions and bugs, providing them
a precise and useful meaning. In our tool implementation is
provided a small query engine which allows the user to au-
tomatically detect all the patterns presented in this paper.

This feature is quite valuable for a project manager (or
an analyst) because it allows him to: (i) characterize the en-
tire system in terms of patterns detected, (ii) identify areas
of interest within the system (for example he/she can be in-
terested in the entities which exhibit a Refactoring / Code
Cleaning pattern) and (iii) compare different modules of a
system in terms of patterns.

We validated our approach on Apache, gcc and Mozilla,
thus proving the effectiveness of our approach.

Acknowledgments:We gratefully acknowledge the fi-
nancial support of the projects “COSE - Controlling Soft-
ware Evolution” (SNF Project No. 200021-107584/1),
‘EvoSpaces - Multi- dimensional navigation spaces for
software evolution” (Hasler Foundation Project No. MMI
1976), and “NOREX - Network of Reengineering Exper-
tise” (SNF SCOPES Project No. IB7320-110997).

References

[1] T. Ball and S. Eick. Software visualization in the large.IEEE
Computer, pages 33–43, 1996.

[2] A bug’s life cycle. http://bugzilla.remotesensing.org/bugstatus.html.
[3] C. Collberg, S. Kobourov, J. Nagra, J. Pitts, and K. Wampler.

A system for graph-based visualization of the evolution of
software. InProceedings of the 2003 ACM Symposium on
Software Visualization, pages 77–86. ACM Press, 2003.

[4] M. D’Ambros. Software archaeology - reconstructing the
evolution of software systems. Master thesis, Politecnico di
Milano, Apr. 2005.

[5] M. Fischer, M. Pinzger, and H. Gall. Populating a release his-
tory database from version control and bug tracking systems.
In Proceedings of the International Conference on Software
Maintenance (ICSM 2003), pages 23–32, Sept. 2003.

[6] H. Gall, K. Hajek, and M. Jazayeri. Detection of logical
coupling based on product release history. InProceedings of
the International Conference on Software Maintenance 1998
(ICSM ’98), pages 190–198, 1998.

[7] H. Gall, M. Jazayeri, R. R. Kl̈osch, and G. Trausmuth. Soft-
ware evolution observations based on product release history.
In Proceedings of the International Conference on Software
Maintenance 1997 (ICSM ’97), pages 160–166, 1997.

[8] H. Gall, M. Jazayeri, and J. Krajewski. Cvs release history
data for detecting logical couplings. InInternational Work-

shop on Principles of Software Evolution (IWPSE 2003),
pages 13–23, 2003.

[9] T. Gı̂rba, S. Ducasse, and M. Lanza. Yesterday’s weather:
Guiding early reverse engineering efforts by summarizing
the evolution of changes. InProceedings of ICSM 2004 (In-
ternational Conference on Software Maintenance), 2004.

[10] T. Gı̂rba, S. Ducasse, R. Marinescu, and D. Raţiu. Identify-
ing entities that change together. InNinth IEEE Workshop
on Empirical Studies of Software Maintenance, 2004.

[11] T. Gı̂rba, A. Kuhn, M. Seeberger, and S. Ducasse. How De-
velopers Drive Software Evolution. InProceedings of Inter-
national Workshop on Principles of Software Evolution (IW-
PSE). IEEE Computer Society Press, 2005.

[12] T. Gı̂rba, M. Lanza, and S. Ducasse. Characterizing the evo-
lution of class hierarchies. InProceedings of CSMR 2005
(9th European Conference on Software Maintenance, pages
2–11, 2005.

[13] M. W. Godfrey and Q. Tu. Evolution in Open Source soft-
ware: A case study. InProceedings of the International Con-
ference on Software Maintenance (ICSM 2000), pages 131–
142, San Jose, California, 2000.

[14] M. Jazayeri. On architectural stability and evolution. InRe-
liable Software Technlogies-Ada-Europe 2002, pages 13–23.
Springer Verlag, 2002.

[15] M. Jazayeri, H. Gall, and C. Riva. Visualizing software re-
lease histories: The use of color and third dimension. In
ICSM ’99 Proceedings (International Conference on Soft-
ware Maintenance), pages 99–108. IEEE Computer Society,
1999.

[16] M. Lanza and S. Ducasse. Polymetric views — a lightweight
visual approach to reverse engineering.IEEE Transactions
on Software Engineering, 29(9):782–795, Sept. 2003.

[17] M. Lanza, S. Ducasse, H. Gall, and M. Pinzger. Codecrawler
— an information visualization tool for program comprehen-
sion. InProceedings of ICSE 2005 (27th IEEE International
Conference on Software Engineering), pages 672–673. ACM
Press, 2005.

[18] M. Pinzger, H. Gall, M. Fischer, and M. Lanza. Visualizing
multiple evolution metrics. InProceedings of SoftVis 2005,
ACM Symposium on Software Visualization, pages 67–76, St.
Louis, Missouri, 2005.

[19] C. M. B. Taylor and M. Munro. Revision towers. InProceed-
ings of the 1st International Workshop on Visualizing Soft-
ware for Understanding and Analysis, pages 43–50. IEEE
Computer Society, 2002.

[20] Q. Tu and M. W. Godfrey. An integrated approach for
studying architectural evolution. In10th International Work-
shop on Program Comprehension (IWPC’02), pages 127–
136. IEEE Computer Society Press, June 2002.

[21] F. Van Rysselberghe and S. Demeyer. Studying software evo-
lution information by visualizing the change history. InPro-
ceedings of The 20th IEEE International Conference on Soft-
ware Maintenance (ICSM 2004), 2004. to appear.

[22] J. Wu, R. Holt, and A. Hassan. Exploring software evolution
using spectrographs. InProceedings of 11th Working Con-
ference on Reverse Engineering (WCRE 2004), pages 80–89.
IEEE Computer Society Press, Nov. 2004.

