
TA-RE: An Exchange Language for Mining Software Repositories

Sunghun Kim1, Thomas Zimmermann2, Miryung Kim3, Ahmed Hassan4, Audris Mockus5,

Tudor Girba6, Martin Pinzger7, E. James Whitehead, Jr.1, and Andreas Zeller2

1University of California,

Santa Cruz, CA, USA

{hunkim, ejw}@cs.ucsc.edu

2Saarland University,

Saarbrücken, Germany

{tz, zeller}@acm.org

3University of Washington, USA

miryung@cs.washington.edu

4University of Waterloo, Canada

aeehassa@plg.uwaterloo.ca

5Avaya labs

audris@avaya.com

6University of Berne,

Switzerland

girba@iam.unibe.ch

7University of Zurich,

Switzerland

pinzger@ifi.unizh.ch

ABSTRACT

Software repositories have been getting a lot of attention from
researchers in recent years. In order to analyze software
repositories, it is necessary to first extract raw data from the
version control and problem tracking systems. This poses two

challenges: (1) extraction requires a non-trivial effort, and (2) the
results depend on the heuristics used during extraction. These
challenges burden researchers that are new to the community and
make it difficult to benchmark software repository mining since it
is almost impossible to reproduce experiments done by another
team. In this paper we present the TA-RE corpus. TA-RE collects
extracted data from software repositories in order to build a
collection of projects that will simplify extraction process.

Additionally the collection can be used for benchmarking. As the
first step we propose an exchange language capable of making
sharing and reusing data as simple as possible.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement – Restructuring, reverse engineering, and

reengineering, K.6.3 [Management of Computing and

Information Systems]: Software Management – Software

maintenance

General Terms

Measurement, Experimentation

Keywords

Corpus, Software Repository Mining, Prediction, Analysis

1. INTRODUCTION
Software repositories, such as version archives, problem databases,
newsgroups, and mailing lists, have been getting a lot of attention
from researchers in recent years. They have been used to discover
previously unknown information and evaluate existing software
engineering approaches and theories. Mining software repositories
(MSR) is an active research area.

This has lead to a wide range of topics including co-change
analysis [1, 3, 23], origin analysis [7, 11], signature change

analysis [12], defect analysis and prediction [8], investigation of
code clones [10], code decay [5], estimating drivers for software
change effort [9] and quality [18], identifying key features of open
source development process [14], chunking of software in order to
facilitate distributed development teams [17], and constructing
tools to identify expert developers [15].

Even though these research topics vary, every analysis needs to
first extract data from software repositories. Developing such
extraction tools requires a non-trivial effort, particularly for
researchers new to this area. Kenyon was recently developed to
simplify extraction from version archives [2]. However, such tools

still require knowledge about version control systems and are thus
difficult to learn.

Even though common tools may facilitate research, it remains

difficult to reproduce existing results. First, some required
information that is not available in software repositories has to be
inferred using heuristics and through interviews of the project
participants. The latter is often essential because different projects
tend have different development processes and different change
and reporting practices. Typical examples are the recovery of
change transactions from CVS [22] and the identification of bug
fixes [16]. The algorithms used differ widely in existing research

efforts. Since choosing different parameters may lead to
completely different results, benchmarking is almost impossible.
Second, when analyzing open-source projects, researchers rely on
the availability of those repositories in the future. However, this
assumption is very optimistic in particular since many projects are
currently migrating their CVS repositories to Subversion. As a
result, the original CVS repositories may be gone in a few years.

We also want to analyze closed source projects. In the rare event
such a code history becomes publicly available, it is unlikely we
will have direct access to its SCM repository.

Other research areas address the above problems by providing a
collection of common test cases or documents. Examples are the
UCI Repository [19], the Reuters corpus [13] from text
classification research, and the PROMISE Repository [20]. In this

paper, we propose a similar solution: a collection of extracted
software repositories called the TA-RE1 corpus.

1 TA-RE is a Korean word and means “group” or “cluster”.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.
MSR ’06, May 22-23, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005…$5.00.

The TA-RE corpus consists of (1) an exchange language and (2)
extracted data of a set of selected software projects that will allow
researchers to reproduce and benchmark their experiments. The
vision of TA-RE is that every paper on mining software
repositories will share its extracted data via the TA-RE repository.

Other researchers can then reuse this information without
spending too much time on extraction.

TA-RE needs to be widely accepted and adopted; otherwise it will
have no impact. One key to acceptance is for the data sharing to
be as easy as possible. This leads to several requirements that are
discussed in Section 2. The resulting exchange language is
presented in Section 3, and Section 4 discusses alternatives to TA-
RE and Section 5 presents related work. Section 6 concludes the
paper with an outlook and future work.

2. REQUIREMENTS
The success of the TA-RE project depends on whether the
research community will adopt it. Therefore we discuss several
requirements for the corpus that would increase its appeal.

2.1 Completeness of Information
(E1) The exchange language should be able to describe all
information that is available from most standard SCM systems:

1. Transactions: the author, date, log message, and the
version of each changed file. This information enables
reconstruction of proper snapshots.

2. Changes: the files that were changed, including their
new content. This information suffices for lightweight

syntactic analysis like creating abstract syntax trees.
3. Snapshots: a consistent state of a project after each

transaction. This information is needed for static and
dynamic program analysis, clone detection, etc.

Not all SCM systems provide the above information. For instance,
for CVS the transaction information is not stored and has to be
recovered by heuristics.

(E2) Additionally the exchange language should support
information that can be inferred for most SCM systems:

1. Source code positions of classes, methods, or functions
2. Size and location of the change: which lines were added,

deleted or modified
3. Nature of a change: adaptive, corrective, or perfective

changes [16], fix-inducing changes [21]

4. Counts: number of methods, lines, changes or fixes
5. References to other artifacts, such as problem databases,

mailing lists, and newsgroups

(E3) All information provided by the exchange language should
come with a quality (or trust) annotation. A transaction from a
Subversion archive may be of low quality if it was migrated from
a CVS repository. Such annotations should describe known data
quality problems or heuristics used to calculate the relevant
attribute (see E4).

(E4) For inferred information the exchange language should
provide ways to identify the algorithm that was used. Additionally,
it should be possible to use different variants of an algorithm in
the same dataset (e.g., different algorithms to recognize bug fixes).

(E5) The exchange language should be extensible in anticipation
for new research interests.

2.2 Applicability to Research and Industry
(A1) The corpus should support closed-source projects. Such

projects might be willing to share some information without
revealing their actual source code. This means that TA-RE needs
to provide tools to anonymize the extracted data. To simplify this
process, the source code and the description of changes should be
separated in the exchange language.

2.3 Usability
(U1) The exchange language should allow any researcher to
provide new data with minimal effort.

(U2) The data from the corpus should be easy to use for
researchers in their projects. In particular, the exchange language
should be straightforward and must not be too difficult to parse,
i.e., cross-references or complicated relations should be avoided.

(U3) The corpus itself should not be restricted to any platform. It
should be usable for programs that are specific to any type of
machine or system.

(U4) The exchange language should be well documented.

3. TA-RE CORPUS
We describe the TA-RE corpus exchange language in this section.

3.1 Available Information
The TA-RE exchange language can represent the following
classes of data:

Extraction level 1: directly extractable data from SCM systems:
- Transaction information: author, transaction time, and

change log
- All file contents (deltas) with the original directory structures
- File level co-change information

Extraction level 2: data obtained by further analysis, such as
source code parsing “
- Entity (class, function, and method) level information and

content
- File addition and deletion Information
- Unique identifier for each transaction and content
- Entity level co-change information
Mined data: data extracted using heuristics:

- Recovered transactions (CVS [22])
- Transaction, file, and entity level bug-fix data [6]
- Fix-inducing data at file and entity levels [21]
- Accumulated bug count at file and entity levels
- Origin relationship between entities [7, 11]
- Reference links among transactions, contents, and entities.

3.2 Corpus Model
The TA-RE corpus data contains two flavors: transaction and
content data. The corpus data has multiple transactions, and a
transaction has multiple contents. Instead of providing all contents
of each transaction, TA-RE provides only changed (added, deleted,
and modified) contents in each transaction, since it is possible to
recover all transaction contents from only the changed contents.
The content data consist of two parts: content metadata and

original file content. The content metadata has metadata for the
original file content such as reference, change status, count, and
entity information. We separate the content metadata and original
file content for two reasons: (1) to store binary files and (2) to
make original file contents optional for closed source projects.

We use sequential numbers (starting from 1) for transaction and
content identifiers. The transaction identifiers are ordered
chronologically, hence the transaction 1 is older than the
transaction 2. We can easily determine the transaction order from
transaction identifiers. The content identifier is unique for the

same file name. For example, file ‘/src/foo.java’ will have the
same identifier over all transactions.

Since we use numeric identifiers for both transactions and
contents, we use prefixes to avoid possible confusion between
their identifiers. We use the prefix ‘t’ for transactions and the ‘c’
for contents. Content metadata is stored as a file whose name is
the combination of the content prefix and a content identifier such
as ‘c32’. Since content exchange language consists of metadata
data and original file content, we use file extensions to distinguish
them: ‘.meta’ for the metadata and ‘.con’ for the original file
content.

Each transaction has a directory whose name is the combination
of the transaction prefix and a transaction identifier. Transaction

information is stored as a file, ‘transaction’ in the corresponding
transaction directory. All contents (*.meta and *.con) of the
transaction are stored in the directory as well. For example, for
transaction 1, the ‘t1’ directory is created, and contains the
transaction information file (‘transaction’) and content files
(‘c[content-id].meta’ and ‘c[content-id].con’) of the transaction.

Figure 1. TA-RE Corpus Model

Figure 1 shows the TA-RE corpus model. Each transaction
directory (‘t[transaction-id]’) has three kinds of corpus files:

Transaction information (‘transaction’): information of
the corresponding transaction.
Content metadata (‘c[content-id].meta’): metadata of the
content
Original file content (‘c[content-id].con’): the original file
content (optional)

The transaction and content metadata exchange language are
formatted using XML. An example of transaction corpus
exchange language is shown in Figure 2. It has the TA-RE
exchange language version number, transaction id, release, author,
data, indication of transaction nature, and change logs.

<?xml version="1.0" encoding="utf-8" ?>
<T:transaction xmlns:T="TA-RE:" id="t32">
 <T:corpus-version>0.1</T:corpus-version>
 <T:author>hunkim</T:author>
 <T:date>1995.3.1.1 xxx GMT</T:date>
 <T:nature kind="release" value=”release 1.0”/>
 <T:nature kind="fix" heuristic="mockus2000"/>
 <T:nature kind="fix" heuristic="fischer2003"/>
 <T:change-log>Fixed compilation error in foo.c
 </T:change-log>
</T:transaction>

Figure 2. An example of transaction data

Figure 3 shows an exchange language example of a content
metadata file. Only changed content data (added, deleted,
modified) are present in TA-RE. The metadata have the original

file name, references, counts, and entity data. The original file
content can be fount at the ‘c[content-id].con’ file in the same

transaction directory. The detailed XML elements and DTD are
described in http://tare.dforge.cse.ucsc.edu/.

Figure 3. An example of a content metadata file. This content

fixes the same content at transaction 29. This change includes

bugs (fix-inducing changes). The bugs in this content change

are fixed in transaction 45 and transaction 99. The original

file content is stored in ‘c32.con’ in the ‘t40’ directory.

4. DISCUSSION

4.1 Why not use Traditional Extractors?
There are SCM fact extractors such as Kenyon [2] and APFEL [4].
These extractors are useful for extracting data from SCM systems
without dealing with the SCM connections or protocols directly.
Choosing different extractor options will yield different data from
the same SCM repository. For example, the number of
transactions and the number change contents of a transaction may
be different when extraction tools use different CVS sliding

windows times. Mined data in TA-RE such as bug-fix data or
origin analysis data need to be provided by the extractor using
their own heuristic options. Extracting different data from the
same SCM systems makes it difficult to reproduce existing
results.

4.2 Why not use DBMS Schemas?
Fischer et al. proposed DBMS schemas [6] to store data for
software repository mining research. If the schema is complete
and publicly available, the data in DBMS are beneficial for all
software repository mining researchers. TA-RE provides an
exchange language. It does not enforce any universal database
schema because different research might need different formats.
Use of an exchange format avoids this issue, as each researcher
can write tools to export TA-RE to their project specific DB

schema. Every researcher only has to write the import/export tools
once and can reuse them for every project she downloads from
TA-RE

<?xml version="1.0" encoding="utf-8" ?>
<T:content xmlns:T="TA-RE:" id="c32"
 filename="src/edu/ucsc/Kenyon.java">
 <T:corpus-version>0.1</T:corpus-version>
 <T:change-status value="modified"/>
 <T:reference kind="partof" level=”transaction”
 transaction-id="t40"/>
 <T:reference kind="fixes" level=”content”
 transaction-id="t29" content-id=”c32”/>
 <T:reference kind="fixed-by" level=”content”
 transaction-id="t45" content-id=”c32”/>
 <T:reference kind="fixed-by" level=”content”
 transaction-id="t99" content-id=”c32”/>
 <T:count kind="accumulated-fix" value="2"/>
 <T:count kind="accumulated-fix-inducing" value="3"/>
 <T:count kind="accumulated-change" value="10"/>
 <T:entity level=”class” id=”class-foo” name="Foo"
 start-pos="20" end-pos="2564">
 <T:entity level=”method” id=” foo” name="foo”
 return-type=”void” parameters=”int I, char *var"
 start-pos="32" end-pos="95">
 <T:reference kind="fixes" level=”entity”>
 tansaction-id="t23" content-id=”c32” entity-id=”foo”/>
 </T:entity>
 <T:entity level=”method” id=bar” name="bar”
 return-type=”char” parameters=”int i, char c"
 start-pos="103" end-pos="195">
 </T:entity>
 ...
 </T:entity>
</T:content>

4.3 Why not use Transaction-Aware SCM?
Transaction-aware SCM systems such as Subversion provide

change based revision numbers (no need to recover transactions),
log renaming events, and support metadata-setting features. Using
SCM systems requires an extraction process, and it has the same
limitations of using extractors (Section 4.1). TA-RE provides
downloadable and ready-to-use data including all mined data such
as bug-fix and big-inducing change information, which are not
provided by SCM systems such as Subversion.

4.4 Closed Source Project Support
The TA-RE corpus exchange language can be used for closed
source projects. First author information in transaction data files

can be replaced with numeric ids to hide real author ids. The file
names in the content metadata file can be omitted or replaced with
obfuscated names. The original file contents stored in separate
files (c[content-id].con) can be omitted. In addition, all entity
information can be omitted.

5. RELATED WORK
The PROMISE repository provides various data sets for predictive
model research in software engineering [20]. Data sets in the
PROMISE repository mostly consist of features and classes or
values. Using the features, researchers develop prediction models
to predict classes (classification) or values (regression).
PROMISE data sets are limited for general software repository
mining research. Since they provide pre-defined features such
LOC, count of operators, and count of blank lines, it is hard to

extract new features that are not defined in the data set. The data
sets are focused on developing predictive models. The non-
predictive model research such as origin analysis, code clone
genealogy, or co-change analysis cannot be performed using the
data sets in PROMISE repository.

The UCI Repository of machine learning [19] or Reuters Corpus
[13] are de facto standard benchmarking data set for text
classification research. The data stets enables researchers to
compare their classification results with others. TA-RE is inspired
from them, but their data sets are designed for the text
classification.

6. CONCLUSION AND FUTURE WORK
It is no secret that the majority of time spent during software
repository mining is focused on extracting data. Additionally, the
“magic” that is involved in the extracting phase makes
comparison of results and benchmarking impossible. The TA-RE

project addresses this issue by specifying a common exchange
language that will be used to share project data. Using a common
exchange language will enable reuse of data as much as possible.
The next steps of this project are the following:

Finalize exchange language. This paper serves as a proposal for
a common exchange language. Thus, designing a common
language will heavily benefit from discussions and participation
of other researchers. We hope that the discussions at the MSR

workshop will give us enough feedback to finalize the exchange
language.

Provide initial dataset. Once the exchange language is finalized,
the participants of the TA-RE project will create an initial dataset
for several selected projects.

Include other data sources. The initial exchange language will
describe data only from version archives. For the next release, we

plan to include additional data sources such as problem databases,
mailing lists, or newsgroups.

For more information visit: http://tare.dforge.cse.ucsc.edu/
or join the discussion: http://groups.google.com/group/TaRe

7. REFERENCES
[1] J. Bevan and E. J. Whitehead, Jr., "Identification of Software Instabilities,"

Proc. of 2003 Working Conference on Reverse Engineering (WCRE 2003),
Victoria, Canada, 2003.

[2] J. Bevan, E. J. Whitehead, Jr., S. Kim, and M. Godfrey, "Facilitating
Software Evolution with Kenyon," Proc. of the 2005 European Software

Engineering Conference and 2005 Foundations of Software Engineering
(ESEC/FSE 2005), Lisbon, Portugal, pp. 177-186, 2005.

[3] D. Beyer and A. Noack, "Clustering Software Artifacts Based on Frequent
Common Changes," Proc. of the 13th IEEE International Workshop on

Program Comprehension (IWPC 2005), St. Louis, Missouri, USA, pp. 259-
268, 2005.

[4] V. Dallmeier, P. Weißgerber, and T. Zimmermann, "APFEL: A
Preprocessing Framework For Eclipse," 2005, http://www.st.cs.uni-

sb.de/softevo/apfel/.

[5] S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron, and A. Mockus, "Does
Code Decay? Assessing the Evidence from Change Management Data,"

IEEE Transactions on Software Engineering, vol. 27, pp. 1-12., 2001.
[6] M. Fischer, M. Pinzger, and H. Gall, "Populating a Release History Database

from Version Control and Bug Tracking Systems," Proc. of 2003 Int'l
Conference on Software Maintenance (ICSM'03), pp. 23-32, 2003.

[7] M. W. Godfrey and L. Zou, "Using Origin Analysis to Detect Merging and
Splitting of Source Code Entities," IEEE Trans. on Software Engineering,

vol. 31, pp. 166- 181, 2005.
[8] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy, "Predicting Fault

Incidence Using Software Change History," IEEE Transactions on Software
Engineering, vol. 26, pp. 653-661, 2000.

[9] T. L. Graves and A. Mockus, "Inferring Change Effort from Configuration

Management Data," Proc. of In Metrics 98: Fifth International Symposium
on Software Metrics, Bethesda, Maryland, pp. 267-273, 1998.

[10] M. Kim, V. Sazawal, D. Notkin, and G. Murphy, "An Empirical Study of
Code Clone Genealogies," Proc. of the 2005 European Software Engineering

Conference and 2005 Foundations of Software Engineering (ESEC/FSE
2005), Lisbon, Portugal, pp. 187-196, 2005.

[11] S. Kim, K. Pan, and E. J. Whitehead, Jr., "When Functions Change Their
Names: Automatic Detection of Origin Relationships," Proc. of 12th

Working Conference on Reverse Engineering (WCRE 2005), Pennsylvania,
USA, 2005.

[12] S. Kim, E. J. Whitehead, Jr., and J. Bevan, "Analysis of Signature Change
Patterns," Proc. of Int'l Workshop on Mining Software Repositories (MSR

2005), Saint Louis, Missouri, USA, pp. 64-68, 2005.

[13] D. Lewis, Y. Yang, T. Rose, and F. Li, "RCV1: A New Benchmark
Collection for Text Categorization Research " Journal of Machine Learning

Research, vol. 5, pp. 361-397, 2004.
[14] A. Mockus, R. F. Fielding, and J. Herbsleb, "A Case Study of Open Source

Development: The Apache Server," Proc. of 22nd Int'l Conference on
Software Engineering (ICSE 2000), Limerick, Ireland, pp. 263-272 2000.

[15] A. Mockus and J. Herbsleb, "Expertise Browser: A Quantitative Approach to
Identifying Expertise," Proc. of 24rd Int'l Conference on Software

Engineering (ICSE 2002), Orlando, Florida, pp. 503-512, 2002.
[16] A. Mockus and L. G. Votta, "Identifying Reasons for Software Changes

Using Historic Databases," Proc. of International Conference on Software
Maintenance (ICSM 2000), San Jose, California, USA, pp. 120-130, 2000.

[17] A. Mockus and D. M. Weiss, "Globalization by Chunking: a Quantitative

Approach," IEEE Software, vol. 18, pp. 30-37, 2001.
[18] A. Mockus, P. Zhang, and P. Li, "Drivers for Customer Perceived Software

Quality," Proc. of 2005 Int'l Conference on Software Engineering (ICSE
2005), Saint Louis, Missouri, USA, 2005.

[19] D. J. Newman, S. Hettich, C. L. Blake, and C. J. Merz, "UCI Repository of
machine learning databases," 1988,

http://www.ics.uci.edu/~mlearn/MLRepository.html.
[20] J. Sayyad Shirabad and T. J. Menzies, "The PROMISE Repository of

Software Engineering Databases," 2005,
http://promise.site.uottawa.ca/SERepository.

[21] J. Sliwerski, T. Zimmermann, and A. Zeller, "When Do Changes Induce
Fixes?" Proc. of Int'l Workshop on Mining Software Repositories (MSR

2005), Saint Louis, Missouri, USA, pp. 24-28, 2005.

[22] T. Zimmermann and P. Weißgerber, "Preprocessing CVS Data for Fine-
Grained Analysis," Proc. of Int'l Workshop on Mining Software Repositories

(MSR 2004), Edinburgh, Scotland, pp. 2-6, 2004.
[23] T. Zimmermann, P. Weißgerber, S. Diehl, and A. Zeller, "Mining Version

Histories to Guide Software Changes," IEEE Trans. Software Engineering,
vol. 31, pp. 429-445, 2005.

