
Mining Metrics to Predict Component Failures 
 

Nachiappan Nagappan 
Microsoft Research 

Redmond, Washington 

nachin@microsoft.com 

Thomas Ball 
Microsoft Research 

Redmond, Washington 

tball@microsoft.com 

Andreas Zeller* 
Saarland University 

Saarbrücken, Germany 

zeller@cs.uni-sb.de 
 

 
ABSTRACT 
What is it that makes software fail?  In an empirical study of the 
post-release defect history of five Microsoft software systems, we 
found that failure-prone software entities are statistically correlated 
with code complexity measures.  However, there is no single set of 
complexity metrics that could act as a universally best defect 
predictor.  Using principal component analysis on the code metrics, 
we built regression models that accurately predict the likelihood of 
post-release defects for new entities.  The approach can easily be 
generalized to arbitrary projects; in particular, predictors obtained 
from one project can also be significant for new, similar projects. 

Categories and Subject Descriptors 
D.2.7 [Software Engineering]: Distribution, Maintenance, and 
Enhancement—version control.  D.2.8 [Software Engineering]: 
Metrics—Performance measures, Process metrics, Product metrics.  
D.2.9 [Software Engineering]: Management—Software quality 
assurance (SQA) 

General Terms 
Measurement, Design, Reliability. 

Keywords 
Empirical study, bug database, complexity metrics, principal 
component analysis, regression model. 

1. INTRODUCTION 
During software production, software quality assurance consumes a 
considerable effort.  To raise the effectiveness and efficiency of this 
effort, it is wise to direct it to those which need it most.  We 
therefore need to identify those pieces of software which are the 
most likely to fail—and therefore require most of our attention. 
One source to determine failure-prone pieces can be their past: If a 
software entity (such as a module, a file, or some other component) 
was likely to fail in the past, it is likely to do so in the future.  Such 
information can be obtained from bug databases—especially when 
coupled with version information, such that one can map failures to 
specific entities.  However, accurate predictions require a long 

failure history, which may not exist for the entity at hand; in fact, a 
long failure history is something one would like to avoid altogether. 

A second source of failure prediction is the program code itself: In 
particular, complexity metrics have been shown to correlate with 
defect density in a number of case studies.  However, indiscriminate 
use of metrics is unwise: How do we know the chosen metrics are 
appropriate for the project at hand? 

In this work, we apply a combined approach to create accurate 
failure predictors (Figure 1): We mine the archives of major 
software systems in Microsoft and map their post-release failures 
back to individual entities.  We then compute standard complexity 
metrics for these entities.  Using principal component analysis, we 
determine the combination of metrics which best predict the failure 
probability for new entities within the project at hand.  Finally, we 
investigate whether such metrics, collected from failures in the past, 
would also good predictors for entities of other projects, including 
projects be without a failure history. 

Bug
Database

CodeCodeCode

Entity Entity Entity

PredictorEntity Failure
probability

1. Collect input data

2. Map post-release failures to defects in entities

3. Predict failure probability for new entities

Version
Database

 
Figure 1. After mapping historical failures to entities, we can use 
their complexity metrics to predict failures of new entities. 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. To copy otherwise, or 
republish, to post on servers or to redistribute to lists, requires prior 
specific permission and/or a fee. 
ICSE’06, May 20–28, 2006, Shanghai, China. 
Copyright 2006 ACM 1-59593-085-X/06/0005...$5.00. 
 

_________________________________________________________________________________

* Andreas Zeller was a visiting researcher with the Testing, 
Verification and Measurement Group, Microsoft Research in the Fall 
of 2005 when this work was carried out. 

452



This paper is organized in a classical way.  After discussing the state 
of the art (Section 2), we describe the design of our study 
(Section 3). Our results are reported in Section 4. In Section 5, we 
discuss the lessons learned, followed by threats to validity 
(Section 6).  Section 7 closes with conclusion and future work. 

2. RELATED WORK 
2.1 Defects and Failures 
In this paper, we use the term defect to refer to an error in the source 
code, and the term failure to refer to an observable error in the 
program behavior.  In other words, every failure can be traced back 
to some defect, but a defect need not result in a failure1. 
Failures can occur before a software release, typically during 
software testing; they can also occur after a release, resulting in 
failures in the field.  If a defect causes a pre-release failure, we call it 
a pre-release defect; in contrast, a post-release defect causes a 
failure after a release. 
It is important not to confuse these terms.  In particular, a study 
conducted by Adams [1] found that only 2% of the defects in eight 
large-scale software systems lead to a mean time to failure of less 
than 50 years—implying that defect density cannot be used to assess 
reliability in terms of failures [10].  Only one study so far has found 
that a large number of fixed pre-release defects raised the probability 
of post-release failures [5]. 
For the user, only post-release failures matter.  Therefore, our 
approach is exclusively concerned with post-release defects, each of 
them uncovered by at least one failure in the field. 

2.2 Complexity Metrics 
Over the years, a number of software metrics have been proposed to 
assess software effort and quality [11].  These “traditional” metrics 
were designed for imperative, non-object-oriented programs.  The 
object-oriented metrics used in our approach were initially 
suggested by Chidamber and Kemerer [8].  Basili et al. [3] were 
among the first to validate these metrics.  In an experiment with 
eight student teams, they found that OO metrics appeared to be 
useful for predicting defect density.  The study by Subramanyam 
and Krishnan [21] presents a survey on eight more empirical studies, 
all showing that OO metrics are significantly associated with 
defects.  In contrast to this existing work, we do not predict pre-
release defect density, but post-release defects, and hence actual 
failures of large-scale commercial software. 
Empirical evidence that metrics can predict post-release defects 
(rather than pre-release defects) and thus post-release failures is 
scarce.  Binkley and Schach [4] found that their coupling 
dependency metric outperformed several other metrics when 
predicting failures of four academia-developed software systems.  
Ohlsson and Alberg [18] investigated a number of traditional design 
metrics to predict modules that were prone to failures during test as 
well as within operation.  They found that 20% of the modules 
predicted as most failure-prone would account for 47% of the 
failures.  Their problem was, however, that “it was not possible to 
draw generalizable conclusions on the strategy for selecting specific 

                                                                 
1 The term fault is usually used as a synonym for defects, but 

some authors (e.g. [18]) use it as a synonym for failures.  In this 
paper, we thus avoid the term. 

variables for the model”—which is why we rely on failure history to 
select the most suitable metrics combination. 

2.3 Historical Data 
Hudepohl et al. [13] successfully predicted whether a module would 
be defect-prone or not by combining metrics and historical data.  
Their approach used software design metrics as well as reuse 
information, under the assumption that new or changed modules 
would have a higher defect density.  In our approach, historical data 
is used to select appropriate metrics first, which can then be applied 
to arbitrary entities; also, we focus on post-release rather than pre-
release defects. 
Ostrand et al. [19] used historical data from two large software 
systems with up to 17 releases to predict the files with the highest 
defect density in the following release.  For each release, the 20% of 
the files with the highest predicted number of defects contained 
between 71% and 92% of the defects being detected.  Again, our 
approach focuses on post-release rather than pre-release defects; it 
also goes beyond the work of Ostrand et al. by not only identifying 
the most failure-prone entities, but also determining their common 
features, such that entities of other projects can be assessed. 

2.4 Mining Software Repositories 
In recent years, researchers have learned to exploit the vast amount 
of data that is contained in software repositories such as version and 
bug databases [16, 17, 19, 22].  The key idea is that one can map 
problems (in the bug database) to fixes (in the version database) and 
thus to those locations in the code that caused the problem [9, 12, 
20]. This mapping is the base of automatically associating metrics 
with post-release defects, as described in this work. 

2.5 Contributions 
This work extends the state of the art in four ways: 

1. It reports on how to systematically build predictors for 
post-release defects from failure history found in the field 
by customers. 

2. It investigates whether object-oriented metrics can predict 
post-release defects from the field. 

3. It analyzes whether predictors obtained from one project 
history are applicable to other projects. 

4. It is one of the largest studies of commercial software—in 
terms of code size, team sizes, and software users. 

3. STUDY DESIGN 
3.1 Researched Projects 
The goal of this work was to come up with failure predictors that 
would be valid for a wide range of projects.  For this purpose, we 
analyzed the project history of five major Microsoft project 
components, listed in Table 1. 
These projects were selected to form a wide range of product types.  
All of them have been released as individual products; they thus do 
not share code. All use object-oriented programming languages like 
C++ or C#.  Finally, all of these projects are large—not only in 
terms of code or team size (> 250 engineers), but also in terms of 
user base.  DirectX, for instance, is part of the Windows operating 
system, which has an estimated 600 million users. (The team sizes 
are normalized in Table 1 below). 

453



Table 1. Projects researched 

Project Description Components Code 
size 

Team 
size 

Internet 
Explorer 6  

Web browser HTML 
rendering 

511 
KLOC 

14.3X 

IIS W3 
Server core 

Web server Application 
loading 

37 
KLOC 

6.3X 

Process 
Messaging 
Component 

Application 
communication 
and networking 

all 147 
KLOC 

3.4X 

DirectX Graphics 
library 

all 306 
KLOC 

18.5X 

NetMeeting A/V 
Conferencing 

all 109 
KLOC 

X 

Let us now give a high level outline of each project. 

• Internet Explorer 6 (IE6) is the standard Web browser 
shipped with most versions of Microsoft Windows.  
Since only a part of IE6 is written in object-oriented 
languages, we focus upon the HTML rendering part as an 
object-oriented component. 

• Internet Information Services (IIS) is the standard Web 
server shipped with Microsoft Server.  Again, we focus 
on an object-oriented component responsible for loading 
applications into IIS. 

• Process Messaging Component is a Microsoft 
technology that enables applications running at different 
times to communicate across heterogeneous networks 
and systems that may be temporarily offline. 

• Microsoft DirectX is an advanced suite of multimedia 
application programming interfaces (APIs) built into 
Microsoft Windows. DirectX is a Windows technology 
that enables higher performance in graphics and sound 
when users are playing games or watching video on their 
PC. 

• Microsoft NetMeeting is used for both voice and 
messaging between different locations. 

In the remainder of the paper, we shall refer to these five projects as 
projects A, B, C, D, and E.  For reasons of confidentiality, we do not 
disclose which letter stands for which project. 

3.2 Failure Data 
Like any company, Microsoft systematically records all problems 
that occur during the entire product life cycle.  In this study, we 
were interested in post-release failures—that is, failures that 
occurred in the field within six months after the initial release.  For 
each of the projects, we determined the last release date, and 
extracted all problem reports that satisfied three criteria: 

• The problem was submitted by customers in the field, 

• The problem was classified as non-trivial (in contrast to 
requests for enhancement), and 

• The problem was fixed in a later product update. 
The location of the fix gave us the location of the post-release 
defect. We thus could assign each entity the number of post-release 
defects.  The likelihood of a post-release defect is also what we want 

to predict for new entities—that is, entities without a failure history.  
Since each post-release defect is uncovered by a post-release failure, 
predicting the likelihood of a post-release defect in some entity is 
equivalent to predicting the likelihood of at least one post-release 
failure associated with this entity. 

3.3 Metrics Data 
For each problem report, Microsoft records fix locations in terms of 
modules—that is, a binary file within Windows, built from a number 
of source files.  Thus, we chose modules as the entities for which we 
collected the failure data and for which we want to predict the 
failure-proneness. 
For each of the modules, we computed a number of source code 
metrics, described in the left half of Table 3.  These metrics apply to 
a module M, a function or method f(), and a class C, respectively. 
Here is some additional information on the metrics in Table 3: 

• The Arcs and Blocks metrics refer to a function’s control 
flow graph, which is also the base for computing 
McCabe’s cyclomatic complexity (separately measured as 
Complexity). 

• The AddrTakenCoupling metric counts the number of 
instances where the address of some global variable is 
taken in a function—as in the C++ constructs int *ref 
= &globalVar or int& ref = globalVar. 

• The ClassCoupling metrics counts the number of classes 
coupled to a class C.  A class is “coupled” to C if it is a 
type of a class member variable, a function parameter, or a 
return type in C; or if it is defined locally in a method 
body, or if it is an immediate superclass of C.  Each class 
is only counted once. 

In order to have all metrics apply to modules, we summarized the 
function and class metrics across each module.  For each function 
and class metric X, we computed the total and the maximum number 
per module (henceforth denoted as TotalX and MaxX, respectively).  
As an example, consider the Lines metric, counting the number of 
executable lines per function.  The MaxLines metric indicates the 
length of the largest function in M, while TotalLines, the sum of all 
Lines, represents the total number of executable lines in M.  
Likewise, MaxComplexity stands for the most complex function 
found in M. 

3.4 Hypotheses 
So, what do we do with all these metrics?  Our hypotheses to be 
researched are summarized in Table 2: 

Table 2. Research hypotheses 
 Hypothesis 

H1 Increase in complexity metrics of an entity E correlates with 
the number of post-release defects of E. 

H2 There is a common subset of metrics for which H1 applies in 
all projects. 

H3 There is a combination of metrics which significantly 
predicts the post-release defects of new entities within a 
project. 

H4 Predictors obtained using H3 from one project also predict 
failure-prone entities in other projects. 

454



Table 3. Metrics and their correlations with post-release defects.  For each module M, we determine how well the metrics correlate 
with M’s post-release defects.  Bold values indicate significant correlation.

 
 

 

Correlation with post-release defects of M Metric Description 
  

A B C D E 

Module metrics — correlation with metric in a module M 

Classes # Classes in M   0.531 0.612 0.713 0.066 0.438 

Function # Functions in M   0.131 0.699 0.761 0.104 0.531 

GlobalVariables # global variables in M   0.023 0.664 0.695 0.108 0.460 

Per-function metrics — correlation with maximum and sum of metric across all functions f() in a module M 

Max -0.236 0.514 0.585 0.496 0.509 Lines # executable lines in f() 

Total 0.131 0.709 0.797 0.187 0.506 

Max -0.344 0.372 0.547 0.015 0.346 Parameters # parameters in f() 

Total 0.116 0.689 0.790 0.152 0.478 

Max -0.209 0.376 0.587 0.527 0.444 Arcs # arcs in f()’s control flow graph 

Total 0.127 0.679 0.803 0.158 0.484 

Max -0.245 0.347 0.585 0.546 0.462 Blocks # basic blocks in f()’s control flow 
graph Total 0.128 0.707 0.787 0.158 0.472 

Max -0.005 0.582 0.633 0.362 0.229 ReadCoupling # global variables read in f() 

Total -0.172 0.676 0.756 0.277 0.445 

Max 0.043 0.618 0.392 0.011 0.450 WriteCoupling # global variables written in f() 

Total -0.128 0.629 0.629 0.230 0.406 

Max 0.237 0.491 0.412 0.016 0.263 AddrTakenCoupling # global variables whose address is 
taken in f() Total 0.182 0.593 0.667 0.175 0.145 

Max -0.063 0.614 0.496 0.024 0.357 ProcCoupling # functions that access a global 
variable written in f() Total 0.043 0.562 0.579 0.000 0.443 

Max 0.034 0.578 0.846 0.037 0.530 FanIn # functions calling f() 

Total 0.066 0.676 0.814 0.074 0.537 

Max -0.197 0.360 0.613 0.345 0.465 FanOut # functions called by f() 

Total 0.056 0.651 0.776 0.046 0.506 

Max -0.200 0.363 0.594 0.451 0.543 Complexity McCabe’s cyclomatic complexity of 
f() Total 0.112 0.680 0.801 0.165 0.529 

Per-class metrics — correlation with maximum and sum of metric across all classes C in a module M 

Max 0.244 0.589 0.534 0.100 0.283 ClassMethods # methods in C (private / public / 
protected) Total 0.520 0.630 0.581 0.094 0.469 

Max 0.428 0.546 0.303 0.131 0.323 InheritanceDepth # of superclasses of C 

Total 0.432 0.606 0.496 0.111 0.425 

Max 0.501 0.634 0.466 -0.303 0.264 ClassCoupling # of classes coupled with C (e.g. as 
attribute / parameter / return types) Total 0.547 0.598 0.592 -0.158 0.383 

Max 0.196 0.502 0.582 -0.207 0.387 SubClasses # of direct subclasses of C 

Total 0.265 0.560 0.566 -0.170 0.387 

455



As a first step, we examine whether there are any significant 
correlations between complexity metrics and post-release defects 
(H1).  We then want to find whether there is some common subset of 
these metrics that is correlated with post-release defects across 
different projects (H2).  As a third step, we evaluate whether we can 
predict the likelihood of post-release defects in new entities by 
combining multiple metrics (H3).  Finally, we evaluate whether 
predictors obtained from one project are also good predictors of 
failure-proneness for another project (H4). 

4. RESULTS 
Let us now discuss the results for the four hypotheses.  Each 
hypothesis is discussed in its individual section. 

4.1 Do complexity metrics correlate with 
failures in the field? 
To investigate our initial hypothesis H1, we determined the 
correlation between the complexity metrics (Section 3.3) for each 
module M with the number of post-release defects (Section 3.2).  
The resulting standard Spearman correlation coefficients2 are shown 
in Table 3.  Correlations that are significant at the 0.05 level is 
shown in bold; the associated metrics thus correlate with the number 
of post-release defects.  For instance, in project A, the higher the 
number of classes in a module (Classes), the larger the number of 
post-release defects (correlation 0.531); other correlating metrics 
include TotalClassMethods, both InheritanceDepth and both 
ClassCoupling measures.  Clearly, for project A, the more classes 
we have in a module, the higher its likelihood of post-release 
defects.  However, none of the other metrics such as Lines correlate, 
implying that the length of classes and methods has no significant 
influence on post-release defects. 
Projects B and C tell a different story: Almost all complexity metrics 
correlate with post-release defects.  In project D, though, only the 
MaxLines metric correlates with post-release defects, meaning the 
maximum length of a function within a module.  Why is it that in 
project B and C, so many metrics correlate, and in project D, almost 
none?  The reason lies within the project nature itself, or more 
precisely within its process: The team of project D routinely uses 
metrics like the ones above to identify potential complexity traps, 
and refactors code pieces which are too complex.  This becomes 
evident when looking at the distribution of post-release defects 
across the modules: In project D, the distribution is much more 
homogeneous than in project B or C, where a small number of 
modules account for a large number of post-release defects.  These 
modules also turn out to be the more complex ones—which is what 
makes all the metrics correlate in B and C. 
Nonetheless, one should note that we indeed found correlating 
metrics for each project.  This confirms our hypothesis H1: 

 

                                                                 
2 The Spearman rank correlation is a commonly-used robust 

correlation technique [11] because it can be applied even when 
the association between elements is non-linear. 

4.2 Is there a single set of metrics that predicts 
post-release defects in all projects? 
As already discussed, each of the projects comes with its own set of 
predictive metrics.  It turns out that there is not a single metric that 
would correlate with post-release defects in all five projects.   
All in all, this rejects our hypothesis H2, which has a number of 
consequences.  In particular, this means that it is unwise to use some 
complexity metric and assume the reported complexity would imply 
anything—at least in terms of post-release defects.  Instead, 
correlations like those shown in Table 3 should be used to select and 
calibrate metrics for the project at hand, which is what we shall do 
in the next steps. 

 

4.3 Can we combine metrics to predict post-
release defects? 
If there is no universal metric to choose from, can we at least exploit 
the failure history and its correlation with metrics?  Our basic idea 
was to build predictors that would hold within a project.  We would 
combine the individual metrics, weighing the metrics according to 
their correlations as listed in Table 3. 
However, one difficulty associated with combining several metrics 
is the issue of multicollinearity.  Multicollinearity among the metrics 
is due to the existence of inter-correlations among the metrics.  In 
project A, for instance, the Classes, InheritanceDepth, 
TotalMethods, and ClassCoupling metrics not only correlate with 
post-release defects, but they also strongly correlated with each 
other.  Such an inter-correlation can lead to an inflated variance in 
the estimation of the dependent variable—that is, post-release 
defects. 
To overcome the multicollinearity problem, we used a standard 
statistical approach, namely principal component analysis (PCA) 
[14]. With PCA, a smaller number of uncorrelated linear 
combinations of metrics that account for as much sample variance as 
possible are selected for use in regression (linear or logistic). These 
principal components are independent and do not suffer from 
multicollinearity. 
We extracted the principal components for each of the five projects 
that account for a cumulative sample variance greater than 95%. 
Table 4 gives an example: After extracting five principal 
components, we can account for 96% of the total variance in project 
E.  Therefore, five principal components suffice. 

Table 4. Extracted principal components for project E 

Initial Eigenvalues Principal 
Component Total % of Variance Cumulative % 

1 25.268 76.569 76.569 
2 3.034 9.194 85.763 
3 2.045 6.198 91.961 
4 .918 2.782 94.743 
5 .523 1.584 96.327 

For each project, we can find a set of complexity metrics that 
correlates with post-release defects—and thus failures. 

There is no single set of metrics that fits all projects. 

456



Table 5. Regression models and their explanative power 

Project Number of principal 
components 

% cumulative variance 
explained 

R2 Adjusted R2 F - test 

A 9 95.33 0.741 0.612 5.731, p < 0.001 

B 6 96.13 0.779 0.684 8.215, p < 0.001 

C 7 95.34 0.579 0.416 3.541, p < 0.005 

D 7 96.44 0.684 0.440 2.794, p < 0.077 

E 5 96.33 0.919 0.882 24.823, p < 0.0005 

Using the principal components as the independent variable and the 
post-release defects as the dependent variable, we then built multiple 
regression models.  We thus obtained a predictor that would take a 
new entity (or more precisely, the values of its metrics) and come up 
with a failure estimate. The regression models built using all the 
data for each project are characterized in  Table 5. For each project, 
we present the R2 value which is the ratio of the regression sum of 
squares to the total sum of squares. As a ratio, it takes values 
between 0 and 1, with larger values indicating more variability 
explained by the model and less unexplained variation.  In other 
words: The higher the R2 value,  the better the predictive power. 

The adjusted R2 measure also can be used to evaluate how well a 
model will fit a given data set [7].  It explains for any bias in the R2 
measure by taking into account the degrees of freedom of the 
independent variables and the sample population. The adjusted R2 
tends to remain constant as the R2 measure for large population 
samples.  The F-ratio is to test the null hypothesis that all regression 
coefficients are zero at statistically significant levels. 

How does one interpret the data in Table 5?  Let us focus straight 
away on the R2 values of the regression models. The R2  values 
indicate that our principal components explain between 57.9% and 
91.9% of the variance—which indicates the efficacy of the built 
regression models.  The adjusted R2 values indicate the lack of bias 
in our R2 values—that is, the regression models are robust. 
To evaluate the predictive predictors, we ran a standard experiment: 
For each project, we randomly split the set of entities into 2/3 and 
1/3, respectively.  We then built a predictor from the 2/3 set.  The 
better the predictor, the stronger the correlations

would be between the actual and estimated post-release defects; a 
correlation of 1.0 would mean that the sensitivity of the predictor is 
high and vice versa.  
The results of our evaluation are summarized in Table 6.  Overall, 
we performed five random splits to build five models for each 
project to evaluate the prediction efficacy.  We repeated the same 
process using different random splits, overall leading to 25 different 
models and predictions.  Again, positive correlations are shown in 
bold. We present both the Spearman and Pearson correlations for 
completeness; the Pearson bivariate correlation requires the data to 
be distributed normally and the association between elements to be 
linear.  In three of the five projects, all but one split result in 
significant predictions.  The exceptions are projects C and E, which 
is due to the small number of binaries in these projects: In random 
splitting, a small sample size is unlikely to perform well, simply 
because one single badly ranked entity is enough to bring the entire 
correlation down. 
What does this predictive power mean in practice?  In Figure 2, we 
show two examples of ranking modules both by estimated and 
actual number of post-release defects.  The left side shows one of 
the random split experiments from Table 6 with a Pearson 
correlation of >0.6.  The project shown had 30 modules; the history 
and metrics of 2/3 of these were used for predicting the ranking of 
the remaining ten modules.  If a manager decided to put more testing 
effort into, say, the top 30% or three of the predicted modules, this 
selection would contain the two most failure-prone modules, namely 
#4 and #8.  Only one selected module (#6) would receive too much 
testing effort; and only one (#3) would receive too little. 

Table 6. Predictive power of the regression models in random split experiments 

Project Correlation type Random split 1 Random split 2 Random split 3 Random split 4 Random split 5 

Pearson 0.480 0.327 0.725 -0.381 0.637 A 

Spearman 0.238 0.185 0.693 -0.602 0.422 
Pearson -0.173 0.410 0.181 0.939 0.227 B 

Spearman -0.055 0.054 0.318 0.906 0.218 
Pearson 0.559 -0.539 -0.190 0.495 -0.060 C 

Spearman 0.445 -0.165 0.050 0.190 0.082 

Pearson 0.572 0.845 0.522 0.266 0.419 D 

Spearman 0.617 0.828 0.494 0.494 0.494 
Pearson -0.711 0.976 -0.818 0.418 0.007 E 

Spearman -0.759 0.577 -0.883 0.120 0.152 

457



On the right side of Figure 2, we see another experiment from Table 
6 with a Pearson correlation of <0.3.  Here, the inaccurate ranking of 
module #5 in a small sample size is the reason for the low 
correlation.  However, for any top n predicted modules getting extra 
effort, one would never see more than one module not deserving 
that effort, and never more than one of the top n actual modules 
missed. 
All in all, both the R2 values in Table 5 and the sensitivity of the 
predictions in Table 6 confirm our hypothesis H3 for all five 
projects, illustrated by the examples in Figure 2.  In practice, this 
means that within a project, the past failure history of a project can 
successfully predict the likelihood of post-release defects for new 
existing entities; therefore, the predictors can also be used after a 
change to estimate the likelihood of failure.  The term “new entities” 
also includes new versions of existing entities; therefore, the 
predictions can also be used after a change to estimate the likelihood 
of failure. 

 
4.4 Are predictors obtained from one project 
applicable to other projects? 
Finally, our hypothesis H4 remains: If we build a predictor from the 
history and metrics of one project, would it also be predictive for 
other projects?  We evaluated this question by building one 
predictor for each project, and applying it to the entities of each of 
the other four projects.  Once more, we checked how well the actual 
and predicted rankings of the entities would correlate. 
Our findings are summarized in Table 7.  The entry “yes” indicates a 
significant correlation, meaning that the predictor would be 
successful; “no” means no or insignificant correlation. 

 

Table 7. Prediction correlations using models built from a 
different project 

Sensitivity correlations between actual and 
predicted 

Project 
used to 

build the 
model 

 A B C D E 

Pearson  No No No No A 

Spearman  No No No No 

Pearson No  Yes No No B 

Spearman No  No No No 

Pearson No Yes  No Yes C 

Spearman No Yes   No Yes 
Pearson No No No  No D 

Spearman No No No  No 

Pearson No No No No  E 

Spearman No No Yes No  

As it turns out, the results are mixed—some project histories can 
serve as predictors for other projects, while most cannot.  However, 
after our hypothesis H2 has failed, this is not too surprising.  
Learning from earlier failures can only be successful if the two 
projects are similar—from the failure history of an Internet game, 
one can hardly make predictions for a nuclear reactor. 

What is it that makes projects “similar” to each other?  We found 
that those project pairs which are cross-correlated share the same 
heterogeneous defect distribution across modules which would also 
account for the large number of defect-correlated metrics, as 
observed in Section 4.1.  The cross-correlated projects B and C, for 
instance, both share a heterogeneous defect distribution, 

In essence, this means that one can learn from code that is more 
failure-prone to predict other entities which are equally failure-
prone.  For projects which are already aware of failure-prone 
components, one should go beyond simple code metrics, and 
consider the goals, the domain, and the processes at hand to find 
similar projects to learn from.  This, however, is beyond the scope of 
this paper. 

To sum up, we find our hypothesis H4 only partially confirmed: 
Predictors obtained from one project are applicable only to similar 
projects—which again substantiates our word of caution against 
indiscriminate use of metrics.  Ideas on how to identify similar 
projects are discussed in Section 7. 

 

Predictors obtained from principal component analysis are 
useful in building regression models to estimate post-
release defects. 

Predictors are accurate only when obtained from the same 
or similar projects. 

6 

4 

8 

1 

5 

7 

3 

9 

10 

2 

predicted 

4 

8 

3 

5 

1 

7 

10 

2 

6 

9 

actual 

5 

7 

1 

2 

3 

6 

4 

predicted 

2 

7 

1 

4 

3 

5 

6 

    actual 

Figure 2. Comparing predicted and actual rankings 

458



5. LESSONS LEARNED 
We started this work with some doubts about the usefulness of 
complexity metrics.  Some of these doubts were confirmed: 
Choosing metrics without a proper validation is unlikely to result in 
meaningful predictions—at least when it comes to predict post-
release defects, as we did.  On the other side, metrics proved to be 
useful as abstractions over program code, capturing similarity 
between components that turned out to be a good source for 
predicting post-release defects.  Therefore, we are happy that the 
failure history of the same or a similar project can indeed serve to 
validate and calibrate metrics for the project at hand. 
Rather than predicting post-release defects, we can adapt our 
approach to arbitrary measures of quality.  For instance, our measure 
might involve the cost or severity of failures, risk considerations, 
development costs, or maintenance costs.  The general idea stays the 
same: From earlier history, we select the combination of metrics 
which best predicts the future.  Therefore, we have summarized our 
approach in a step-by-step guide, shown in  
Figure 3.  In the long term, this guide will be instantiated for other 
projects within Microsoft, using a variety of code and process 
metrics as input for quality predictors. 

 

6. THREATS TO VALIDITY 
In this paper, we have reported our experience with five projects of 
varying goal, process, and domain.  Although we could derive 
successful predictors from the failure history in each of the projects, 
this may not generalize to other projects.  In particular, the specific 
failure history, the coding and quality standards, or other process 
properties may be crucial for the success.  We therefore encourage 
users to evaluate the predictive power before usage—for instance, 
by repeating the experiments described in Section 4.3. 

Even if our approach accurately predicts failure-prone components, 
we advise against making decisions which are based uniquely upon 
such a prediction.  To minimize the damage of post-release defects, 
one must not only consider the number of defects, but also the 
severity, likelihood, and impact of the resulting failures, as 
established in the field.  Such estimations, however, are beyond the 
scope of this paper. 

While the approach easily generalizes, we would caution against 
drawing general conclusions from this specific empirical study.  In 
software engineering, any process depends to a large degree on a 
potentially large number of relevant context variables.  For this 
reason, we cannot assume a priori that the results of a study 
generalize beyond the specific environment in which it was 
conducted [2].  Researchers become more confident in a theory 
when similar findings emerge in different contexts [2].  Towards this 
end, we hope that our case study contributes to strengthening the 
existing empirical body of knowledge in this field. 

 
Figure 3. How to build quality predictors 

¾ DO NOT use complexity metrics without validating them 
for your project. 

¾ DO use metrics that are validated from history to identify 
low-quality components. 

Building quality predictors: 
A step-by-step guide 
 

1. Determine a software E from which to learn.  E can 
be an earlier release of the software at hand, or a 
similar project. 

2. Decompose E into entities (subsystems, modules, 
files, classes…) ,...},{ 21 eeE = for which you can 
determine the individual quality. 
In this paper, we decomposed the software into 
individual binaries—i. e. Windows components—
simply because a mapping between binaries and 
post-release failures was readily available. 

3. Build a function quality: E → R which assigns to 
each entity Ee ∈  a quality.  This typically requires 
mining version and bug histories (Section 2.4). 
In our case, the “quality” is the number of defects in 
an entity e that were found and fixed due to post-
release failures. 

4. Have a set of metric functions ,...},{ 21 mmM = such 
that each Mm ∈  is a mapping m: E → R which 
assigns a metric to an entity Ee ∈ .  The set of 
metrics M should be adapted for the project and 
programming language at hand. 
We use the set of metrics M described in Table 3. 

5. For each metric Mm ∈  and each entity Ee ∈ , 
determine m(e). 

6. Determine the correlations between all m(e) and 
quality(e), as well as the inter-correlations between 
all m(e). 
The set of correlations between all m(e) and 
quality(e) is shown in Table 3; the inter-correlations 
are omitted due to lack of space. 

7. Using principal component analysis, extract a set of 
principal components ,...},{ 21 pcpcPC = , where 
each component PCpci ∈  has the 

form Mi cccpc ,...,, 21= . 

An example of the set PC is given in Table 4. 
8. You can now use the principal components PC to 

build a predictor for new entities ,...},{ 21 eeE ′′=′  
with ∅=∩′ EE .  Be sure to evaluate the 
explanative and predictive power—for instance, 
using the experiments described in Section 4.3. 
We used PC to build a logistic regression equation, 
in which we fitted the metrics m(e’) for all new 
entities Ee ′∈′  and all metrics Mm ∈ .  The 
equation resulted in a vector 

EpppP ′= ,...,, 21 where each Ppi ∈  is the 

probability of failure of the entity 'Eei ∈′ . 

459



7. CONCLUSION AND FUTURE WORK 
In this work, we have addressed the question “Which metric is best 
for me?” and reported our experience in resolving that question.  It 
turns out that complexity metrics can successfully predict post-
release defects.  However, there is no single set of metrics that is 
applicable to all projects.  Using our approach, organizations can 
leverage failure history to build good predictors which are likely to 
be accurate for similar projects, too. 
This work extends the state of the art in four ways.  It is one of the 
first studies to show how to systematically build predictors for post-
release defects from failure history from the field.  It also 
investigates whether object-oriented metrics can predict post-release 
defects.  It analyzes whether predictors obtained from one project 
history are applicable to other projects, and last but not least, it is 
one of the largest studies of commercial software—in terms of code 
size, team sizes, and software users. 
Of course, there is always more to do.  Our future work will 
concentrate on these “more” topics: 

• More metrics.  Right now, the code metrics suggested are 
almost deceptively simple.  While in our study, McCabe’s 
cyclomatic complexity turned out to be an overall good 
predictor, it does not take into account all the additional 
complexity induced by method calls—and this is where 
object-oriented programs typically get complicated.  We 
plan to leverage the failure data from several projects to 
evaluate more sophisticated metrics that again result in 
better predictors. 

• More data.  Besides only collecting source code versions 
and failure reports, we have begun to collect and recreate 
run-time information such as test coverage, usage profiles, 
or change effort.  As all of these might be related to post-
release defects, we expect that they will further improve 
predictive power—and provide further guidance for 
quality assurance. 

• More similarity.  One important open question in our 
work is: What is it that makes projects “similar” enough 
such that predictions across projects become accurate?  
For this purpose, we want to collect and classify data on 
the process and domain characteristics.  One possible 
characterization would be a polar chart as shown in 
Figure 4, where we would expect similar projects to cover 
a similar space.  As a side effect, we could determine 
which process features correlate with quality. 

• More automation.  While we have automated the 
extraction and mapping of failure and version 
information, we still manually use third-party statistical 
tools to obtain the predictors.  We want to automate and 
integrate this last step as well, such that we can 
automatically obtain predictors from software archives. 
The next step would be to integrate these predictors into 
development environments, supporting the decisions of 
programmers and managers. 

• More projects.  Given a fully automated system, we shall 
be able to apply the approach on further projects within 
and outside of Microsoft.  This will add more diversity to 
the field—and, of course, help companies like Microsoft 
to maximize the impact of their quality efforts. 

All in all, modern software development produces an abundance of 
recorded process and product data that is now available for 
automatic treatment.  Systematic empirical investigation of this data 
will provide guidance in several software engineering decisions—
and further strengthen the existing empirical body of knowledge in 
software engineering. 

Acknowledgments.  Andreas Zeller’s work on mining software 
archives was supported by Deutsche Forschungsgemeinschaft, grant 
Ze 509/1-1.  We thank Melih Demir, Tom Zimmermann and many 
others for their helpful comments on earlier revisions of this paper. 
We would like to acknowledge all the product groups at Microsoft 
for their cooperation in this study.  

REFERENCES 
[1] E. N. Adams, “Optimizing Preventive Service of Software 

Products”, IBM Journal of Research and Development,  28(1), 
pp. 2-14, 1984. 

[2] V. Basili, Shull, F.,Lanubile, F., “Building Knowledge through 
Families of Experiments”, IEEE Transactions on Software 
Engineering,  25(4), pp. 456-473, 1999. 

[3] V. R. Basili, L. C. Briand, and W. L. Melo, “A Validation of 
Object-Oriented Design Metrics as Quality Indicators”, IEEE 
Transactions on Software Engineering,  22(10), pp. 751-761, 
1996. 

[4] A. B. Binkley, Schach, S., “Validation of the coupling 
dependency metric as a predictor of run-time failures and 
maintenance measures”,  Proceedings of International 
Conference on Software Engineering, pp. 452 - 455, 1998. 

[5] S. Biyani, Santhanam, P., “Exploring defect data from 
development and customer usage on software modules over 
multiple releases”,  Proceedings of International Symposium 
on Software Reliability Engineering, pp. 316-320, 1998. 

Figure 4. A Boehm-Turner polar chart [6] which 
characterizes the software process [15] 

 

460



[6] B. Boehm and R. Turner, “Using Risk to Balance Agile and 
Plan-Driven Methods”, IEEE Computer,  36(6), pp. 57-66, 
June 2003. 

[7] F. Brito e Abreu, Melo, W., “Evaluating the Impact of Object-
Oriented Design on Software Quality”,  Proceedings of Third 
International Software Metrics Symposium, pp. 90-99, 1996. 

[8] S. R. Chidamber and C. F. Kemerer, “A Metrics Suite for 
Object Oriented Design”, IEEE Transactions on Software 
Engineering,  20(6), pp. 476-493, 1994. 

[9] D. Čubranić, Murphy, G.C., “Hipikat: recommending pertinent 
software development artifacts”,  Proceedings  of International 
Conference on Software Engineering, pp. 408-418, 2003. 

[10] N. E. Fenton, Neil, M., “A critique of software defect 
prediction models”, IEEE Transactions in Software 
Engineering,  25(5), pp. 675-689, 1999. 

[11] N. E. Fenton and S. L. Pfleeger, Software Metrics: A Rigorous 
and Practical Approach: Brooks/Cole, 1998. 

[12] M. Fischer, Pinzger, M., Gall, H., “Populating a Release 
History Database from version control and bug tracking 
systems”,  Proceedings of International Conference on 
Software Maintenance, pp. 23-32, 2003. 

[13] J. P. Hudepohl, Aud, S.J., Khoshgoftaar, T.M., Allen, E.B., 
Mayrand, J., “Emerald: software metrics and models on the 
desktop”, IEEE Software,  13(5), pp. 56 - 60, 1996. 

[14] E. J. Jackson, A User’s Guide to Principal Components. 
Hoboken, NJ: John Wiley & Sons Inc., 2003. 

[15] L. Layman, L. Williams, and L. Cunningham, “Exploring 
Extreme Programming in Context:  An Industrial Case Study”,  

Proceedings  of Agile Development Conference, Salt Lake 
City, UT, pp. 32-41, 2004. 

[16] A. Mockus, Zhang, P., Li, P., “Drivers for customer perceived 
software quality”,  Proceedings of International Conference on 
Software Engineering (ICSE), St. Louis, MO, pp. 225-233, 
2005. 

[17] N. Nagappan, Ball, T., “Use of Relative Code Churn Measures 
to Predict System Defect Density”,  Proceedings  of 
International Conference on Software Engineering (ICSE), St. 
Louis, MO, pp. 284-292, 2005. 

[18] N. Ohlsson, Alberg, H., “Predicting fault-prone software 
modules in telephone switches”, IEEE Transactions in 
Software Engineering,  22(12), pp. 886 - 894, 1996. 

[19] T. Ostrand, Weyuker, E., Bell, R.M., “Predicting the location 
and number of faults in large software systems”, IEEE 
Transactions in Software Engineering,  31(4), pp. 340 - 355, 
2005. 

[20] J. Sliwerski, Zimmermann, T., Zeller, A., “When Do Changes 
Induce Fixes?”  Proceedings  of Mining Software Repositories 
(MSR) Workshop, 2005. 

[21] R. Subramanyam and M. S. Krishnan, “Empirical Analysis of 
CK Metrics for Object-Oriented Design Complexity: 
Implications for Software Defects”, IEEE Transactions on 
Software Engineering,  29(4)  pp. 297-310, April 2003. 

[22] T. Zimmermann, Weißgerber, P., Diehl, S., Zeller, A., “Mining 
Version Histories to Guide Software Changes”, IEEE 
Transactions in Software Engineering,  31(6), pp. 429-445, 
2005. 

 
 

461


