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Albert Einstein and
Empirical Software
Engineering

s scientists, we apply scientific investigative techniques
to gain more understanding of what makes software
“good” and how to make software well. Often, we
adapt investigative techniques from other disciplines
to define measures that make sense in the business,
technical, and social contexts we use for decision
making. However, sometimes we can learn as much
from another discipline’s failures as from its successes.
Examples from nineteenth-century physics show how
a change in perspective can lead to explanations for
previously misunderstood phenomena. 

We must also consider whether our measurements
constrict our view of what is really happening in the
development process, and we must change or expand
them if they are. Such changes may involve looking
further afield, drawing on examples from the legal and
business communities to improve our own models and
theories. Science, and particularly physics, clearly illus-
trates the limitations of a too-literal approach to build-
ing and maintaining software.

A DECEPTIVELY ORDERED UNIVERSE
At the end of the nineteenth century, several things

about physics were well known: 

• Newton’s laws of mechanics described how par-
ticles respond to forces. Thus, physicists knew
that things at rest tend to remain at rest, and
things in motion tend to remain in motion.

• Newton’s laws of gravity explained how the mass
of objects is involved in their attraction for one
another.

• Thermodynamics theories explained how heat
and motion are related.

• Maxwell’s equations unified electrical and mag-
netic phenomena. Consequently, scientists
thought of light as a wave of magnetic energy.

• New areas of physics, such as statistical physics
and kinetic theory, explained the behavior of
gases and fluids on the basis of collisions among
atoms and molecules.
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Too often we tend to view software

development the same way nineteenth-

century physicists viewed the universe.

Taking our cue from Einstein, we should

shape our theories and models to fit a more

probabilistic reality.

Shari Lawrence Pfleeger
Systems/Software Inc.



Underlying these theories were several assumptions,
including notions about how energy is continuous,
matter is particulate, and ether fills air and space and
is the medium through which light travels. Most
important is that at that time, physicists believed that
the world works in a rational way, and if they tried
hard enough, they could find the rules by which this
behavior happens. This essential notion is the basis of
all empirical software engineering: If we look long
enough and hard enough, we will find rational rules
that show us the best ways to build the best software.

EINSTEIN’S DISRUPTIVE THEORIES
Then along came Albert Einstein, who pointed out

that some physics problems could not be explained by
prevailing theories. For example, consider the situa-
tion in which you throw a ball to a friend. If you throw
the ball at 90 miles per hour, then we can say that the
ball leaves your hand at 90 miles per hour. But sup-
pose you are standing on a conveyor belt that is mov-
ing at 10 miles per hour toward your friend.
According to the physical theories accepted by the sci-
entific community at the turn of the century, if you
throw the ball at 90 miles per hour in the direction in
which the conveyor belt is traveling, the ball leaves
your hand at 100 miles per hour: 90 from your throw,
and 10 from the conveyor belt’s movement.1

But Einstein uncovered a flaw in this logic. Suppose
instead of a ball, you are holding a flashlight that shines
on your friend. Light travels at 186,000 miles per sec-
ond; regardless of whether the conveyor belt is moving
at 10, 100, or even 10,000 miles per second, the light
is still traveling toward your friend at 186,000 miles
per second. How can that be? Does energy really dif-
fer from matter and obey different rules?

In fact, no. You experience Einstein’s theory of rel-
ativity when you are on one train and look out at
another train that is traveling in the same direction. If
the trains are traveling at the same speed, it appears to
you that they are not moving at all. Einstein’s theory of
relativity also explained that time actually changes.
The flashlight paradox is based on faulty intuition, and
our intuition about time is based on everyday speeds.

A flawed model
Nineteenth-century physicists considered matter to

be granular, composed of a finite number of atoms.
But they thought that energy was indivisible because
they had never seen light particles. Basing their mea-
surement on a faulty model was the major reason for
their failure to see light particles. 

To understand the flaws in this model, consider how
meteorologists measure rainfall. Because they are
interested only in calculating total rainfall for the day,
meteorologists measure the inches of rise in an agreed-
upon-sized beaker or tub. They know that rain falls
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in finite droplets, but they don’t mea-
sure rain drop by drop. Their gross
measurement determines only the daily
rainfall. In other words, meteorologists
conduct a goal-question-metric analy-
sis of the problem. Their measurement
provides information about one char-
acteristic of rain, volume, but reveals
no information about rain’s other char-
acteristics. 

Expanded horizons
Einstein expanded our horizons when

he ignored current measurement and
theory. By focusing instead solely on the
paradox and redefining our notions of
simultaneity, he created a theory that
explains both well-understood phe-
nomena like throwing a ball while on a conveyor belt
and perplexing ones like the flashlight on the conveyor
belt. It is for this work that Einstein received the Nobel
Prize in 1921. 

EXPERIMENTAL LIMITATIONS 
AND THE NATURE OF PROCESS

So what does this have to do with empirical soft-
ware engineering? A great deal. Einstein appreciated
the importance of using experiments to assess theo-
ries. Indeed, no science can advance without good
experimentation and measurement. But Einstein also
appreciated the limitations of measurement, experi-
ments, and human sensory perception. In the same
way, we must recognize that even though our
approaches to empirical software engineering illumi-
nate the relationships among variables, they may in
fact limit what we see.

For example, because we usually assume that the
world works rationally, we seek relationships to help
us understand what makes good software. We then
apply what we learn so that we get good software
more often. Our search is based in large part on the
notion of cause and effect. If we can find out what
causes good software in terms of process activities,
tools, measurements, and the like, we can build an
effective software process that will produce good
software the next time.

Natural processes versus social processes
We borrow this approach from the physical sci-

ences, which deal with natural processes. A natural
process is a part of the given world, and it occurs sep-
arate from our perception of it. Chemical reactions
are natural processes, as are bodily functions such as
digestion or respiration. Natural processes differ from
social processes, which are products of human inten-
tion and consciousness. A social process exists because

Even though our approaches 
to empirical software 

engineering illuminate 
the relationships among

variables, they may in fact 
limit what we see.
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of our shared conception of it and our
assumptions about it. Education and
software development are examples of
social processes. 

The differences between natural and
social processes are critical because they
require different study methods.2 One
danger of pursuing empirical software
engineering as we currently do—treat-
ing it as a natural process—is that we
are looking at it in the wrong way.

The nature of causality
The nature of causality is a key dif-

ference between the two kinds of
processes. We like to think that cause
and effect are deterministic: Every time
we invoke a particular cause, we get the

expected effect. But software development is more sto-
chastic: A probability distribution describes the like-
lihood of the effect’s occurrence. 

Accepting this difference means that we must
change some of our underlying notions about mea-
surement and empiricism. For example, measurement
theory’s representation condition requires natural-
process causality. But we need to devise strategies to
help us deal with the imperfect knowledge and uncer-
tainty in our measures and models. For example, we
know that the Capability Maturity Model is imper-
fect—there is no guarantee that a Level 5 organiza-
tion will produce good software. However, if we
understand the uncertainty inherent in using the
CMM, we can feel confident that a Level 5 organiza-
tion will produce good software a certain percentage
of the time under certain conditions. 

Similarly, we can’t say that inspecting code will
guarantee that the code is fault-free. But we may be
able to determine that using a certain type of design
inspection in a certain way at a particular point in the
development process is likely to eliminate a given per-
centage of the faults. 

Our goal, then, is to understand the likelihood that,
under certain conditions, a particular tool or technique
will lead to improved software.

THE KNOWLEDGE IN OUR MODELS
Understanding our technology in this way is no easy

task. To start, we must catalog the types of knowledge
we use to build our measures and models. We can
think of knowledge in four ways:

• Theoretical scientific knowledge consists of hard
facts and probabilistic information about cause
and effect, usually obtained by testing theories.
This type of knowledge is the most objective, and
we often obtain it by doing controlled studies.

• Engineering knowledge is based on experience.
We capture information about how best to design
and operate the things we build. Engineering
knowledge includes information about how well
tools work together, what kinds of skills are
needed for a task, and what has or has not
worked well in the past.

• Biomedical and epidemiological knowledge is also
experiential. It captures evidence about causation,
although not necessarily based on an underlying
theory. For example, we can observe correlations,
but we cannot always distinguish between cause
and effect. When we do have causation informa-
tion, it can be either stochastic or deterministic.
This type of knowledge can be obtained from
either retrospective or prospective studies. A typ-
ical result can be expressed as a dose-response
curve, meaning that a little of something does not
necessarily have the same effect as a lot.

• Social, economic, and institutional knowledge
tells us about who and what are involved in what
we are observing. For example, social knowledge
tells us how best to form teams, and economic
knowledge allows us to compare and contrast dif-
ferent resource allocation options.

In empirical software engineering, we gather this
knowledge to form theories. Often, we try to build a
large body of evidence about a theory, incorporating
many replications of the same study until we clearly
support or refute the theory. However, such an
approach takes a great deal of time and can produce
inconclusive or conflicting results. Moreover, the tech-
nology under scrutiny may be changing as we study it,
making it difficult or even impossible to amalgamate
study results over time.

SEQUENTIAL STUDIES: A BETTER APPROACH 
How should we deal with empirical software engi-

neering’s shortcomings? Perhaps by extrapolating
proven software development techniques to our theory
building. When asked to solve a new software prob-
lem, we often invoke the “design-a-little, code-a-little,
test-a-little” approach, trying this and that to see what
works best. In the same way, we can perform sequen-
tial studies: study a little, theorize a little, then iterate. 

The social sciences apply this technique frequently.
For example, an educator proposes a new reading
technique and tries it on a group of school children.
Based on the results of the initial study, the technique
is improved somewhat, and a second, similar study is
run. In this way, educators have the advantage of using
the most effective techniques known at the time, with-
out having to wait for large numbers of replications. 

Likewise, our new model of empirical software
engineering should involve three key steps:

We need to devise
strategies to help 

us deal with the imperfect
knowledge and uncertainty

in our measures 
and models.



• reaching an initial understanding, including iden-
tifying likely variables, capturing the magnitude
of problems and variables, documenting behav-
iors, and generating theories to explain perceived
behaviors;

• testing theories by matching theory with practice,
eliminating variables and identifying new ones,
determining the relative importance of variables,
and identifying the range of variable values and
probabilities; and

• reducing uncertainty, but not always determin-
ing cause and effect.

Software development strategies
As we build our theories, we must consider the var-

ious ways to apply our understanding to our software
development activities. In particular, we should iden-
tify the best strategy for selecting one tool or technique
over another. As scientists, we prefer to use the com-
plete dominance strategy: Every value associated with
option one is always greater than its counterpart asso-
ciated with option two. For example, we want to sat-
isfy our managers’ concern about whether object-
oriented technology is better than procedural tech-
nology or if Java is better than C++. 

More often than not, we don’t find complete dom-
inance. Instead, we find that one option is better than
another under certain conditions. In this case, we need
to use a strategy of sufficiency, finding an option whose
values are all acceptable. In this case, good enough is
okay; we don’t need to search for the best option. For
example, when we use a novice programmer to write
a subsystem, his code will provide the required func-
tionality, but it may not be as elegant or as fast as the
code our best programmers can write. 

Another option is to use a strategy of caution, either
minimizing the maximum possible loss or maximiz-
ing the minimum possible gain. For example, when a
constrained schedule prevents us from testing com-
pletely, we can use a cautious strategy to thoroughly
test the most critical parts of the system, thereby min-
imizing our loss from incomplete testing.

Evidential criteria
Our selection of a particular technique or model is

influenced by our criteria for determining which
pieces of evidence are more valid than others. We can
think of this choice the way American lawyers dis-
tinguish civil from criminal trials. In a civil trial, the
defendant is guilty if the preponderance of evidence
shows him or her to be guilty. But in a criminal trial,
the evidence must indicate that the defendant is guilty
beyond reasonable doubt. Reliance on software-
related evidence is much the same. For a safety-criti-
cal system, we may insist on strict causality of
reliability, for example. But for less critical systems,

we are satisfied when a technique
works as advertised most of the time.

EVIDENCE ABOUT EVIDENCE
We put together pieces of evidence to

form an argument, then we evaluate that
argument using the strategy we’ve cho-
sen. But constructing the argument is not
a simple matter of the whole being the
sum of its parts. For example, David
Schum3 examines a technology argument
much as he would a legal argument. In
particular, he describes how the legal
community determines whether and how
evidence supports the degree to which
one variable causes a particular effect. In
the law, the first step is understanding the
type of evidence: Is it testimony, heuris-
tics, or authoritative evidence? In soft-
ware development, we ask whether the
technology is provided by the vendor as
testimony, by users who rate it on some
kind of scale, or by practitioners or researchers who
evaluate it objectively and in some quantitative way. 

What makes good evidence?
Marvin Zelkowitz and colleagues4 suggested that

evidential credibility depends on both the receiver and
the giver of the information. Their work reveals that
practitioners and researchers have very different ideas
about what makes good evidence. Practitioners prefer
to look at field or case studies performed in context
to decide if the study’s environment is similar to their
own. In contrast, researchers prefer to use controlled
experiments, simulations, and other more general
studies. Without the tie to what they perceive as a
“real” situation, practitioners often ignore the results
of these more general studies.

Visionaries versus pragmatists
Biases about technology and business can also affect

the way practitioners choose to believe evidence.
Geoffrey Moore5 asserts that, as adopters of a new tech-
nology, some practitioners are visionaries. They are
eager to change the existing process, willing to deal with
faults and failures, and in general are focused on learn-
ing how a new technology works. They are revolu-
tionaries willing to take big risks, and they feel
comfortable replacing their old tools and practices with
new ones. As shown in Table 1, they give more credence
to evidence focused on the novelty and effectiveness of
a new technology than to business-related evidence.

In contrast, mainstream practitioners are more prag-
matic. They are interested in how technology supports
business, so they focus on productivity improvement
for their existing processes. They prefer to make minor
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enhances rather than
replaces their current
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modifications to their current ways of doing things so
that the new technology enhances rather than replaces
their current process. For them, evidence that the new
technology enhances their market or company posi-
tion is far more compelling than information focused
on reducing defects or cyclomatic numbers.

Generating evidence 
David Schum3 reminds us that we must also look

at the strength of the evidence, which is often related
to the degree of control we have in the studies we per-
form. For example, if we can carefully control all other
variables, we can say that a change in quality is defi-
nitely the result of having used a new technology. But
if we can’t control all the variables, we can say only
that it is probable or possible that the new technology
causes the result.

The process that generates the evidence can also
affect its credibility. Sometimes this process is iterative:
We come to a preliminary conclusion with some degree
of confidence, then we revise our conclusions and con-
fidence level as new evidence is generated. Building up
a more complete body of evidence can amplify our con-
fidence. However, it can just as easily provide conflicts
if one study shows clear benefit from a technology, but
the next study shows no difference at all. For exam-
ple, researchers at the University of Strathclyde recently
investigated the effect of inheritance levels on the main-
tainability of object-oriented programs. But when
researchers at the Bournemouth University replicated
the experiment, the effect they observed was the oppo-
site of what the Strathclyde researchers found.6,7 It

might seem that this conflict indicates lack of confi-
dence, but larger bodies of evidence actually help to
show us what the most important variables are, and
they sometimes point out variables we didn’t consider
in earlier studies. Thus, the evidence-building process
helps us determine exactly what situations are best for
using a particular technology.

We must also take into account the structure of the
argument made from the evidence. Each piece of evi-
dence does not stand on its own. We create the fabric
of an argument out of threads of evidence; different
evidence plays differing roles in supporting our ulti-
mate conclusion. Some of the evidence may be con-
tradictory or conflicting, and our conclusions about
the technology must take these imperfections into
account. For example, we can’t dismiss object orien-
tation for maintainability simply because the evidence
conflicts. Rather, we must evaluate the nature of the
conflicts to decide either that the technology won’t
achieve its goal or that it is sure to work.

The implications of these scientific, business, and
legal findings for empirical software engineering stud-
ies are clear. It is not enough to develop new theories
and provide evidence. The practitioners who are the
audience for our evidence must be able to understand
our theories and findings in the context of their work
and values.

W hen developing theories and models that pro-
duce quality software, keeping an open mind
is essential. It is tempting to throw out evi-
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Table 1. Early versus mainstream market preferences for evidence (adapted from Moore, 1991).

Market preference Focus Evidence Press coverage Endorsements

Early: visionaries Technology Architecture Technology Gurus
Schematics
Demonstrations
Trials

Mainstream: pragmatists Product Benchmarks Trade Visionaries
Product reviews
Design wins
Initial sales volume

Market Market share Vertical Industry analysts
Third-party support
Standards certification
Application proliferation

Company Revenues and profits Business Financial analysts
Strategic partners
Top-tier customers
Full product line
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About the Technical Council on Software Engineering 
Shari Lawrence Pfleeger and Gene F. Hoffnagle

The Technical Council on Software Engineering taps into the myriad
ways that software is created. The TCSE has two overriding aims: to con-
tribute to its members’ professional expertise and to help advance software
engineering research and practice. We invite you to join us in  improving soft-
ware processes and products.

Our members are practitioners and researchers alike, and many of our
events focus on enhancing interaction between these groups. Our two new
regional organizations, TCSE Europe and TCSE Asia/Pacific, are designed
to better serve members through a more local focus. Our flagship confer-
ence, the International Conference on Software Engineering, has excellent
company in our dozens of other events that draw specialists from around
the globe. Our newsletter reports on software-related activities within and
outside of the TCSE.

To address all facets of software engineering, the TCSE contains focused
subcommittees. The following listing details the activities and interests of
a few of our organizations. For a more complete picture, visit  http://
tcse.org.

Recovering information
The Reverse Engineering and Reengineering Committee promotes tech-

nologies for recovering information from existing software systems and
describes innovative ways of using this in- formation in system renovation,
reuse, and migration. The committee cosponsors the Working Conference
on Reverse Engineering and the Reengineering Forum. Committee mem-
bers are establishing consistent terminology, forming a resource repository
for research and education, and disseminating information through
newsletters and tutorials.

Improving the software process
The activities of the Committee on Software Process speed technology

transfer and complement other events in the process community, such
as the International Software Process Workshop and the International

Get
Involved

dence that doesn’t fit our pet theory. But we should do
the opposite: We must continually question and
improve the theory until it explains the phenomenon
we see. At the same time, we must incorporate some
degree of probabilistic measurement in our models
and theories so that we have some understanding of
both what we know and what we don’t—yet.

The audience for our evidence should help us decide
what kinds of studies to perform and in what context.
When our studies are complete, we must present the
results in ways our audience understands. It never
hurts to explain our study’s statistics, describe its lim-
itations and uncertainties, and discuss alternative the-
ories that can explain the perceived behavior.

The social sciences tell us to understand and pre-
sent our results in the context of the wider world.
Some of our measurements may necessarily be fuzzy
or probabilistic. Some of our theories may explain
only part of what we see. But it is better to have a par-
tial understanding that can serve as a platform for
future theories than to discard a result simply because
it doesn’t explain everything. Or, as Einstein pointed
out, “Not everything that counts can be counted; and
not everything that can be counted counts.” !
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Software Process Conference (ISPC). In addition, the committee
publishes a newsletter three times a year. 

Global approach to requirements engineering
The newly established Task Force on Requirements Engineering

is creating an international umbrella organization for the require-
ments engineering community, promoting cooperation on research,
practice, and education. The task force has strong ties to the
International Symposium on Requirements Engineering (RE) and
the International Conference on Requirements Engineering.

Leadership in software engineering education
The Committee on Software Engineering Education is involved

in several key activities. Curriculum and professionalism mate-
rials are being developed by two joint IEEE-CS/ACM commit-

tees. The Computing Curricula 2001 task force is developing
a computing curriculum, and the Software Engineering Co-
ordinating Committee (SWECC) is overseeing the develop-
ment of a software engineering code of ethics, a software
engineering body of knowledge (SWEBOK), and procedures
for all levels of accreditation. 

Reliability
The Software Reliability Engineering Committee supports

the use of measures and analysis to produce more reliable soft-
ware. Our annual conference, the International Symposium on
Software Reliability Engineering, is supplemented by a newslet-
ter and an electronic discussion group. 

Measurement and prediction
The Quantitative Methods Committee studies measurement

and prediction in software engineering. Its members assess and
estimate characteristics of software products and processes such
as quality, complexity, reliability, and cost. Since 1993, the com-
mittee has organized a series of international software metrics
symposia. The committee also publishes a newsletter.

Join 11,000 of your peers
The Technical Council on Software Engineering works to

advance our understanding of software engineering, enhance
the careers of our members, and create a network that connects
members to each other and to related organizations. We encour-
age you to join us in advancing the state of the art and the prac-
tice. For more information, see http://tcse.org or contact TCSE
Chair Gene Hoffnagle at g.hoffnagle@computer.org.

Gene F. Hoffnagle is the chair of the Technical Council on
Software Engineering and the director of IBM’s technical jour-
nals. Contact him at g.hoffnagle@computer.org.
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Figure A. Organization of the Technical Council on Software Engineering.
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