
NavTracks: Supporting Navigation in Software Maintenance

Janice Singer
Institute for Information Technology

National Research Council Canada

janice.singer@nrc-cnrc.gc.ca

Robert Elves
Department of Computer Science

University of Victoria

relves@uvic.ca

Margaret-Anne Storey
Department of Computer Science

University of Victoria

mstorey@uvic.ca

Abstract

In this paper, we present NavTracks, a tool that

supports browsing through software. NavTracks keeps

track of the navigation history of software developers,

forming associations between related files. These

associations are then used as the basis for

recommending potentially related files as a developer
navigates the software system. We present the

reasoning behind NavTracks, its basic algorithm, a

case study, and propose some future work.

1. Introduction

Modification and/or enhancement of software

require thorough investigation of the program source to

determine where to change the code. In turn,

investigating software involves navigating through

source code and documentation and following different

kinds of relationships, such as control flow and

inheritance relationships in the code.

Navigation in information spaces has been widely

studied in Human Computer Interaction (HCI).

Consequently, various tools and/or processes have

been proposed to support navigation. These ideas can

be transferred to software engineering. That is, a

software system can be conceived of as an information

space (software space) through which a user has to

navigate (cf. [3]). Storey et al. [4] also note that a

software space is a hypertext space with many different

kinds of hypertextual relationships. In this paper, we

explore one HCI-inspired solution to the problem of

navigation in software systems, that of tracking

interaction histories [5-7].

Sim [3] and Storey [4] identify two types of

navigation in software spaces: directed searching and

undirected searching (i.e. browsing). Searching occurs

when a developer is looking for specific information in

the space. Browsing is used to explore the information

space and understand high-level concepts. The tool we

propose, called NavTracks, is designed to support this

type of browsing and the achievement of a high-level

conceptual understanding of the code.

According to Sim [3], browsing is most effective

when a conceptual organization has been imposed on

the data – allowing developers to follow relationships

between points in the information space. However,

frequently in software spaces the conceptual

organization that is imposed does not match the

developers’ mental models. This is because software

spaces are frequently organized according to the

hierarchical containment relationships between files,

such as class and subclass. However there are possibly

other more meaningful file relationships that could

legitimately serve as the basis for an organizational

scheme supporting navigation. Furthermore, in

hierarchical systems, individual files are allocated to

only a single location within the hierarchy ignoring

other possible classifications that might make just as

much semantic sense. Such hierarchical systems also

fail to take into account the differences between tasks

and individuals that can influence the optimal

organization for supporting navigation.

To avoid these problems our tool focuses on the

file-to-file relationships established by the developers,

as they navigate in the software space. NavTracks

presents a view of the related files which reflects the

characteristics of the developer’s current task as well

as his or her individual browsing and file access

idiosyncrasies (if any). Related files are determined by

examining their navigation path. Following Wexelblat

[6], we believe that the path information garnered from

navigation in an information space can reveal the

user’s model of how information should be connected;

i.e., the paths can reveal a user’s mental model of the

system. Consequently, the file relationships and

recommendations determined by NavTracks should be

consistent with the user’s mental model of the code.

NavTracks unobtrusively suggests files that may be

of immediate interest to the developer. In essence, our

system creates a model of the relationships between

files as a developer browses them, and then

recommends files that are related to the currently

focused-on file. This approach allows a developer to

browse a software space by focusing on the relatedness

of resources, and not needing to rely primarily on the

hierarchical definitions within the file system.

This paper is structured as follows. First, we present

a conceptual overview of NavTracks. Second, we look

at related research from the software engineering

Proceedings of the 21st IEEE International Conference on Software Maintenance (ICSM’05)

1063-6773/05 $20.00 © 2005 IEEE

domain. Next, we define essential requirements of the

NavTracks tool. Subsequently, we present the

architectural and design details of NavTracks. This is

followed by some initial evidence on the benefits of

NavTracks to support software maintenance. Finally

we conclude with a discussion of the limitations of

NavTracks and suggest improvements.

2. Conceptual Overview

Imagine you are trying to fix a bug in a part of a

program which you have not visited for some time.

The fix potentially impacts related files from a cross-

cutting concern, e.g. logging user events in a log file.

Fixing the bug requires that you understand all of the

related code in several files. However, you cannot

remember which files those are. There are several tools

available for navigation in your IDE, including search

tools, bookmarks and cross reference views, however

these do not help you to recall the file names.

Fortunately, when you open up one file that you

know is relevant to the bug fix, NavTracks displays a

short list of recommended files that you immediately

recognize as being also related to the logging feature.

As you navigate through those files, you see further

recommendations of files you should consider and

gradually your mental map of the program feature

under consideration is reinstated. As you continue to

explore, you get confused by which files are important,

but the recommendation view helps you keep track.

The advantage of the recommendation view is that

rather than forcing the user to recall where the desired

file is, it presents a short list of file names thus relying

less on the developer’s ability to recall and more so on

the usually stronger ability to recognize.

The basic premise underlying NavTracks is that

navigation patterns reveal relatedness between files.

Although the scenario above considers the benefits of

these recommendations after a long period of inactivity

in a part of the program, we have observed from our

empirical work [8] that programmers easily get

disoriented when jumping between related files and

often interleave programming tasks that involve

different sets of files. Hence, such recommendations

can be useful even after a short time of browsing and

particularly during intense periods of programming

multiple tasks. There are several areas of similar

research that build on the observation that artifact and

process information during development can assist in

program comprehension and software navigation. This

work is reviewed next.

3. Related Work

Several recent systems mine CVS (concurrent

version system) data to provide developers with

information about correlated changes between files to

facilitate the maintenance process. That is, during

development, a recommendation is provided

concerning which files to look at when a certain file

must be changed. A few different approaches to this

problem have been implemented. First, both Ying [9]

and Zimmerman [10] independently designed a system

that uses CVS data to find files that have frequently

been changed together, and then makes

recommendations to developers regarding these co-

occurrences. Both approaches were moderately

successful. In fact, Ying’s approach found co-

occurrences that would have been difficult to find

using simple structural heuristics. Shirabad, et al. [11,

12] also mined CVS repositories to find co-occurrence

of changes. In their approach they trained a classifier to

determine which relationships between files predicted

co-occurrence of change. Then the classifier was used

to make recommendations based on its training set.

Shirabad et al.’s approach was also able to produce

some interesting recommendations.

The primary difference between these approaches

and the NavTracks approach of capturing navigation

events is that CVS repositories are often out of date

when compared to the local version on a developer’s

workstation – hence they do not provide

recommendations based on current browsing patterns.

Additionally, while these systems can make

recommendations related to software navigation, their

primary raison d'être is concerned with impact analysis

and source code dependencies. While two files may be

dependent upon one another, the dependency may not

be direct. NavTracks can reveal these hidden

dependencies.

Another area of related research is collaborative

software development in the area of awareness. Two of

these systems use local interaction history to provide

information to developers during a development

session. First, TUKAN [13] creates a model of a

software system where relationships between artifacts

are determined according to structural, temporal, and

task characteristics. These relationships are either

implicitly or explicitly weighted, creating the

possibility of calculating the distance between each

artifact and every other artifact. The model is then

updated using browsing information of the developer.

In a similar system, Schneider et al. [14] create a

shadow CVS repository. Without the user’s awareness,

edits are auto-committed to the shadow repository from

the local workspace. The shadow repository is then

Proceedings of the 21st IEEE International Conference on Software Maintenance (ICSM’05)

1063-6773/05 $20.00 © 2005 IEEE

mined to provide awareness information to developers

as they are working. Both of these systems are similar

to NavTracks in that they use local information to

update the model (i.e., they do not wait for CVS check-

ins). These systems differ from NavTracks in that they

focus on providing awareness information to the end-

user. Awareness information in both systems addresses

who touched what parts of code and when, and may or

may not be relevant to a particular maintenance task.

Two other systems are worth mentioning in relation

to NavTracks as they specifically focus on navigation

support. First, Mylar [15] is a degree-of-interest model

for the Eclipse environment. In Mylar, each time a

program element is selected or edited, its interest value

increases, while the interest value of all other elements

decreases. Thus at any point in time, the relative values

of the program elements reflect the degree to which

they have most recently been accessed (i.e., how

interesting they are in relation to the current

programming task(s)). Unlike NavTracks, Mylar does

not consider relationships between elements. This

means that when more than one task is currently being

worked on, the degree of interest model becomes less

relevant in finding related files. However, the Mylar

approach is extremely complementary to the

NavTracks approach in that both offer information

about potentially interesting files based on current

activity in the IDE. In fact, where Mylar appears to

bring a significant benefit to developers is in the

reduction of the number of files displayed in the

Package Explorer view of Eclipse. This is a similar

goal to that of NavTracks – to allow developers a more

efficient navigation pathway through the system.

The second relevant system, FEAT, was developed

by Robillard and Murphy [16]. FEAT provides a

mechanism for explicitly documenting scattered

concerns in the program through the use of a concern

graph. The concern graph can be used for navigating to

related code in a concern. Unlike NavTracks, however,

FEAT requires explicit intervention by the developer to

create the concern graphs. However, Robillard and

Murphy [17] propose an enhancement to FEAT based

on an algorithm for automatically inferring concerns

based on navigation pathways. This goal is essentially

the same as the NavTracks tool. Their proposal differs

in that it uses a stochastic model and is concerned with

a different level of granularity, i.e. it is not file based.

Automatically identified concerns still require

programmer involvement to accept or reject them in

the concern graph. The FEAT tool and its proposed

enhancement share the same goal as NavTracks which

is to improve navigation -- the two approaches could

potentially be integrated for optimal support.

In summary, there are a number of approaches that

share the goal of assisting in navigation. However,

none of them assist in the problem of navigation by

implicitly using navigation history to present a short

list of relevant files to the file of interest.

4. Requirements

From a review of the literature and our empirical

work, we propose the following requirements for the

NavTracks tool.

4.1. Non-disruptive

The collection and analysis of developer data

should not disrupt the developers work, nor require any

additional work. (cf. [18]). Additionally, the collection

and analysis of the data should not affect performance.

The tool should be readily accessible by the user and

integrated into the development environment.

4.2. Current

One of the premises behind the NavTracks tool is

that recommendations based on current browsing

patterns may be useful in the very short term as well as

over longer periods of time. Consequently we believe

that NavTracks should collect fine-grained events from

locally available information. Rather than mining a

large (and possibly stale) database of historical traces,

NavTracks provides information concerning the recent

actions on the local copy of the development project.

4.3. Approximate but Efficient

Many recommendation systems and search engines

(e.g. Google) provide results that are not 100%

accurate but are very efficient. They are seen as useful

and are accepted by most users. Our goal is to ensure

NavTracks behaves like these systems in the sense that

it is efficient and accurate most of the time. Obviously

if its accuracy is below a certain threshold, NavTracks

will be rejected, however, we believe that accuracy

does not have to be perfect for NavTracks to be

accepted. To ensure efficiency, we propose that

NavTracks should not be sensitive to network

disruption in terms of availability or response time (the

limitations of this approach will be discussed in the

conclusion).

5. Implementation and Architecture

NavTracks offers developers recommendations for

related files given their previous navigation patterns.

Figure 1 shows the NavTracks Related Files view

within the Eclipse IDE. To the right side of the figure

Proceedings of the 21st IEEE International Conference on Software Maintenance (ICSM’05)

1063-6773/05 $20.00 © 2005 IEEE

is the file that the developer is currently viewing, the

active file. Below the Related Files view is the Package

Explorer view, which is the Eclipse default file and

folder browsing tool. The Package Explorer allows a

developer to navigate via the hierarchical containment

relationships defined for the system. NavTracks is

implemented as a complementary tool to the Package

Explorer. The three files shown in the Related Files

view are related to the active file in terms of navigation

history. The files are ranked so that the file highest in

the list is the most recently formed association to the

currently active file. If a developer clicks on one of the

files in the Related Files view, the clicked-upon file

will open in place of the currently active file. When the

clicked-upon file is opened from the Related Files

view, the cursor will be placed at the location in the

file where it was last located, and the Related Files

view will be updated to reflect the associations for the

newly opened file.

Figure 1. NavTracks Related Files view

Associations are created via a three-step process.

First, each file selection is collected into an event

stream. The event stream is then filtered to remove

redundant navigation events. Finally, the event stream

is examined for possible associations which are stored

in a repository.

The collection of data is implemented as a listener

on a developer’s workstation. Each time the developer

views a file, either from opening the file or selecting it

from a tab, a reference to the file is placed into the

event stream. Metadata is stored with the file reference,

it will be discussed later.

As the event stream is constructed, redundant events

are filtered. Currently two types of events are removed:

jitters and duplicates. Jitters occur when a developer

moves between files very quickly. Currently, the

threshold for jitter events is one second. If a developer

spends less than one second in a file, the reference to

the file is not added to the event stream, as we assume

that this was not a meaningful navigational event. We

also remove duplicate events from the event stream. If

the same file is referenced twice sequentially, we

assume that this was a navigational error, and filter the

event out.

We recognize that duplicates may not represent

navigational errors and that the one second threshold

may be too high or too low. More study of the

developers’ navigation patterns is required to evaluate

the appropriateness of these design decisions. If these

filters turn out to be inaccurate they can easily be

refined. Moreover, new filters can be added.

At the heart of NavTracks is the association engine.

Associations are formed using a heuristic based on our

observations of navigation patterns of developers - that

files that participate in short navigational cycles tend to

be related. A cycle is defined as a series of file

accesses by the developer, beginning and ending with

the same file. For example, if the developer accesses

file A, then C, then B, then A, NavTracks records an

ACBA cycle. Upon detection of a cycle, our algorithm

forms associations between the first file in the cycle

and each file contained within the cycle. This is

illustrated in Figure 2 and described below.

Events in the event stream are passed through an

event window of size n. As events arrive, a cycle detect

algorithm searches for cycles, of minimum size k,

within the event window. In our current

implementation, we use an event window of size n = 4,

and a minimum cycle length of size k = 3 (note this is

also the absolute minimum cycle size). A window size

of 4 was chosen based on the observation that longer

navigation paths have a greater potential to contain

extraneous files. Dynamically adjusting the size of the

window depending on the number of open editors has

been considered as a possible improvement to the

current implementation.

 Steps 1 - 5 in Figure 2 show how associations are

formed. Each letter represents a unique file reference in

the event stream. Conceptually, events enter the

window on the right and exit to the left. Step 1 shows

the first navigation event A entering the event window.

As the next event occurs, A shifts to the left making

room for event C (Step 2). In step 3, the events in the

window are shifted to the left once more when event B

arrives. At this point the events in the window are A-

C-B. As no cycle has been detected, no associations are

formed up to this point. Step 4 shows a second event

A entering the event window, resulting in detection of

a cycle of size 4, A-C-B-A. Upon detection of this

cycle, associations are formed between file A and each

file contained within the cycle. This results in

associations AC and AB being constructed. At step 5,

event A exits the window to the left and event B enters

Proceedings of the 21st IEEE International Conference on Software Maintenance (ICSM’05)

1063-6773/05 $20.00 © 2005 IEEE

from the right. Here a cycle of size 3 is detected - B-A-

B. The association BA is then constructed.

Note that the associations are not commutative.

That is the association AB is not equal to the

association BA. A strong association from A to B

under certain circumstances does not necessarily imply

a strong relationship from B to A.

Once formed, associations are stored in an

association repository. Associations are stored as

unique objects with metadata tags indicating the

frequency of the association along, with the line last

visited, and the time of the last occurrence. If the

association already exists, its line number and time

stamp metadata are updated, and the frequency

metadata is increased by one.

Recommendations are then made based on the data

in the association repository. Each time a file is opened

or navigated to, the Related Files view queries the

repository to get the related files. Before they are

displayed, recommendations are screened for

inconsistencies with the local project. That is, if a file

is recommended that no longer exists in the project (a

file that has been recently deleted or renamed), then

this recommendation is not displayed. Currently

NavTracks is not aware of Eclipse’s refactoring

capability. Future work would entail participating in

refactoring events so that associations are maintained

during file deletion, relocation, or renaming.

When displayed, file recommendations are ranked

based on time of occurrence, with more recent

relationships appearing higher in the list view.

Although available in the association repository,

association frequency was not used for ranking. This is

because when the developer is working on several

tasks at once, or switches to a new task, frequency is

not a good predictor of sought-after files. That is, a file

may have recently been accessed frequently, but

because of a task change, is no longer relevant. If we

ranked based on frequency, the new relevant files may

not have ranked high enough to be shown in the

Related Files view. Currently, we save frequency so

that in the future, we can explore alternative ranking

algorithms, perhaps combining frequency and time

information.

NavTracks is built on the Eclipse platform. Figure 3

shows an abstract representation of the NavTracks

architecture. The arrows represent the flow of

information through NavTracks - associations being

formed (1 – 4) and recommendations displayed (5).

The architecture is modular so that we and other

researchers or developers can easily adapt and extend

NavTracks.

Figure 2. Associations formed via cycle
detection, event window size is n = 4, and min.

cycle length to be detected is k = 3.

The association engine and metadata collected are

completely replaceable. The size of the event window

and the length of cycles detected are customizable.

Additionally, extra filters can be added to prune the

event stream. Moreover, because NavTracks’ event

stream collects file selection events indifferent to file

type, it can capture the relationship between all types

of textual files in a project. For instance, NavTracks

can form associations between Java, XML, PERL, and

HTML files, thus opening the possibility of

automatically associating documentation and code.

Proceedings of the 21st IEEE International Conference on Software Maintenance (ICSM’05)

1063-6773/05 $20.00 © 2005 IEEE

Figure 3. NavTracks architecture.

6. NavTracks Assessment

We assessed NavTracks in two ways. First, we

analyzed algorithm performance by collecting the

navigation pathways of three developers (Users 1 to 3

profiled in Table 1) to see whether NavTracks would

have made correct recommendations for them. Note

that the developers did not actually use NavTracks

tool.

We simply assessed NavTracks recommendations

against their navigation patterns. Second, we

conducted a case study of 5 NavTracks users (Users 4

to 8). We asked these users to use NavTracks while

they did their everyday software maintenance tasks.

We interviewed the users and collected remarks on use,

as well as recommendations for enhancements. Table 1

summarizes the user’s programming experience,

software system and task description.

6.1. Analysis of the algorithm

For the analysis of the algorithm, we captured the

event stream (file navigations patterns) of three

developers. We placed a data logger on their system to

collect all file navigation events. This event stream was

used as the basis for assessing the algorithm.

Table 1. User experience description

4 Graduate

Student

Small

Java

Apps

Development

5 Professional,

5+ yrs

Small

Java

Apps

Development

6 Co–operative

Education

Developer

JSP

Web

App

Major

Refactoring

7

Professional,

5+ yrs

Perl

Web

App

Development

Maintenance

8 Professional,

2+ yrs

Java

App

Maintenance/

Understand

new system

For each event in the event stream, we determined

whether NavTracks would have made a correct

recommendation for that event. That is, if the

NavTracks algorithm would have recommended the

next file in the event stream, we counted it as correct, a

hit. If the NavTracks algorithm did not make a correct

recommendation (the next file in the event stream was

not in recommendation list), we counted it as incorrect,

a miss. After the event was evaluated, it was used to

train the NavTracks algorithm. Thus, we implemented

a continuous evaluation and training process on the

event stream. Correctness of the algorithm was

calculated as the number of hits divided by the number

of hits plus misses.

Across the three developers, the average correctness

rate of the NavTracks algorithms was 29%, meaning

that 29% of the time NavTracks would have made a

recommendation that corresponded to the navigation

paths of the developers. For each of the developers

independently, the correctness rate was 36%, 35%, and

16%. We are not sure why NavTracks performed

worse for the third developer.

User

ID

Programming

Experience

Software

System Task

Algorithm performance analysis users

1 Professional,

5+ yrs

Java

App

Development

/

Maintenance

2 Co–operative

Education

Developer

Java

App

Maintenance

3 CS Graduate

Student

Small

Java

Apps

Development

Users observed

Proceedings of the 21st IEEE International Conference on Software Maintenance (ICSM’05)

1063-6773/05 $20.00 © 2005 IEEE

If we look at correctness according to the number of

times an event occurred, we get a slightly different

story. We would expect that the more times an event

occurs, the more likely NavTracks would be to give a

good recommendation – NavTracks has had more time

to train itself and hence would provide more useful

information. For this analysis, we divided the event

stream into event classes based on the number of times

the event occurred. Thus, every event in the event

stream occurred at least one time, and so belongs in the

1-event class. A smaller number of events occurred 2

times, but all that appeared at least two times (e.g., 2 or

greater) belong in the 2 event class. The same goes for

the three event class. All events that occurred at least 3

times belong in the three event class, and so on. For

each of these classes of events, we calculated the

correctness of the NavTracks algorithm. Table 2 below

shows this data for each of the developers individually

and averaged across the three developers.

Note that as the occurrences in the event stream

increase, the accuracy rate of the algorithm also rises

(up until about 21 occurrences). Beyond 21

occurrences, the accuracy rate drops slightly. We

believe this is because the number of events (file

navigations) that occur in this range is much lower,

giving us slightly skewed averages.

Table 2: Algorithm accuracy by event
occurrence rate

Event Class D3 D1 D2 Average

2-6 occurrences 25% 23% 17% 22%

7-11 occurrences 52% 50% 32% 45%

11-16 occurrences 46% 51% 31% 43%

12-21 occurrences 60% 31% 45%

> 21 occurrences 43% 43% 43%

Clearly, there is room for improvement in the

performance of the NavTracks algorithm. Nonetheless,

our users, as described in the next section, still found

NavTracks to be a useful tool.

6.2. User experiences and feedback

The previous assessment looked at the performance

of the NavTracks algorithm in terms of its correctness.

While this assessment provides us with valuable

information, it does not inform us if NavTracks is a

useful tool. Hence, we complemented our analysis of

the algorithm performance with a case study involving

five NavTracks users. Three of the users were expert

developers, two of which had at least 5 years

experience. One user was a co-op student, the other a

graduate student. Three users were maintaining

systems consisting of greater than 5k LOC (Lines of

Code), while two users were working on systems with

less than 5k LOC.

We observed three types of interaction with

NavTracks. They are described below. Note that we

expect that there will be many more types of

interaction. These are just our initial observations.

6.2.1. Newcomer use and New System Development.

User 8 was a newcomer to an ongoing development

project. This developer was unfamiliar with the code -

not knowing where specific code was located within

the package hierarchy. Because of this, it took a

considerable amount of time and effort to find the files

related to a specific maintenance task. Specifically, he

was having great difficulty remembering the names

and locations of related files when returning to work on

a previously visited area of the code. Similarly to this

user, User 4 was just starting to develop a new system.

He had to navigate throughout the package hierarchy to

find the files and classes that he wanted to incorporate

into his system. This navigational task was taking a

considerable amount of time.

NavTracks helped both of these developers by

providing a list of recommended files in the Related

Files view. Whereas they were having trouble recalling

the names and locations of files, they could easily

recognize them when they saw them. Furthermore,

using NavTracks, these developers were able to

navigate directly to the files, rather than having to hunt

through the Package Explorer. For these developers,

NavTracks helped navigation by providing a memory

aid for related files. Additionally, the users felt that

NavTracks increased productivity by reducing

searching.

6.2.2. Wanderer use. User 6 did not have such a

successful NavTracks experience. In fact, he reported

no valuable recommendations. Through an interview

with this developer, we were able to determine that this

may have been due to the type of work being

completed. The developer was involved in a major

refactoring of a web application written using Java

Server Pages. The work involved a repetitive copy,

paste, and modify cycle that did not involve returning

to previously visited code. Because of this, the

developer did not receive any meaningful

recommendations from NavTracks. NavTracks will

only work well when a developer revisits previously

viewed files.

6.2.3. Navigation use. User 7 was involved in a

project that required frequent reference to a specific

file. He found NavTracks particularly useful because

when he used the Related Files view to go back to the

Proceedings of the 21st IEEE International Conference on Software Maintenance (ICSM’05)

1063-6773/05 $20.00 © 2005 IEEE

central file, he would be placed at a contextually

relevant section of the central file because NavTracks

remembers the last line visited. As an illustration,

when he went back to the central file from file A, he

would be placed at a different line number than when

he went back to the central file from file B. This

greatly simplified his task because he was not left

searching the central file for the relevant section. This

subject also frequently used NavTracks as a stand-in

for a recently visited file list. Because he was working

on a relatively small system, where there were large

interdependencies between files, NavTracks allowed

him to see which files he was recently looking at. He

found this to be more useful than the tab structure of

the Eclipse system, which truncates file names, and

does not show all files on screen when a large number

of files are open.

6.3. NavTracks Enhancements

Several of the users suggested enhancements to

NavTracks. We have implemented prototypes to match

these suggestions.

6.3.1. Maximize Screen Real Estate. Users 5 and 7

found that the Related Files view used too much screen

real estate. To address this issue, we are investigating a

variety of alternate viewing schemes, including

transparency, pop-up windows, and quick views.

6.3.2. Clustering and Visualization. In response to a

request by User 7, we implemented a visualization of

NavTracks paths as a means of understanding the

clustering of related files. We believe that this

visualization can aid in recovering the ‘implicit’

architecture of the system. By implicit architecture, we

mean an architecture that is defined by how people

move about in a system, as opposed to hierarchical or

other relationships that can be used to define system

architecture. In our future evaluations, we will assess

whether this implicit architecture may aid in program

comprehension and general maintenance activities

including impact analysis.

Figure 4 shows a visualization of the NavTracks

cycles detected during one programming session of an

expert programmer. Arcs between files (denoted by

boxes) represent an association, with thickness

representing the strength of the association (the number

of times it was detected). We created the visualization

by extending the Creole plugin for Eclipse [19].

Figure 4. NavTracks Visualization

We are in the process of extending our empirical

work. However, this initial assessment has been very

valuable. NavTracks is useful in some circumstances,

even though the correctness of the algorithm is less

than perfect. Next, we explore some of the options

available for future work and evaluation.

7. Discussion

In this paper, we presented NavTracks, a

lightweight, and non-disruptive tool to support

navigation via the recommendation of potentially

related files. In this section, we discuss some of

NavTracks’ current limitations and propose some

future work for navigation in software spaces.

7.1. Limitations

We will discuss the limitations of NavTracks in

three general areas: granularity, ranking, and locality.

Granularity refers to the level of relatedness of

objects in the model. In NavTracks, our atomic unit is

the file, augmented by a record of the last line viewed

in the file to use as a stand-in for locating a particular

method or class definition. Using a method or class

definition as the atomic unit may provide more useful

information [17]. The benefit of our approach is that it

is low cost in terms of the monitoring of the system

and is agnostic in terms of the type of textual files

associated. Using the last line viewed appears to bring

great advantage in placing a historical record for the

user to start from (as opposed to placing the developer

at the first line when they enter the file). Nevertheless,

another level of granularity may be more useful. This

requires study. Related to granularity, the relationships

that we are interested in are dyadic (relationships

between two files). It may be interesting to look at

relationships amongst many files. We could do so by

Proceedings of the 21st IEEE International Conference on Software Maintenance (ICSM’05)

1063-6773/05 $20.00 © 2005 IEEE

enhancing the algorithm to take into account transitive

relationships or create one-to-many mappings.

Ranking in NavTracks currently occurs based on

recency only. Ranking based on other parameters, such

as frequency, may provide better recommendations.

The reason we did not use frequency is because

frequency is unresponsive to task changes. Initially, we

had considered using frequency with a decay function

along the lines of that used in the Mylar system.

However, it is not clear, how to go about deciding on

the appropriate decay function, and whether it should

involve the developer. In general, decay depends on

activity. In a very active area, decay should probably

occur more quickly, whereas for a stable area, decay

should probably occur more slowly. In the future we

will consider alternative ranking strategies, including a

weighted combination of recency and frequency.

A final limitation of the NavTracks approach has to

do with locality. Our model is built on the client side.

If a developer uses more than one machine, she cannot

access recommendations across environments. This

could be solved using a client/server model.

7.2. Future work

Our plans for NavTracks center on two areas:

continued evaluation and support for collaboration.

7.2.1. Evaluation. Overall, the NavTracks algorithm

performs at about 35% recommendation accuracy with

an increasing accuracy as occurrences of events

increases. Our plan is to correlate accuracy with

perceptions of usefulness of NavTracks to determine

optimal and minimal accuracy thresholds for

NavTracks. However, we received good feedback from

our user group with our current level of accuracy.

Our current evaluation is preliminary. Our goal is to

continue evaluating NavTracks and collect data and

feedback on its benefits and limitations. Currently,

NavTracks logs all navigation events and NavTracks

usage. We plan to deploy NavTracks with many

developers and collect usage data. We will also

conduct some smaller qualitative observational studies

to assess its use. Both of these methods should also

provide us with information about navigation patterns

in a software space. To improve the performance of the

NavTracks algorithm, we also intend to experiment

with different event window and cycle lengths to

determine if there is an ideal setting for these

parameters for different characteristics of program,

programmer and task. Robillard and Murphy [1] in

their study of navigation patterns noted that skilled

developers tend to have longer navigation cycles. This

indicates the need for a dynamic event window in

future NavTracks implementations. Additionally, to

confirm Robillard and Murphy’s results, we will need

to conduct more empirical research on navigation to

see if we can find patterns in the way that developers

investigate source code. Finally, we will evaluate the

new interface suggestions received from the existing

users.

7.2.2. Collaboration. Support for collaboration centers

around the sharing of path information. Both

Wexelblat [5] and Chalmers [7] conceive of interaction

patterns as providing the basis for sharing information

in a community. The interaction tracks that we

discover for a software space may be useful if used in a

community context. There are several things we could

implement to do this, however, all would require us

moving to a client/server model. First, we could save

the tracks of experts as they browse the software space.

This information could be useful to others trying to

understand hidden dependencies in the software.

Second, we could save tracks as they relate to a

particular task or context. Then when others are faced

with the same or similar task or context, they could

access the tracks. Finally, we could combine tracks

from several users to form a larger model of the

relationships between files. Software developers tend

to stick to one part of the code. By combining tracks,

we get a broader view of the system, and the additional

data may help to uncover more valid tracks (in the

sense that additional data provides additional support

for particular relationships). With respect to sharing

tracks, it is interesting to note that Wexelblat found

that navigation on the web using tracks was facilitated

only for those already familiar with that information

space. It may be that recommendations will not be

useful for developers who do not already have a good

conceptual model of the software space. This requires

study.

8. Conclusions

Investigation of a software space is one of the

primary methods that a developer has for

understanding, and thereby maintaining, source code.

Navigation throughout and within the space is essential

to this investigative process. Little research, however,

has been conducted on how developers navigate large

software spaces and on how to design appropriate tool

support for this activity.

NavTracks, through its elegant algorithm and

extensible architecture, provides a platform for

understanding how tools may be improved for

navigation purposes. By experimenting with alternative

methods of navigation and comparing diverse tools

Proceedings of the 21st IEEE International Conference on Software Maintenance (ICSM’05)

1063-6773/05 $20.00 © 2005 IEEE

that assist in navigation, we will gain a better

understanding of how more effective tools can be

designed to support software navigation in software

maintenance.

9. Acknowledgements

We would like to thank the NavTracks users as well

as Rob Lintern for his work on the visualizations.

Finally we thank Norman Vinson for his valued input.

10. References

[1] M. Robillard, W. Coelho, and G. C. Murphy, "How

effective developers investigate source code: An

exploratory study," IEEE Transactions on Software

Engineering, vol. 30, pp. 889-903, 2004.

[2] L. Moonen., "Exploring software systems," Proceedings

of International Conference on Software Maintenance,

2003.

[3] S. E. Sim, C. L. A. Clarke, R. C. Holt, and A. M. Cox,

"Browsing and Searching Software Architectures,"

Proceedings of IEEE International Conference on

Software Maintenance, Oxford, England, 1999.

[4] M.-A. Storey, F. D. Fracchia, and H. Müller, "Cognitive

design elements to support the construction of a mental

model during software exploration," Journal of Software

Systems, Special issue on Program Comprehension, vol.

44, pp. 171-185, 1999.

[5] A. Wexelblat, "Communities through time: Using

history for Social Navigation," in Lecture Notes in

Computer Science, vol. 1519, T. Ishida, Ed. Berlin:

Spring Verlag, 1998, pp. 281-298.

[6] A. Wexelblat and P. Maes, "Footprints: History-rich

tools for information foraging," Proceedings of CHI,

Pittsburgh, PA, 1999.

[7] M. Chalmers, K. Rodden, and D. Brodbeck, "The order

of things: Activity-centred information access,"

Proceedings of 7th Intl. Conf. on the World Wide Web

(WWW7), Brisbane, AUS, 1998.

[8] M.-A. Storey, K. Wong, and H. Müller, "How do

program understanding tools affect how programmers

understand programs?" Proceedings of 4th Working

Conference on Reverse Engineering (WCRE '97),

October 1997.

[9] A. Ying, G. Murphy, R. Ng, and M. Chu-Carroll,

"Predicting source code changes by mining change

history," IEEE Transactions on Software Engineering,

vol. 30, pp. 574-586, 2004.

[10] T. Zimmermann, P. WeiBgerber, S. Diehl, and A.

Zeller, "Mining version histories to guide software

changes," Proceedings of International Conference in

Software Engineering, Glasgow, Scotland, 2004.

[11] J. S. Shirabad, T. Lethbridge, and S. Matwin, "Mining

the maintenance history of a legacy system,"

Proceedings of Proceedings of the International

Conference on Software Maintenance, Amsterdam, the

Netherlands, 2003.

[12] J. S. Shirabad, T. Lethbridge, and S. Matwin,

"Supporting the maintenance of legacy software with

data mining techniques," Proceedings of Proceedings

Conference the Centre for Advanced Studies on

Collaborative Research, Toronto, Canada, 2000.

[13] T. Schümmer, "Lost and found in software space,"

Proceedings of The 34th Annual Hawaii International

Conference on System Sciences (HICSS '01), Hawaii,

2001.

[14] K. Schneider, C. Gutwin, R. Penner, and D. Paquette,

"Mining a software developer's local interaction

history," Proceedings of 1st International Workshop on

Mining Software Repositories, Edinburgh Scotland,

2004.

[15] M. Kersten and G. Murphy, "Mylar: A degree-of-

interest model for IDEs," Proceedings of Aspect

Oriented Software Development, Chicago, IL, 2005.

[16] M. Robillard and G. Murphy, "FEAT: A tool for

locating, describing, and analyzing concerns in source

code," Proceedings of 25th International Conference on

Software Engineering, May 2003.

[17] M. Robillard and G. Murphy, "Automatically Inferring

Concern Code from Program Investigation Activities,"

Proceedings of 18th International Conference on

Automated Software Engineering, 2003.

[18] P. Johnson, H. Kou, M. Paulding, Q. Zhang, A.

Kagawa, and T. Yamashita, "Improving software

development management through software project

telemetry," IEEE Software, vol. to appear, 2005.

[19] R. Lintern, J. Michaud, M.-A. Storey and X. Wu.

"Plugging-in Visualization: Experiences Integrating a

Visualization Tool with Eclipse", ACM Symposium on

Software Visualization, (Softvis'2003), San Diego, pp.

47-56, and p. 209, June 2003.

Proceedings of the 21st IEEE International Conference on Software Maintenance (ICSM’05)

1063-6773/05 $20.00 © 2005 IEEE

