
Spam Filter Based Approach for Finding Fault-Prone Software Modules

Osamu Mizuno, Shiro Ikami, Shuya Nakaichi, and Tohru Kikuno
Graduate School of Information Science and Technology, Osaka University

1-5 Yamadaoka, Suita, Osaka 565-0871, JAPAN
o-mizuno@ist.osaka-u.ac.jp

Abstract

Because of the increase of needs for spam e-mail detec-
tion, the spam filtering technique has been improved as a
convenient and effective technique for text mining. We pro-
pose a novel approach to detect fault-prone modules in a
way that the source code modules are considered as text
files and are applied to the spam filter directly. In order to
show the applicability of our approach, we conducted ex-
perimental applications using source code repositories of
Java based open source developments. The result of experi-
ments shows that our approach can classify more than 75%
of software modules correctly.

1. Introduction

Early detection of faulty software modules is of impor-
tance for both reduction of development cost and assurance
of software quality. Predicting fault-proneness have been
conducted so far by many researchers. Munson and Khosh-
goftaar used software complexity metrics and the logis-
tic regression analysis to detect fault-prone modules [10].
Basili et al. also used logistic regression for detection of
fault-proneness using object-oriented metrics [2]. Fenton et
al. proposed a Bayesian Belief Network based approach to
calculate the fault-proneness [7]. Most of them used some
kind of software metrics, such as program complexity, size
of modules, object-oriented metrics, and so on, and con-
structed mathematical models to calculate fault-proneness.
Metrics based approaches, however, usually depend on the
language, development environment, and so on. In addition,
collecting such metrics and estimating values of parameters
requires additional efforts.
This paper introduces a new idea to detect fault-prone

modules. The idea is inspired from the spam e-mail filter-
ing technique. It is said that most e-mail messages on the
Internet are spam. Such explosive increase of spam e-mail
triggered development of a lot of spam filtering techniques.
We thus tried to apply spam filtering technique to the

fault-prone detection, and call our approach “fault-pronefil-
tering.” In the fault-prone filtering, we consider a software
module1 as an e-mail message, and assume that all of soft-
ware modules belong to either fault-prone(FP) or not-fault-
prone(NFP). After learning of existing FP and NFP mod-
ules, we can classify a new module into either FP or NFP
by applying spam filter. One advantage of such a statistical
approach is that we do not have to investigate source code
modules in detail. We do not measure any metrics but just
apply source code module to the filter. The text classifica-
tion does not depend on language or development environ-
ment but depend on the past history of the development.

2. Overview of Fault-Prone Filtering

2.1. Basic Idea

The basic idea of fault-prone filtering is inspired from
spam mail filtering. In the spam mail filtering, the spam fil-
ter first learns both spam and ham (non-spam) e-mail mes-
sages from learning data set. Then, an incoming e-mail is
classified into either ham or spam by the spam filter.
This framework is based on the fact that spam e-mail

usually include particular patterns of words or sentences.
From a viewpoint of source code, similar situation usually
occurs in faulty software modules. That is, similar faults
may occur in similar contexts. We thus guessed that faulty
softwaremodules have similar pattern of words or sentences
like spam e-mail messages.
From a viewpoint of effort, conventional fault-prone de-

tection techniques require relatively much effort for appli-
cation because they have to measure various metrics. Of
course, metrics are useful for understanding the property
of source code quantitatively. However, measuring met-
rics usually needs extra effort and translating the values of
metrics into meaningful result also needs additional effort.
Thus easy-to-use technique that does not require much ef-
fort will be useful in software development.

1For example, we consider a software module as function, method,
class, and so on.

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

We then try to apply a spam filter to identification of
fault-prone modules. We named this approach as “fault-
prone filtering”. That is, the fault-prone learner first learns
both FP andNFP modules. Then, a newmodule can be clas-
sified into FP or NFP using the fault-prone classifier. To do
so, we have to prepare spam filtering software and sets of
FP and NFP modules.

2.2. Procedure of Fault-Prone Filtering

In order to apply our approach to data from source code
repository, we implemented tools named “FPLearner” and
“FPClassifier” for learning and classifying software mod-
ules, respectively. The procedure of fault-prone filtering is
summarized as follows:
(1) Prepare a set of fault-prone modules,MFP, and a set of
non fault-prone modules,MNFP, for the target project.
(2) By learningMFP and MNFP, FPLearner construct cor-
puses for both FP and NFP modules.
(3) For a new module, mnew, we apply FPClassifier to
mnew and get probability thatmnew is fault-prone.
(4) Classify mnew into either FP or NFP by the probability
and a pre-defined threshold.

2.3. Classification Techniques

In this study, we used “CRM114” spam filtering soft-
ware [4]. The reason why we used CRM114 was its versa-
tility and accuracy. In this experiment, we used the follow-
ing 3 classification strategies built in CRM114 to evaluate
effectiveness of our proposed approach.
Sparse Binary Polynomial HashMarkovmodel (SBPH):
SBPH is the default classification model used in CRM114.
It is an extension of Bayesian classification, mapping fea-
tures in the input text into the Markov Random Field [3]. In
this model, tokens are constructed from combinations of 5
words (5-grams) in a text file2.
Orthogonal Sparse BigramsMarkov model (OSB):OSB
is a simplified version of SBPH. It uses a subset of tokens
created in the SBPH model so that tokens have exactly 2
words. This decreases both memory consumption of learn-
ing and time of classification.
Simple Bayesian model (BAYES): BAYES is a simplified
version of SBPH, since it uses only single words as tokens.
This model thus considered to be identical to the classical
Bayesian classification.
These classifiers have both merits and demerits. In order

to investigate the applicability to FP filtering, we compare
accuracy of these 3 strategies when they are applied to FP
filtering in the experiment.

2The number of words is determined in CRM114 heuristically.

Table 1. Target projects
Name argoUML eclipse BIRT
Type of faults Bugs
Status of faults Resolved, Verified, Closed
Resolution of faults Fixed
Severity N/A blocker, critical,

major, normal
Priority of faults all
Total # of faults 1058 4708

3. Experimental Application

3.1. Target Projects

For the experiment, we selected open source project that
can track faults. For this reason, we selected two projects,
“argoUML project [1]” and “eclipse BIRT [6]”.
Table 1 shows the context of the target projects. Both

projects are developed in Java language, and revisions are
maintained by concurrent version control system (cvs). The
source repository of argoUML is prepared one for the use
of Mining Challenge in Mining Software Repository work-
shop in 2006 [5]. As for the Eclipse BIRT, an archive
of repository was obtained from official web-site at 27th
November, 2006. Fault reports are obtained from the bug
database of both projects. The type of faults is “bugs”,
therefore these faults do not include any enhancements or
functional patches. The status of faults are either “re-
solved”, “verified”, or “closed”, and the resolution of faults
is “fixed”. This means that the collected faults have already
resolved and fixed and thus fixed revision should be in-
cluded in the entire repository. As for the Eclipse BIRT, the
severity of faults are also specified. Faults with “blocker”,
“critical”, “major”, and “normal” are collected in this ex-
periment.

3.2. Collecting Fault-Prone Modules

We have to collect both fault-prone(FP)modules and non
fault-prone(NFP) modules from source code repository for
this research. The collection of such modules seems easy
for a software project which has a bug database such as
an Open Source Software development. However, even in
such an environment, the revision control system and bug
database system are usually separated and thus tracking on
the fault-prone modules needs effort. In the development of
software in companies, the situation becomes harder [8].
We thus have to extract FP and NFP modules by our-

selves. We assumed the target project is a Java-based de-
velopment in this study. We also assumed that a module of
source code is a method in Java class.

2

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

Table 2. Result of FPFinder for target projects

Name argoUML eclipse BIRT
of faults 396 1973
found in cvs log (37% of total) (42% of total)
of FP (|MFP|) 1093 9547
of NFP (|MNFP|) 20219 86770

We then extracted FP modules from source code by the
following procedure. This procedure is based on an algo-
rithm shown by Sliwerski et al. [11]. At first, we collected
the following information from bug database of a target
project such as Bugzilla.

F : A set of faults found in bug database.
fi: Each fault in F .
date(fi): Date in which a fault fi is reported.
We then start mining a source code repository according

to the following algorithm to extract fault-prone modules.

1. For each fault fi, find classes CFaultFixed in which the
fault has just been fixed by checking all revision logs.

2. Extract modulesMFaultFixed in classes CFaultFixed.
3. For each modulem inMFaultFixed, appendm toMFP

ifm is unmodified since date(fi).
4. Extract modulesMAllRev in all revision.
5. For each n inMFP, track back older revisions of n and
append found older revisions of n toMFPold

6. MNFP = MAllRev − MFPold − MFP.

We implemented a prototype tool named “FPFinder” to
track bugs in the cvs repository. The inputs of FPFinder is
a cvs repository of target project and a bug report to track.
The output of FPFinder areMFP andMNFP.
The result of FPFinder is shown in Table 2. Number

of faults found in cvs log of argoUML is 396. It is 37%
of total reported faults in the bug database. As for Eclipse
BIRT, 1973 faults are found in cvs log and it was 42% of
total. The execution time of FPFinder for eclipse BIRT was
1 hour on MacPro with Xeon 5100 2.66GHz processor.
Currently, FPFinder cannot find all FP modules in the

cvs repository since not all faults are commented in the cvs
log. This is one of the large limitation of our approach now,
and we are trying to overcome it.

3.3. Application of FPClassifier

The number of extracted NFP modules becomes ex-
tremely larger than the number of FP modules. Since it is
known that imbalanced data set affects the result of predic-
tion [9], we have to make data set to be balanced before
applying FPClassifier.
To do so, the number of NFP modules should be reduced.

By applying random sampling method, we randomly chose

Table 3. Legend of experimental result
Target Predicted
Model NFP FP

Actual NFP N1 N2

FP N3 N4

a subset of NFP modules and let them beM ′
NFP. The num-

ber of modules in M ′
NFP for argoUML is 2022, and the

number of modules inM ′
NFP for eclipse BIRT is 10413.

Then, we performed 10-fold cross validation using mod-
ules inMFP andM ′

NFP by 3 classifiers in subsection 2.3.

3.4. Result of Experiment

Table 3 shows a legend of tables for experimental re-
sult. In Table 3, N1 shows the number of modules that
are predicted as NFP and are actually NFP. N2 shows the
number of modules that are predicted as FP but are actually
NFP. Usually,N2 is called Type-I error. On the contraryN3

shows the number of modules that are predicted as NFP but
are actually FP.N3 is called Type-II error. FinallyN4 shows
the number of modules that are predicted as FP and are ac-
tually FP. Therefore, N1 + N4 is the number of correctly
predicted modules. For evaluation purpose, we used three
metrics: accuracy, recall, and precision. Accuracy shows
the ratio of correctly predicted modules to entire modules
and it is defined as (N1+N4)/(N1+N2+N3+N4). Recall
is the ratio of modules correctly predicted as FP to number
of entire modules actually FP and defined asN4/(N3+N4).
Precision is the ratio of modules correctly predicted as FP
to number of entire modules predicted as FP, and defined as
N4/(N2 + N4).
Table 4 shows results of 10-fold cross validation using 3

classifiers for argoUML and eclipse BIRT. The time needed
for the experiment of OSB classifier in eclipse BIRT was
11 hours 4 minutes, and this indicates that 19960 modules
are learned and classified in this period. That is, it needs
1.98 seconds for learn and classify 1 module in average.
The result of evaluation by accuracy, recall, and precision is
shown in Tables 5 and 6.

4. Discussion

The result for argoUML shows that the SBPH classifier
achieved the best accuracy among 3 classifiers. OSB is the
second best, and BAYES is the third. On the other hand, the
result for eclipse BIRT shows that OSB is the best, SBPH is
the second, and BAYES is the third.
As for SBPH, from a viewpoint of balance of three evalu-

ation metrics, accuracy, precision, and recall, it can be con-
sidered the most balanced classifiers among 3. In particular,
for the experiment of argoUML, SBPH achieves the best ac-
curacy, 0.797. This implies that almost 80% of all modules

3

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

Table 4. Result of 10-fold cross validation for argoUML and eclipse BIRT
argoUML Predicted
SBPH NFP FP

Actual NFP 1721 301
FP 331 762

argoUML Predicted
OSB NFP FP

Actual NFP 1366 656
FP 158 935

argoUML Predicted
BAYES NFP FP

Actual NFP 1291 731
FP 151 942

eclipse BIRT Predicted
SBPH NFP FP

Actual NFP 8055 2358
FP 2649 6898

eclipse BIRT Predicted
OSB NFP FP

Actual NFP 6833 3580
FP 1283 8264

eclipse BIRT Predicted
BAYES NFP FP

Actual NFP 1921 8492
FP 217 9330

Table 5. Evaluation metrics for argoUML
Classifier Precision Recall Accuracy
SBPH 0.717 0.697 0.797
OSB 0.587 0.855 0.739
BAYES 0.563 0.861 0.717

Table 6. Evaluation metrics for eclipse BIRT
Classifier Precision Recall Accuracy
SBPH 0.745 0.723 0.749
OSB 0.698 0.866 0.756
BAYES 0.524 0.977 0.564

classified correctly. SBPH also achieves 75% of accuracy
in eclipse BIRT experiment.
As for OSB, the result shows a bit less accuracy than

SBPH as its definition implies. Especially, the value of re-
call for OSB is relatively high in both experiments (that is,
0.855 and 0.866 for argoUML and eclipse BIRT, respec-
tively). It indicates that this method merely misclassified
actually FP modules as NFP. This is a big advantage of OSB
classifier. Unlike BAYES classifier to be mentioned below,
OSB has relatively good accuracy. It is thus considered that
OSB is good for a situation that FP modules must not be
missed.
The accuracy of BAYES classifier was the worst accu-

racy among 3. Although the recall is extremely high in both
experiments, it also indicates that about most of actual NFP
modules are misclassified as FP. In other words, BAYES
predicts most modules as FP, and thus it is not acceptable.
The comparison of 3 classifiers is summarized as follows:

SBPH The best accuracy, better precision and recall.
OSB Better accuracy, fair precision, and better recall.
BAYES Poor accuracy, poor precision, and the best recall.

From experiments, we can confirm that the fault-prone fil-
tering works correctly for two projects. It is also shown that
SBPH is relatively good accuracy to predict FP modules.

5. Conclusion

This paper proposed an approach to classify fault-prone
software modules using spam filtering technique. In our ap-

proach, source code modules were considered as text files
and they are applied to the spam filter directly. We con-
ducted an experiment using source code repositories of Java
based open source developments. The result of experiment
showed that our approach can classify over 75% of software
modules correctly.
As future works, we are now trying to perform experi-

ments assuming an actual situation in a development project
have to be done. It will show practical advantage of our ap-
proach. Additionally, further investigation of misclassified
modules will contribute to improvement of accuracy.

References

[1] ArgoUML Project. http://argouml.tigris.org/.
[2] V. R. Basili, L. C. Briand, and W. L. Melo. A validation of

object oriented metrics as quality indicators. IEEE Trans. on
Software Engineering, 22(10):751–761, 1996.

[3] S. Chhabra, W. S. Yerazunis, and C. Siefkes. Spam filtering
using a markov random field model with variable weighting
schemas. In Proc. 4th IEEE International Conference on
Data Mining (ICDM 2004), pages 347–350, 2004.

[4] CRM114 – the Controllable Regex Mutilator.
http://crm114.sourceforge.net/.

[5] S. Diehl, H. Gall, and A. E. Hassan, editors. Proc. 2006
International Workshop on Mining Software Repositories,
MSR 2006. ACM, 2006.

[6] Eclipse Project. http://www.eclipse.org/.
[7] N. E. Fenton and M. Neil. A critique of software defect

prediction models. IEEE Trans. on Software Engineering,
25(5):675–689, 1999.

[8] T. M. Khoshgoftaar and N. Seliya. Comparative assessment
of software quality classification techniques: An empirical
study. Empirical Software Engineering, 9:229–257, 2004.

[9] M. Kubat and S. Matwin. Addressing the curse of imbal-
anced training sets: One-sided selection. In Proc. 14th Intl
Conf. on Machine Learning, pages 179–186, 1997.

[10] J. C. Munson and T. M. Khoshgoftaar. The detection of
fault-prone programs. IEEE Trans. on Software Engineer-
ing, 18(5):423–433, 1992.

[11] J. Sliwerski, T. Zimmermann, and A. Zeller. When do
changes induce fixes? (on fridays.). In Proc. 2005 Inter-
national Workshop on Mining Software Repository, pages
24–28, 2005.

4

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

