
When Do Changes Induce Fixes?
(On Fridays.)

Jacek Śliwerski
International Max Planck Research School
Max Planck Institute for Computer Science

Saarbrücken, Germany
sliwers@mpi-sb.mpg.de

Thomas Zimmermann Andreas Zeller
Department of Computer Science

Saarland University
Saarbrücken, Germany
{tz, zeller}@acm.org

ABSTRACT
As a software system evolves, programmers make changes that
sometimes cause problems. We analyze CVS archives for fix-in-
ducing changes—changes that lead to problems, indicated by fixes.
We show how to automatically locate fix-inducing changes by link-
ing a version archive (such as CVS) to a bug database (such as
BUGZILLA). In a first investigation of the MOZILLA and ECLIPSE
history, it turns out that fix-inducing changes show distinct patterns
with respect to their size and the day of week they were applied.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement—corrections, version control; D.2.8 [Metrics]: Com-
plexity measures

General Terms
Management, Measurement

1. INTRODUCTION
When we mine software histories, we frequently do so in order

to detect patterns that help us understanding the current state of
the system. Unfortunately, not all changes in the past have been
beneficial. Any bug database will show a significant fraction of
problems that are reported some time after some change has been
made.
In this work, we attempt to identify those changes that caused

problems. The basic idea is as follows:

1. We start with a bug report in the bug database, indicating a
fixed problem.

2. We extract the associated change from the version archive,
thus giving us the location of the fix.

3. We determine the earlier change at this location that was ap-
plied before the bug was reported.

This earlier change is the one that caused the later fix. We call such
a change fix-inducing.
What can one do with fix-inducing changes? Here are some po-

tential applications:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR’05May17,2005,SaintLouis,Missouri,USA
.Copyright2005ACM1-59593-123-6/05/0005...$5.00.

Which change properties may lead to problems? We can inves-
tigate which properties of a change correlate with inducing
fixes, for instance, changes made on a specific day or by a
specific group of developers.

How error-prone is my product? We can assign a metric to the
product—on average, how likely is it that a change induces a
later fix?

How can I filter out problematic changes? When extracting the
architecture via co-changes from a version archive, there is
no need to consider fix-inducing changes, as they get undone
later.

Can I improve guidance along related changes? When using co-
changes to guide programmers along related changes, we
would like to avoid fix-inducing changes in our suggestions.

This paper describes our first experiences with fix-inducing chang-
es. We discuss how to extract data from version and bug archives
(Section 2), and how we link bug reports to changes (Section 3).
In Section 4, we describe how to identify and locate fix-inducing
changes. Section 5 shows the results of our investigation of the
MOZILLA and ECLIPSE: It turns out that fix-inducing changes show
distinct patterns with respect to their size and the day of week they
were applied. Sections 6 and 7 close with related and future work.

2. WHAT’S IN OUR ARCHIVES?
For our analysis we need all changes and all fixes of a project.

We get this data from version archives like CVS and bug tracking
systems like BUGZILLA.
A CVS archive contains information about changes: Who changed

what, when, why, and how? A change δ transforms a revision r1 to
a revision r2 by inserting, deleting, or changing lines. We will later
investigate changes on the line level. Several changes δ1, . . . , δn

form a transaction t if they were submitted to CVS by the same
developer, at the same time, and with the same log message, i.e.,
they have been made with the same intention, e.g. to fix a bug or to
introduce a new feature. As CVS records only individual changes
to files, we group these to transactions with a sliding time window
approach [12].
A CVS archive also lacks information about the purpose of a

change: Did it introduce a new feature or did it fix a bug? Although
it is possible to identify such reasons solely with log messages [7],
we combine both CVS and BUGZILLA for this step because this
increases the precision of our approach.
A BUGZILLA database collects bug reports that are submitted by

a reporter with a short description and a summary. After a bug has
been submitted, it is discussed by developers and users who pro-
vide additional comments and may create attachments. After the

1

BugDB

Bug 42233
JUnit code generated for

TestSuite is wrong [JUnit]

...

Change History

1.17 1.18 1.19

Fixed Bug

42233

Link Bugs
with Changes

Figure 1: Link transactions to bug reports

bug has been confirmed, it is assigned to a developer who is respon-
sible to fix the bug and finally commits her changes to the version
control archive. BUGZILLA also captures the status of a bug, e.g.,
UNCONFIRMED, NEW, ASSIGNED, RESOLVED, or CLOSED and
the resolution, e.g., FIXED, DUPLICATE, or INVALID. Details
on the lifecycle of a bug can be found in the BUGZILLA documen-
tation [10, Sections 6.3 and 6.4].
For our analysis, we mirror both CVS and BUGZILLA in a local

database. Our mirroing techniques for CVS are described in [12].
To mirror a BUGZILLA database, we use its XML export feature.
Additionally, we import attachments and activities directly from the
web interface of BUGZILLA. Our local BUGZILLA database schema
is similar to the one described in [2].

3. IDENTIFYING FIXES
In order to locate fix-inducing changes, we first need to know

whether a change is a fix. A common practice among developers is
to include a bug report number in the comment whenever they fix a
defect associated with it. Čubranić and Murphy [4] as well as Fis-
cher, Pinzger, and Gall [5, 6] exploited this practice to link changes
with bugs. Figure 1 sketches the basic idea of this approach.
In our work, we refine these techniques by assigning every link (t, b)

between a transaction t and a bug b two independent levels of con-
fidence: a syntactic level, inferring links from a CVS log to a bug
report, and a semantic level, validating a link via the bug report
data. These levels are later used to decide which links shall be
taken into account in our experiments.

3.1 Syntactic Analysis
In order to finds links to the bug database, we split every log

message into a stream of tokens. A token is one of the following
items:

• a bug number, if it matches one of the following regular ex-
pressions (given in FLEX syntax):

– bug[# \t]*[0-9]+,
– pr[# \t]*[0-9]+,
– show_bug\.cgi\?id=[0-9]+, or
– \[[0-9]+\]

• a plain number, if it is a string of digits [0-9]+
• a keyword, if it matches the following regular expression:
fix(e[ds])?|bugs?|defects?|patch

• a word, if it is a string of alphanumeric characters
Every number is a potential link to a bug. For each link, we initially
assign a syntactic confidence syn of zero and raise the confidence
by one for each of the following conditions that is met:

1. The number is a bug number.
2. The log message contains a keyword,

or the log message contains only plain or bug numbers.

Thus the syntactic confidence syn is always an integer number be-
tween 0 and 2. As an example, consider the following log mes-
sages:

• Fixed bug 53784: .class file missing
from jar file export
The link to the bug number 53784 gets a syntactic confidence
of 2 because it matches the regular expression for bug and
contains the keyword fixed.

• 52264, 51529
The links to bugs 52264 and 51529 have syntactic confi-
dence 1 because the log message contains only numbers.

• Updated copyrights to 2004
The link to the bug number 2004 has a syntactic confidence
of 0 because there is no syntactic evidence that this number
refers to a bug.

3.2 Semantic Analysis
In the previous section, we inferred links that point from a trans-

action to a bug report. To validate a link (t, b) we take information
about its transaction t and check it against information about its
bug report b. Based on the outcome we assign the link a semantic
level of confidence.
Initially, a link (t, b) has semantic confidence of 0 which is raised

by 1 whenever one of the following conditions is met:
• The bug b has been resolved as FIXED at least once.1

• The short description of the bug report b is contained in the
log message of the transaction t.

• The author of the transaction t has been assigned to the bug b.2

• One or more of the files affected by the transaction t have
been attached to the bug b.

This list is not meant to be exhaustive. One could for example
check whether a change has been committed to the repository with-
in a small timeframe around the time when a bug has been closed.3
Consider the following examples from ECLIPSE, which all have

low confidence levels:

• Updated copyrights to 2004
The potential bug report number “2004” is marked as invalid
and thus the semantic confidence of the link is zero.

• Fixed bug mentioned in bug 64129,
comment 6
The number “6” appears in the comment for a fix. The syn-
tactic confidence is 1, but the semantic confidence is 0.

• Support expression like (i)+= 3; and new
int[] {1}[0] + syntax error improvement
“1” and “3” are (mistakenly) interpreted as bug report num-
bers here. Since the bug reports 1 and 3 have been fixed, the
links both get a semantic confidence of 1.

1Notice that only 27% of all bugs in the MOZILLA project are
FIXED (47% for ECLIPSE).
2For this check, we need a mapping between the CVS and
BUGZILLA user accounts of a project. For ECLIPSE, we mapped
the accounts of the most active developers manually; for MOZILLA,
we derived a simple heuristic based on the observation that email
addresses were used as logins for both CVS and BUGZILLA.
3Čubranić and Murphy already applied this as a standalone tech-
nique to relate bugs to transactions in their HIPIKAT tool [4].

2

• Fixed bug 53784: .class file missing
from jar file export.
The bug 53784 has not been closed, but resolved as LATER.
Its short description is: “Different results when running un-
der debugger” and author of the change has not been assigned
this bug. Thus the semantic confidence of the link is 0.
However, there exists a bug 53284 with the following short
description: “.class file missing from jar file export”. If the
comment had contained a correct number, the link would be
assigned the semantic confidence 3.

3.3 Results
We identified 25,317 links for ECLIPSE, connecting 47% of fixed

bugs with 29% of transactions and 53,574 links for MOZILLA, con-
necting 55.30% of fixed bugs with 43.91% of transactions. Ta-
bles 1 and 2 summarize the distribution of links across different
classes of syntactic and semantic levels for both projects.
Based on a manual inspection of several randomly chosen links

(see Section 3.2 for some examples), we decided to use only those
links whose syntactic and semantic levels of confidence satisfy the fol-
lowing condition:

sem > 1 ∨ (sem = 1 ∧ syn > 0)

Notice that we disregard less than 10% of links for both projects.
Our heuristics can be ported to almost any project that contains

in the log messages links to a bug database. In some cases it may be
necessary to implement further or different conditions to raise the
confidence levels. However, the quality of the linking will always
depend on the investigated project.

4. LOCATING FIX-INDUCING CHANGES
A fix-inducing change is a change that later gets undone by a fix.

In this section, we show how to automatically locate fix-inducing
changes.
Suppose that a change δ ∈ t, which is known to be a fix for bug

b (thus a link (t, b) must exist), transforms the revision r1 = 1.17
of Foo.java into r2 = 1.18 (see Figure 2), i.e., δ introduces new
lines to r2 or changes and removes lines of r1. First, we detect the
linesL that have been touched by δ in r1. These are the locations of
the fix. To locate them, we use the CVS diff command. In our exam-
ple, we assume that line 20 and 40 have been changed and line 60
has been deleted, thus the fix locations in r1 are L = {20; 40; 60}.
Next, we call the CVS annotate command for revision r1 = 1.17

because this was the last revision without the fix; in contrast, revi-
sion r2 = 1.18 already contains the applied fix. The annotations
prepend each line with the most recent revision that touched this
line. Additionally, CVS includes the developer and the date in the
output. We show an excerpt of the annotated file in Figure 3. The
CVS annotate command is only reliable for text files, thus we ig-
nore all files that are marked as binary in the repository.
We scan the output and take for each line l ∈ L the revision r0

that annotates line l. These revisions are candidates for fix-inducing
changes. We add (r0, r2) to the candidate set S, which is in our
example S = {(1.11, 1.18); (1.14, 1.18); (1.16, 1.18)}.
From this set, we remove pairs (ra, rb) for which it is not possi-

ble that ra induced the fix rb—for instance, because ra was com-
mitted to CVS after the bug fixed by rb has been reported. In
particular, we say that such a pair (ra, rb) is a suspect if ra was
committed after the latest reported bug linked with the revision rb.
Suspect changes could not contribute to the failure observed in the
bug report. In Figure 2 the pairs (1.14, 1.18) and (1.16, 1.18) are
examples of suspects.
We investigate suspects further on:

Bug 42233 was reported.

1.14 1.16

b() was

changed

c() was

changed

a() was

changed

1.11 1.18

Fixed Bug

42233

Changed:

a() b() c()
12-Feb-03 23-May-03 10-Jun-03

3-Apr-03

Figure 2: Locate fix-inducing changes for bug 42233

$ cvs annotate -r 1.17 Foo.java
. . .

19: 1.11 (john 12-Feb-03): public int a() {
20: 1.11 (john 12-Feb-03): return i/0;
. . .

39: 1.10 (mary 12-Jan-03): public int b() {
40: 1.14 (kate 23-May-03): return 42;
. . .

59: 1.10 (mary 17-Jan-03): public void c() {
60: 1.16 (mary 10-Jun-03): int i=0;
. . .

Figure 3: CVS annotations for Foo.java

• We say that a suspect (ra, rb) is a partial fix if ra is a fix.
Some bugs are fixed more than once. It may happen that one
of the previous attempts was fixed by a later one, or that the
bug is fixed across several transactions.

• We say that a suspect (ra, rb) is a weak suspect if there exists
a pair (ra, rc) which is not a suspect.
A weak suspect indicates a revision for which there exists
an alternative evidence of being fix-inducing, e.g, revision
1.14 may be a suspect for bug 42233 in Figure 2, but it still
can be a strong candidate for another bug.

• We say that a suspect (ra, rb) is a hard suspect if it is neither
a partial fix, nor a weak suspect.
A hard suspect indicates a revision for which there is no real
evidence of being fix-inducing.

We say that a revision r is fix-inducing if there exists a pair
(r, rx) ∈ S which is not a hard suspect. We say that a transac-
tion t is fix-inducing if one of its revisions is fix-inducing.

5. FIRST RESULTS
We extracted fix-inducing changes for two large open-source

projects: ECLIPSE and MOZILLA. We considered all changes and
bugs until January 20, 2005; our database contains 78,954 trans-
actions for ECLIPSE and 109,658 transactions for MOZILLA. They
account for 278,010 and 392,972 individual revisions for both proj-
ects, respectively.

5.1 Fix-Inducing Transactions are Large
In our first experiment, we examined if the span of the trans-

action (i.e. the number of files touched) correlates with the fact
that the transaction is fix-inducing. Table 3 presents the average
sizes of transactions for ECLIPSE. The transactions are split into
four classes, depending on whether the transaction is a fix, fix-in-
ducing, both, or none. For instance, the top-left cell means that

3

syn / sem 0 1 2 3 4 total

0 270 (1%) 1,287 (5%) 2,057 (8%) 1,439 (6%) 2 (0%) 5,055 (20%)
1 324 (1%) 4,152 (16%) 9,265 (37%) 1,581 (6%) 5 (0%) 15,327 (61%)
2 110 (0%) 1,922 (8%) 2,421 (10%) 482 (2%) 0 (0%) 4,935 (19%)

total 704 (3%) 7,361 (29%) 13,743 (54%) 3,502 (14%) 7 (0%) 25,317 (100%)

Table 1: Distribution of links accross different classes of syntactic and semantic confidence levels in ECLIPSE

syn / sem 0 1 2 3 4 total

0 560 (1%) 2,899 (5%) 4,281 (8%) 639 (1%) 8 (0%) 8,387 (16%)
1 1,211 (2%) 9,059 (17%) 16,336 (30%) 2,241 (4%) 22 (0%) 28,669 (54%)
2 478 (1%) 5,250 (10%) 9,133 (17%) 1,645 (3%) 12 (0%) 16,518 (31%)

total 2,249 (4%) 17,208 (32%) 29,750 (55%) 4,525 (8%) 42 (0%) 53,574 (100%)

Table 2: Distribution of links accross different classes of syntactic and semantic confidence levels in MOZILLA

fix-inducing ¬fix-inducing all

fix 3.82±26.32 2.08± 7.42 2.73± 7.87
¬ fix 11.30±63.02 2.77±14.94 3.81±26.32
all 7.49±44.37 2.61±13.66 3.52±22.81

Table 3: Average sizes of fix and fix-inducing transactions for
ECLIPSE

fix-inducing ¬fix-inducing all

fix 5.79±37.37 2.12± 9.74 4.39±30.05
¬ fix 4.61±30.59 1.91±10.30 3.05±21.39
all 5.19±34.12 1.97±10.13 3.58±25.23

Table 4: Average sizes of fix and fix-inducing transactions for
MOZILLA

the average size of transactions which are fixes and induce later on
a fix is 3.82 (with a standard deviation “±” of 26.32).
Additionally, Table 3 shows that fix-inducing transactions are

roughly three times larger than non fix-inducing transactions. Ta-
ble 4 presents the same breakdown for MOZILLA which shows
a similar trend.
Such data can be automatically retrieved from all projects that

supply both a version archive and a bug database. It is especially
worthy when deciding where to spend efforts in quality assurance.
If we were in charge of the ECLIPSE project, for instance, we would
take care that large extensions are well reviewed and tested, as these
have a high potential for inducing later fixes.

5.2 Don’t Program on Fridays
We broke down changes by the day of the week when they were

applied. We distinguished between bugs as indicated by fix-inducing
changes, and fixes as detected by links to the bug database. Bugs
may be also fixes, we refer to such changes as fix-inducing fixes;
they have been previously been used for visualization by Baker and
Eick [1]. Finally, there are changes that are no bugs and no fixes.

P (fix) + P (bug)− P (bug ∩ fix) + P (¬bug ∩ ¬fix) = 100%

We measured the frequencies of the categories mentioned above.
Table 5 presents the results for ECLIPSE. The likelihood P (bug)
that a change will induce a fix is highest on Friday. The same holds

Day of Week
% of revisions Mon Tue Wed Thu Fri Sat Sun avg
P (fix) 18.4 20.9 20.0 22.3 24.0 14.7 16.9 20.8
P (bug) 11.3 10.4 11.1 12.1 12.2 11.7 11.6 11.4
P (bug ∩ fix) 4.6 4.8 4.6 5.2 5.6 4.5 4.5 4.9
P (¬bug ∩ ¬fix) 74.9 73.5 73.5 70.8 63.4 78.1 76.0 72.7
P (bug | fix) 25.1 22.9 23.3 23.5 23.2 30.3 26.4 23.7
P (bug | ¬fix) 8.2 7.1 8.1 8.8 8.7 8.4 8.6 8.1

Table 5: Distribution of fixes and fix-inducing changes across
day of week in ECLIPSE

Day of Week
% of revisions Mon Tue Wed Thu Fri Sat Sun avg
P (fix) 42.5 46.5 49.7 45.9 48.4 50.2 61.1 48.5
P (bug) 39.1 44.1 41.2 40.8 46.2 44.9 26.4 41.5
P (bug ∩ fix) 19.4 23.6 22.8 21.6 26.9 19.6 13.2 21.9
P (¬bug ∩ ¬fix) 37.8 33.0 31.9 34.9 32.3 24.5 25.7 31.9
P (bug | fix) 45.7 50.8 45.8 47.1 55.6 39.1 21.6 45.2
P (bug | ¬fix) 34.1 38.3 36.7 35.5 37.3 50.6 33.9 38.1

Table 6: Distribution of fixes and fix-inducing changes across
day of week in MOZILLA

for MOZILLA (see Table 6). Friday is the day where most ECLIPSE
developers do fixes, for MOZILLA this is Sunday.
We used fix-inducing fixes to investigate whether non-fixes or

fixes are more likely to be fix-inducing. Table 5 shows that for
ECLIPSE, the average likelihood of introducing a fix-inducing change
is almost three times higher for fixes, indicated by P (bug | fix), than
for regular changes, indicated by P (bug | ¬fix). This does not hold
for MOZILLA (see Table 6). The risk that a fix will be later undone
is highest for ECLIPSE on Saturdays, and for MOZILLA on Fridays.
Almost every second change in MOZILLA is a fix and two out

of five changes are fix-inducing. In the future we will investigate
MOZILLA to find out what makes MOZILLA risky.
Besides the day of week, one can easily determine further prop-

erties of a change that correlate with inducing fixes—such as the
development group, or the involved modules. Again, all this data is
automatically retrieved for arbitrary projects.

4

6. RELATEDWORK
To our knowledge, this is the first work that shows how to locate

fix-inducing changes in version archives. However, fix-inducing
changes have been used previously under the name dependencies
by Purushothaman and Perry [9] to measure the likelihood that
small changes introduce errors. Baker and Eick proposed a similar
concept of fix-on-fix changes [1]. Fix-on-fix changes are less gen-
eral than fix-inducing changes because they require both changes
to be fixes.
In order to locate fix-inducing changes, we need first to iden-

tify fixes in the version archive. Mockus and Votta developed a
technique that identifies reasons for changes (e.g., fixes) in the log
message of a transaction [7]. In our approach, we refine the tech-
niques of Čubranić and Murphy [4] and of Fischer, Pinzger, and
Gall [6, 5], who identified references to bug databases in log mes-
sages and used these references to infer links from CVS archives to
BUGZILLA databases.
Čubranić and Murphy additionally inferred links in the other di-

rection, from BUGZILLA databases to CVS archives, by relating bug
activities to changes. This has the advantage to identify fixes that
are not referenced in log messages. For more details about this
approach, we refer to [3].
Rather than searching for fix-inducing changes, one can also di-

rectly determine failure-inducing changes, where the presence of
the failure is determined by an automated test. This was explored
by Zeller, applying Delta Debugging on multiple versions [11].

7. CONCLUSION
As soon as a project has a bug database as well as a version

archive, we can link the two to identify those changes that caused
a problem. Such fix-inducing changes have a wide range of appli-
cations. In this paper, we examined the properties of fix-inducing
changes in the ECLIPSE and MOZILLA projects and found, among
others, that the larger a change, the more likely it is to induce a
fix; checking for other correlated properties is straight-forward. We
also found that in the ECLIPSE project, fixes are three times as likely
to induce a later change than ordinary enhancements. Such findings
can be generated automatically for arbitrary projects.
Besides the applications listed in Section 1, our future work will

focus on the following topics:

Which properties are correlated with inducing fixes? These can
be properties of the change itself, but also properties or met-
rics of the object being changed. This is a wide area with
several future applications.

How do we disambiguate earlier changes? If a fixed location has
been changed multiple times in the past, which of these chang-
es should we consider as inducing the fix? We are currently
evaluating a number of disambiguation techniques.

How do we present the results? Simply knowing which changes
are fix-inducing is one thing, but we also need to present our
findings. We are currently exploring visualization techniques
to help managers as well as programmers.

For ongoing information on the project, see

http://www.st.cs.uni-sb.de/softevo/

Acknowledgments.
This project is funded by the Deutsche Forschungsgemeinschaft,
grant Ze 509/1-1. Christian Lindig and the anonymous MSR re-
viewers provided valuable comments on earlier revisions of this
paper.

8. REFERENCES
[1] M. J. Baker and S. G. Eick. Visualizing software systems. In

Proceedings of the 16th International Conference on
Software Engineering, pages 59–70. IEEE Computer Society
Press, May 1994.

[2] N. Barnes. Bugzilla database schema. Technical report,
Ravenbrook Limited, July 2004.
http://www.ravenbrook.com/project/p4dti/master/design/
bugzilla-schema/.

[3] D. Čubranić. Project History as a Group Memory: Learning
From the Past. PhD thesis, University of British Columbia,
Canada, Dec. 2004.

[4] D. Čubranić and G. C. Murphy. Hipikat: Recommending
pertinent software development artifacts. In Proc. 25th
International Conference on Software Engineering (ICSE),
pages 408–418, Portland, Oregon, May 2003.

[5] M. Fischer, M. Pinzger, and H. Gall. Analyzing and relating
bug report data for feature tracking. In Proc. 10th Working
Conference on Reverse Engineering (WCRE 2003), Victoria,
British Columbia, Canada, Nov. 2003. IEEE.

[6] M. Fischer, M. Pinzger, and H. Gall. Populating a release
history database from version control and bug tracking
systems. In Proc. International Conference on Software
Maintenance (ICSM 2003), Amsterdam, Netherlands, Sept.
2003. IEEE.

[7] A. Mockus and L. G. Votta. Identifying reasons for software
changes using historic databases. In Proc. International
Conference on Software Maintenance (ICSM 2000), pages
120–130, San Jose, California, USA, Oct. 2000. IEEE.

[8] Proc. International Workshop on Mining Software
Repositories (MSR 2004), Edinburgh, Scotland, UK, May
2004.

[9] R. Purushothaman and D. E. Perry. Towards understanding
the rhetoric of small changes. In MSR 2004 [8], pages 90–94.

[10] The Bugzilla Team. The Bugzilla Guide - 2.18 Release, Jan.
2005. http://www.bugzilla.org/docs/2.18/html/.

[11] A. Zeller. Yesterday, my program worked. Today, it does not.
Why? In Proceedings of Joint 7th European Software
Engineering Conference (ESEC) and 7th ACM SIGSOFT
International Symposium on the Foundations of Software
Engineering (FSE-7), volume LNCS 1687. Springer Verlag,
1999.

[12] T. Zimmermann and P. Weißgerber. Preprocessing CVS data
for fine-grained analysis. In MSR 2004 [8], pages 2–6.

5

http://www.st.cs.uni-saarland.de/softevo/

