
Predicting Eclipse Bug Lifetimes

Lucas D. Panjer
Department of Computer Science

University of Victoria
Victoria, British Columbia, Canada

ldp@cs.uvic.ca

Abstract

In non-trivial software development projects planning
and allocation of resources is an important and difficult
task. Estimation of work time to fix a bug is commonly used
to support this process. This research explores the viability
of using data mining tools to predict the time to fix a bug
given only the basic information known at the beginning of
a bug’s lifetime. To address this question, a historical por-
tion of the Eclipse Bugzilla database is used for modeling
and predicting bug lifetimes. A bug history transformation
process is described and several data mining models are
built and tested. Interesting behaviours derived from the
models are documented. The models can correctly predict
up to 34.9% of the bugs into a discretized log scaled lifetime
class.

1 Introduction

Developers are often asked to estimate the amount of
time they will need to fix specific bugs to aid the project
planning process. Accurate estimation of task completion
time can allow project planners and managers to effectively
schedule releases and allocate effort to meet those targets.
Since developers spend much of their time dealing with
legacy code and maintenance tasks, it is important to be
able to estimate the required time and effort to complete
bug fixing and enhancement tasks.

This research explores the viability of predicting how
long a newly confirmed bug will take to complete by ex-
ploiting prior data specific to a given project and organiza-
tion. Data mining techniques are explored due to the very
large size of these data sets. A bug lifetime predictive model
can provide an organizational planning tool for developers
and an early warning indicator for specific incoming tasks.
Early warnings can be used to identify specific bugs or tasks
which might never be resolved, or be used to estimate the
state of a bug database at a later date.

2 Research Question

Initial literature searches revealed that there is little work
that has attempted to predict how long a newly identified
bug will take to fix. However, there has been research that
looks at life spans and characteristics of bugs. Chou et al.
[3] have shown that the average life span of certain classes
of bugs in the Linux and OpenBSD kernels can extend into
years. In the open-source software (OSS) development field
Kim et al. [4] also study the life span of bugs: their re-
search in two OSS projects, ArgoUML and PostgreSQL,
shows that bug-fix times have a median of about 200 days
and can extend into years.

This research is preliminary work designed to deter-
mine if it is possible to predict the lifetime of a bug from
the time of confirmation (NEW state) to resolution (RE-
SOLVED state), given the use of existing elementary in-
formation in a bug repository. Specifically, what levels of
prediction accuracy can be achieved using these attributes?
what interesting phenomena of Eclipse bugs can be derived
from the models built?

3 Data Set

Eclipse’s Bugzilla was chosen as a target of this research
because Bugzilla has a wide installation base in the OSS
and commercial development field and Eclipse is a large
and mature OSS project. Bugzilla is also used by several
projects that are commonly studied in a software repository
mining context, and it is well studied and understood by the
community.

In this approach, bugs are examined at specific points
throughout their life. To accomplish this we need to exam-
ine all changes for each bug. A pre-harvested data set of
Eclipse bugs was acquired from Thomas Zimmerman and
imported into a database. This data import included fields
contained in the Bugzilla XML data representation as well
as the change history of each bug. The change history is
gathered by crawling the public Eclipse Bugzilla website

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

Figure 1. The life cycle of a Bugzilla bug

and parsing the change history pages for relevant fields as
this information is not included in the XML representation.

3.1 Bugzilla Process

The life cycle of a bug in a Bugzilla tracking system fol-
lows a set of structured states and transitions [1] (See Figure
1). A bug enters the system in either the UNCONFIRMED
or NEW state. If the bug is reported by an untrusted submit-
ter it is initially classified as UNCONFIRMED. If the sub-
mitter is trusted, (e.g., a committer or core member of the
team) the bug is initially classified as NEW. Bugzilla man-
agers or triagers confirm the existence, validity, and non-
duplicity of bugs and move them from UNCONFIRMED
to NEW. Once a bug is triaged and assigned to the correct
product, severity, and priority, bugs are assigned to devel-
opers and moved to ASSIGNED.

When a bug has been fixed the current assignee moves
it to RESOLVED. Other team members may move the bug
to other states, such as VERIFIED or CLOSED, or may re-
open the bug during testing and release procedures. A bug
is considered to be resolved when it reaches a state or status
of RESOLVED, VERIFIED, or CLOSED. Resolutions are
combined with a status to denote the reason for resolving
the bug; only bugs that have resolution of FIXED are con-
sidered. Resolutions of DUPLICATE, WONTFIX, WORKS-
FORME, and INVALID denote invalid bugs and are not con-
sidered. A bug lifetime is defined as the time in days be-
tween NEW and RESOLVED.

3.2 Data Set Manipulation

The extracted data set exposes the current state of each
bug. Since we want are predicting the lifetime of bugs at
time of confirmation we must rolled-back to the NEW sta-
tus. Roll-back is achieved by incrementally applying the
change history of the bug in reverse order until a specific
state is reached. Counts of the cc list, dependent bugs, bug
dependencies, and comments of the bug are calculated while
the roll-back is computed. Bugs are filtered to remove all
bugs that have not been reached RESOLVED and the first
4907 bugs are removed from the experimental data set since
they were imported into the Eclipse Bugzilla database and
have invalid creation dates.

The fields included in the data set were: assigned to, qa
contact, priority, severity, product, component, operating
system, platform, version, target milestone, cc count, bug
dependencies, dependent bugs, keywords, comments, and
lifetime in days. The votes and attachments fields that are
commonly used in Eclipse’s Bugzilla and would be ideal
candidates for exploration are missing from this data ex-
traction. Votes are used to allow the community to express
support or interest in a bug and attachments are used to post
patches, stack traces, and other supporting files.

The distribution of bug lifetimes in days is a heavily
skewed long-tail. The data set begins on the 11th of Oc-
tober, 2001 and the last bug is on the 6th of March, 2006.
Our data set contains 118 371 usable bug data points after
roll-back. The maximum number of days open is 1601 days,
the mean is 66.2 days, and the standard deviation is 153.1
days. Since the bug resolution time is so heavily skewed we
interpret and display it using a loge scale.

To allow the application of data mining tools and al-
gorithms that require a nominal target class to operate we
discretized the time to resolution values using an equal-
frequency binning algorithm. The size of each bin gener-
ated by the discretization algorithm roughly corresponds to
the segmentation one might naturally use to reason about
scheduling (e.g., day, week, month, six months, or a year).
Figure 2 shows the bin sizes generated by discretization.
The binning algorithm could not accommodate the large
portion of the bugs that were completed in one day so there
is a larger bin for the 0 < days < 1.4 class.

4 Automatic Classification

The WEKA toolkit [2] was used to perform data min-
ing and analysis of the constructed data set for predicting
bug lifetimes. Basic algorithms, 0-R and 1-R, were initially
explored to establish a baseline of prediction accuracy. Fur-
ther, Naive Bayesian Networks, Decision Trees, and Logis-
tic Regression are explored. Cross validation is used to test
the models and prediction accuracy, kappa statistic, and in-

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

Figure 2. Distribution of resolution times

teresting traits of each result are documented. Prediction
accuracy and the kappa statistic are used instead of preci-
sion, recall, or f-measure of each class because the target
classification for this data set is nominal with seven values.
The kappa statistic is presented as a measure of the agree-
ment between the prediction and the true classification. This
is used as an overall measure of accuracy across all output
classes. A summary of result measures is shown in Table 1.

4.1 0-R and 1-R

The 0-R algorithm correctly classifies 29.1% of bugs and
the kappa statistic is 0. 0-R predicts the class <1.4 days in
all cases. The 1-R algorithm builds a one level decision
tree by first generating a set of rules that each test a par-
ticular attribute, then simply selecting the best-performing
rule. The 1-R algorithm correctly classifies 31.0% of bugs
and the kappa statistic is 0.0747. The attribute selected to
classify every instance is the comments. The rule states
that bugs with 0 < comments < 1.5 are resolved in
1.4 < days < 3.5, bugs with 1.5 < comments < 6.5
are resolved in 0 < days < 1.4, and that bugs with
comments ≥ 6.5 are resolved in days ≥ 52.

4.2 Decision Trees

The C4.5 decision tree algorithm [5] correctly classifies
31.9% of bugs and the kappa statistic is 0.0938. The top
node of these trees is always the comments (count), fol-
lowed by assigned to. Reviewing the resultant trees and
subsequently the source data it was noted that the assigned
to field often contained *-inbox@eclipse.org addresses that
are used as placeholders for specific components until bugs
are actually assigned to human developers.

Further models were built with the assigned to field re-
moved. In these model we correctly classify 31.9% of bugs

Algorithm Predicted % Kappa
0-R 29.1% 0.0000
1-R 31.0% 0.0747
C4.5 Decision Tree 31.9% 0.0938
Naive Bayes 32.5% 0.1195
Logistic Regression 34.9% 0.1577

Table 1. Summary of prediction results

and the kappa statistic is 0.0938. The prediction accuracy
of these models is the same but the rules generated are more
interesting. The top node is still always comments followed
by severity and version version.

4.3 Naive Bayes

Naive Bayes is a rule generator based on Bayes’ rule of
conditional probability which treats all attributes as if they
were independent. The Naive Bayes algorithm correctly
classifies 32.5% of bugs and the kappa statistic is 0.1195.
The Naive Bayes algorithm provides a broader distribution
of predictions than the 0-R or 1-R algorithms, classifying at
least several thousand bugs into each class.

4.4 Logistic Regression

Logistic regressions are used to provide a regression
analysis where many of the dependent variables are nominal
or if the class is nominal. Due to computational constraints
a set of 496 randomly selected bugs is considered, or 0.42%
of the original data set. Using the logistic regression algo-
rithm a model is built and correctly classifies 34.9% of bugs
and the kappa statistic is 0.1577.

5 Discussion

0-R provides a baseline of prediction accuracy for res-
olution time of bugs in the source data set. 0-R predicts
that all bugs will be resolved within 0 < days < 1.4.
This is simply because the most common actual outcome
is 0 < days < 1.4.

The 1-R algorithm selects the most important variable
by generating a decision tree stump. This is the first rule
that would exist in a larger decision tree. In this case, 1-R
selects a rule defining comments ≤ 1.5 to predict bug reso-
lution times of 1.4 < days < 3.4 and 1.5 < comments <
6.5 to predict bug resolution times of 0 < days < 1.4.
Higher values for comments always imply resolution times
of greater than 52 days.

This behaviour could exist because most bugs start with
one comment and that comment is provided by the sub-
mitter of the bug while describing the issue. Given the

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

heavily skewed distribution of resolution times favouring
the bug resolution time of 0 < days < 1.4 this is not
a surprising result. The second portion of the rule, which
notes that bugs tend to close in less than 1.4 days when
1.5 < comments < 6.5 is interesting as it might imply that
bugs with early discussion are resolved quickly.

5.1 Advanced Predictions

Top node analysis of the decision trees shows that com-
ments is the most influential variable. After assigned to is
removed due to inaccurate data we see that severity as as-
signed by either the bug submitter or triager followed by
version are the next important variables.

Analysis of the decision tree rules provides several inter-
esting observations. Bugs with little discussion, fewer than
four comments, tend to be resolved in less than 1.4 days;
bugs that can be resolved with little discussion are resolved
quickly. When bugs require more conversation, greater than
four comments, the resolution times become dependent on
severity. Bugs assigned a severity of blocker, critical, trivial
result in a resolution time of less than 1.4 days; simple and
very important bugs are fixed very quickly. Bugs assigned
a severity of enhancement or future require six months or
more to resolve; less severe bugs are fixed at a slower pace.
Bugs assigned a severity of major have more comments and
longer resolution times, specifically where greater numbers
of comments exist.

It seems that triagers and assignees heed the assigned
severity rating or that the triaging team is correctly assign-
ing severity. It is also interesting that the priority field is not
seen as important in the decision trees. Perhaps the Eclipse
team’s process places less importance on the priority field.

Naive Bayes generates a prediction model assuming that
all variables are strongly independent. This technique can
work surprisingly well on real-world data sets where there
exists strong dependence between variables [6]. The appli-
cation of the naive Bayes shows little improvement in cor-
rectly predicted lifetimes. This might imply that the vari-
ables in this data set tend to not be either strongly indepen-
dent or strongly functionally dependent variables. Our pre-
diction accuracy is slightly better than when using a deci-
sion tree approach, but does not allow easy comprehension
of the rules used to predict the outcomes.

Logistic regression was used on a small randomly se-
lected sample of the data set. The best rate for correctly
classified instances is achieved using this method. A set
of coefficients is calculated for each target class. For all
classes the influential variables are severity, operating sys-
tem, product, component, version, number of watchers, and
comments. These variables seem to intuitively match the
variables that I consider most important when filing bug re-
ports or structuring queries. Perhaps this is true for other

users of this Bugzilla database.
None of the modeling approaches used yielded particu-

larly high correct classification or kappa values, nor did the
advanced data mining algorithms significantly exceed the
baseline predictions. The accuracy achieved is not likely to
be of value to a bug triager. It seems that there are other
attributes or metrics that may have greater influence of the
resolution time of bugs. There is merit in predicting life-
times at a later point in time removing the bugs that close
quickly, increasing the relevance of the remaining bugs.

6 Conclusion

This research explores modeling of bug lifetimes using
information available at the beginning of a bug’s lifetime. A
technique to roll-back a bug to a specific state is presented
and used to create data sets. Data mining techniques are ex-
plored and evaluated to predict lifetimes and to learn which
features are salient for Eclipse bugs.

Exploring the Eclipse bug set with various data mining
algorithms reveal that an accuracy of 34.9% can be acheived
using only the primitive attributes associated with a bug.
The most influential affecting length of bug lifetime are
commenting activity, severity of bug as determined by the
software development team, product, component, and ver-
sion. Speculation suggests that higher level attributes such
as average lifetime of bugs in a specific product or compo-
nent may have greater predictive power.

7 Acknowledgments

I am grateful to Thomas Zimmermann for providing an
extracted Eclipse Bugzilla data set with change histories
and to Ahmed Hassan for his guidance in this research.

References

[1] Bugzilla Documentation – Life Cycle of a Bug. Available on-
line at http://www.bugzilla.org/docs/tip/html/lifecycle.html.

[2] Weka 3 – Machine Learning Software in Java. Available on-
line at http://www.cs.waikato.ac.nz/ ml/weka/index.html.

[3] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler. An
empirical study of operating systems errors. ACM SIGOPS
Operating Systems Review, 35(5):73–88, 2001.

[4] S. Kim and J. E. James Whitehead. How long did it take to
fix bugs? In MSR ’06: Proceedings of the 2006 international
workshop on Mining software repositories, pages 173–174,
New York, NY, USA, 2006. ACM Press.

[5] J. R. Quinlan. C4.5: Programs for Machine Learning. Mor-
gan Kaufmann Publishers Inc., San Francisco, CA, USA,
1993.

[6] I. Rish. An empirical study of the naive Bayes classifier. Pro-
ceedings of IJCAI-01 Workshop on Empirical Methods in Ar-
tificial Intelligence, 335, 2001.

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

