
Supporting the Investigation and Planning of Pragmatic Reuse Tasks

Reid Holmes and Robert J. Walker

Laboratory for Software Modification Research

Department of Computer Science

University of Calgary

Calgary, Alberta, Canada

rtholmes,rwalker@cpsc.ucalgary.ca

Abstract

Software reuse has long been promoted as a means to

increase developer productivity; however, reusing source

code is difficult in practice and tends to be performed in an

ad hoc manner. This is problematic because poor decisions

can be made either to attempt an unwise, overly complex

reuse task, or to avoid a reuse task that would have saved

time and effort. This paper describes a lightweight tool that

supports the investigation and planning of pragmatic reuse

tasks. The tool helps developers to identify the dependen-

cies from the source code they wish to reuse, and to de-

cide how to deal with those dependencies. Questions about

pragmatic reuse are evaluated through a survey of indus-

trial developers. The tool is evaluated through the planning

and execution of reuse tasks by industrial developers.

1. Introduction

As developers write code, they encounter situations where

the feature they are developing is in some way familiar to

them; either they have developed the same feature before,

or they know of some existing software that has it. These

situations entail pragmatic software reuse1, an effective way

to reuse source code when applied by experienced industrial

developers [9, p. 139]. “In practice, the overall effectiveness

of [pragmatic software reuse] is severely restricted by its in-

formality” [9, p. 140]. Before a feature can be reused in a

pragmatic manner, the extent of the feature and the scope

of its dependencies upon its system must be understood [6].

Without this information, a developer cannot make an in-

formed decision about whether or not to proceed with the

reuse task. To collect this information, the developer nav-

igates through the system’s source files, a process that re-

quires them to manually locate and evaluate a large collec-

tion of facts about the dependencies in the source code, and

1We contrast pragmatic reuse with traditional, anticipated reuse ap-

proaches (e.g., frameworks and product lines).

to remember the details of each small-scale decision they

have made.

To decide reasonably about whether and how to proceed

with a pragmatic reuse task, the developer must make a se-

ries of smaller-scale decisions about the functionality they

wish to reuse. In which classes or methods is it imple-

mented? What dependencies do those classes and methods

have? What should be done about those dependencies?

We have developed a lightweight tool, called Gilligan,

that supports the systematic investigation of these questions

and records the decisions made by the developer. In this

way, the developer can devise a well-considered plan and

address their final, key question: Is the effort needed to en-

act this plan worthwhile? By reducing the informality of

pragmatic reuse tasks we hypothesize that our tool can help

developers to effectively plan complex reuse tasks.

To evaluate our hypothesis, we performed two separate

evaluation steps. First, we conducted a survey of 12 indus-

trial developers working at different organizations to inves-

tigate the premise that industrial developers actually per-

form pragmatic reuse tasks. The survey also investigated

how developers think about reusing source code and what

other issues arise during the pragmatic reuse process. We

then gave Gilligan to four industrial developers and asked

them to use the tool to plan reuse tasks they encountered in

their workplace. These developers applied the tool to reuse

tasks of various sizes, carried the tasks to completion, and

provided us with comments about Gilligan’s effectiveness.

The remainder of this paper is structured as follows. Sec-

tion 2 provides a sample scenario to illustrate the nature of

the reuse tasks we aim to help developers perform. We de-

scribe our tool in Section 3. Related work is described in

Section 4. Section 5 details how we validated our approach

while Section 6 discusses our results, outstanding issues,

and future work.

This paper contributes a model for investigating and

planning pragmatic reuse tasks and a tool for interacting

with, and reasoning about this model.

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00  © 2007



2. Scenario

Consider a pragmatic reuse task involving a tool (called

UltiGPX) for visualizing Global Positioning System (GPS)

data collected by hikers during an excursion. UltiGPX pro-

vides a simple visualization of the latitude/longitude coor-

dinates of the hikers’ route (see Figure 1, upper right). No

display of the changes in elevation (an “elevation profile”)

is provided by UltiGPX, however. The developer considers

such information to be useful to his intended users. The de-

veloper has encountered a visualization within another sys-

tem, the Azureus BitTorrent client, that seems appropriate

for his intent.

Azureus is an open source Java BitTorrent client that

downloads files from a peer-to-peer network. Azureus is

a complex program that provides numerous visual widgets

to help display the download progress of the files that users

are acquiring. Of interest here, the tool provides a line graph

that visualizes network bandwidth.

The UltiGPX developer realizes that this graph is visu-

ally similar to what he requires. The panel at the bottom of

Figure 1 shows the Azureus network visualization widget

superimposed on UltiGPX. However, the goal of Azureus is

to support the downloading of files, not to provide reusable

APIs for its visual widgets. Visually, the Azureus feature

looks exactly right; however, it seems unlikely that a feature

providing real-time network visualization would be appro-

priate to use within a static GPS-data viewing application.

The developer wants more than a high-level intu-

ition whether to pursue this task or not; he wants

to know how dependent the graph visualization feature

is on the rest of Azureus. In order to do this, he

investigates the source code manually within an inte-

grated development environment (IDE). First, he searches

for some part of Azureus involved in network visu-

alization; this quickly leads him to the org.gudy.-

azureus2.ui.swt.components.graphics package, in

which SpeedGraphic seems like the most relevant class.

The developer starts by scrolling through the 322-line class,

trying to identify which lines are useful to reuse and which

are not.

The developer starts with the drawChart(..) method,

as this sounds most relevant to the task he is consider-

ing. To investigate the implications of each dependency

in this 82-line method, the developer must examine each

statement to determine which types are referenced. He

then needs to look at each type to determine its depen-

dencies and to decide whether or not to reuse those types

in addition to SpeedGraphic. In the drawChart(..)

method, 14 different types are referenced. After navigat-

ing through 14 different types, he determines that 7 of the

types are common to both UltiGPX and Azureus (they both

use the SWT framework) which means these dependencies

are already satisfied within UltiGPX. However, for the 7

Figure 1. UltiGPX (profile superimposed).

remaining types, the developer must look more critically

to determine what to do about their dependencies. Two

calls are made to the AEMonitor class, both enter() and

exit(). After looking at the AEMonitor class, the de-

veloper realizes that it provides synchronization functional-

ity within the core of Azureus; this is not necessary within

UltiGPX and the developer decides not to reuse the type

and to eliminate all references to it within the reused code.

Similar situations arise for COConfigurationManager

and ParamaterListener which are involved with the

Azureus preferences architecture. The developer does de-

cide to maintain the dependencies on Scale as well as its

super types ScaledGraphic and BackgroundGraphic.

The developer also notes that the Colors class in Azureus

closely corresponds to a class within UltiGPX and decides

that while he will not reuse Colors, he will remap refer-

ences to it to his own class.

The developer has now investigated 15 different source

files and made decisions about the importance of each

of them (including specific decisions about portions of

SpeedGraphic). While he cannot enumerate the decisions

he has made, he has a sense that the task should be manage-

able and begins to actually carry out the task. He now copies

those classes that he has deemed relevant from Azureus into

UltiGPX. Next he manages the dependencies based on the

decisions he has made, functionality that was rejected is ei-

ther commented out or stubbed out. References to Colors

are updated to the appropriate UltiGPX class. While carry-

ing out the task seems simple, it is difficult for the developer

to remember all of the decisions he made while navigating

between these various source files. Indeed, when he started

to do the task, he had to revisit several files to remember

what decisions he had made. Additionally, the developer

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00  © 2007



never actually knows if he is “done” investigating the code;

he may have missed an important dependency when he was

navigating the various files and may not find out about it

until he actually attempts the reuse task.

Reusing the widget from Azureus involved identifying,

delineating, and extracting the widget from Azureus and in-

tegrating it into UltiGPX. This was not trivial due to the

size and complexity of the Azureus project and the fact that

the original developers made no effort to make their wid-

gets reusable. The task was complicated by the fact that

several different Azureus classes were involved in the final

feature, making it difficult to create a clear mental model of

the reuse task. These problems would be overcome if the

developer could more easily determine, analyze, and record

their decisions about the existence, and extent, of the de-

pendencies within the features he wanted to reuse.

3. Gilligan: Supporting reuse

To overcome the problems that arise from situations like

our sample scenario, we have developed Gilligan, a plug-in

for the Eclipse integrated development environment (IDE)2,

that supports pragmatic reuse tasks. Gilligan helps devel-

opers to create a reuse plan via navigating and annotating

the structural dependencies of source code fragments. This

reuse plan describes how difficult it would be to extract the

feature from its existing system; it also provides a sense of

how difficult its integration into his system might be.

By helping developers record their decisions while navi-

gating source code, Gilligan systematizes the feature inves-

tigation process; Figure 2 demonstrates the process our tool

supports. The developer first notices the task he is undertak-

ing is similar to something he has either done, or encoun-

tered, in the past. He then locates the project containing

the feature he remembers, and wants to reuse, and starts the

Gilligan tool. He then selects a starting point within the

project to begin investigating. The developer is then pre-

sented with a series of views through which he can navigate

the structural dependencies within the source code. While

navigating these dependencies, he annotates his decisions

about the relevance of the dependencies of the feature he is

trying to reuse, converging on a reuse plan. If the task seems

infeasible, the developer can decide not to pursue the reuse

plan any further; if the plan is reasonable the developer can

use it to guide his actions as he reuses the feature.

This section describes how to begin a pragmatic reuse

investigation (Section 3.1), how to investigate (Section 3.2)

and triage (Section 3.3) the structural dependencies in the

code, and how to evaluate the reuse plan (Section 3.4). Sec-

tion 3.5 provides a description of how Gilligan would be

applied to the scenario from Section 2. Figure 3 shows a

screenshot of the complete Gilligan tool; this figure will be

referred to throughout this section.

2http://eclipse.org

GILLIGAN

Reimplement feature Perform reuse plan

Evaluate reuse plan

Select starting point

Find project

investigation
Abort triage dependencies

Investigate feature/

Figure 2. Pragmatic reuse process.

3.1. Beginning a Pragmatic Reuse Task

A developer starts Gilligan by selecting the project contain-

ing the feature he wants to reuse (e.g., Azureus) and the

project he wants to reuse the feature within (e.g., UltiGPX).

Gilligan statically analyzes the source code from these

projects and extracts their structural dependencies. Both

projects are identified in advance so the classes common

to both can be identified. The developer is then presented

with a searchable tree of the source system from which he

selects a starting point for the reuse task: a package, class,

or method that he thinks is involved in the feature he wants

to reuse. The developer is then presented with a visual view

populated with this starting node (as in Figure 3, top right)

that he can begin to investigate.

3.2. Navigating Structural Dependencies

Using the visual view, a developer can investigate the struc-

tural dependencies within a feature. This view provides an

abstraction of the structural dependencies within the fea-

ture using a graph representation; nodes represent packages,

classes, methods, and fields; edges between the nodes rep-

resent structural relationships (inherited-from, calls, refer-

ences, declared-by, contained-by). By providing an abstrac-

tion of the reuse task, the developer can visually see which

nodes he has visited in order to systematically investigate

those he has not. It also helps him to focus on the actual de-

pendencies rather than expending effort navigating source

files to identify those dependencies manually.

The developer can double-click on a node to view its

structural dependencies. The node’s structural dependen-

cies are then shown on the graph: edges are either added to

other, already visible nodes, or new nodes may appear on

the graph with smoothly animated transitions (to minimize

distraction and maintain context). When a node is selected,

it becomes highlighted, as do its edges and those nodes that

are structurally related to it. This allows the developer to

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00  © 2007



Figure 3. Screenshot of the Gilligan Tool.

quickly see those nodes upon which a particular node is de-

pendent and the edges representing those relationships.

To help manage the complexity of the graph, nodes can

be collapsed into their parents. This collapse functional-

ity simplifies the graph by eliding details the developer is

no longer interested in seeing (such as collapsing methods

into their parent class, or a class into its package). In Fig-

ure 4, the developer has collapsed many nodes into the swt

package. By looking at the tree view (Figure 3, left) the de-

veloper can see that this collapsed node represents 21 other

nodes (2 packages, 5 classes, and 12 methods).

The developer can also request the source code for any

node or edge in the graph (except for package nodes and

contains edges). Gilligan provides the most specific amount

of information possible for any source request (e.g., source

requests for method nodes display only the code for that

method). If the developer requests the source for an edge,

they are presented with an annotated source view. For ex-

ample, for a calls edge, the source for the method in which

the call is made is highlighted with the specific statements

pertaining to that call. By choosing to see the source for

particular edges the developer can quickly determine which

portions of the source are involved with any given structural

relationship; this helps him to focus on the relationship he

is interested in without getting distracted by other structural

relationships (some of which he may have already triaged).

3.3. Triaging Structural Dependencies
While the developer is navigating the structural dependen-

cies, he is making decisions about each node’s applicability

to his reuse task. Gilligan provides a lightweight way for

the developer to record his decisions about these nodes; he

can simply click on the colour tool that corresponds to his

decision for that node. The decisions he makes are recorded

by the colour of the node; these colours allow the developer

to quickly get a sense for the reuse task by just glancing at

the visual view. Nodes that have yet to be decided upon are

shown in plain white. In addition to the graphical represen-

tation of the feature, Gilligan also provides a summary view

(not shown) that enumerates the number of nodes he has in-

vestigated and the decisions he has made to help him better

gauge the scope of his task. The developer can also anno-

tate any node with arbitrary text that records any thoughts or

special instructions. These text annotations are entered and

viewed in the properties view (Figure 3, bottom left) for the

node. Nodes can be annotated with colour in four ways:

Accept. By accepting a dependency, the developer is ac-

knowledging that they wish to reuse the source code the

node corresponds to. This means that the developer intends

to move the source code from its current context into his

own project. This decision is indicated by the colour green

in our visualization.

Reject. Unwanted dependencies are those that provide

functionality that the developer does not want to be reused.

In this case, the developer knows that he does not want these

references in his system and will not reuse them (or anal-

ogous functionality) with the accepted nodes. When the

reuse task is being performed, references from accepted to

rejected nodes must be dealt with by the developer (they are

frequently just commented out). This decision is indicated

by the colour red in our visualization.

Remap. This decision means that, while the functional-

ity is needed conceptually, the developer wishes to re-target

it to an existing piece of code in their own system that can

provide the required service. This decision is indicated by

the colour blue in our visualization.

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00  © 2007



Already Provided. Our tool automatically colours those

nodes that are common between both the source system and

the target system. For example, for any Java project, refer-

ences to java.* packages are not dependencies that need

to be migrated. Such nodes are indicated by the colour yel-

low in our visualization.

These annotations are of key importance to the reuse

plan. By promoting the developer’s decisions to the fore-

front with bold colours, the developer can, at a glance, get

a sense for the number of dependencies in the graph to be

handled through each kind of treatment and thus the scope

of the challenge facing them, should they choose to pursue

the reuse task.

3.4. Evaluating the Reuse Plan
Gilligan helps the developer focus on those dependencies

that matter, recording his decisions about those dependen-

cies to minimize the re-viewing of code fragments. Using

the graphical view, it is visually evident which nodes need

to be further addressed before the investigation is complete.

While this systematic process helps the developer to see

what decisions he has made, it does not impose any par-

ticular order in which those decisions must be made; the

developer can iterate on the graph in any way that is appro-

priate to his task.

At any point during the investigation of the feature, the

developer can evaluate the state of his reuse plan. The de-

veloper may notice early on that there are far too many re-

jected and remapped dependencies to easily reuse the fea-

ture. If the developer completes the reuse plan, he can

use its structural description and annotations to make an in-

formed decision about reusing the feature.

3.5. Application to the sample scenario
To ensure that Gilligan can successfully plan a reuse task

we applied it to the scenario described in Section 2. We

started by selecting Azureus3 as the origin of the feature

we wanted to reuse and UltiGPX as the project where the

code was to be reused. After textually searching the source

code, we found the SpeedGraphic class, which seemed

like a reasonable place to start the investigation (the text

references both network speed and graphics). Gilligan’s

initial visual state is shown in Figure 3. We navigated the

SpeedGraphic class and its dependencies to identify those

portions of the class that were relevant to the graph draw-

ing feature we wanted to reuse while identifying any other

Azureus dependencies we did not want to reuse.

Opening the dependencies for the drawChart(..)

method, we found 21 structural dependencies; however,

14 of these (from 4 classes) had been automatically

coloured yellow by Gilligan—both Azureus and UltiGPX

use the SWT framework. To reduce the clutter on the

3http://azureus.sf.net (v2.4.0.2)

screen, we collapsed all of the org.eclipse.swt.* de-

pendencies into a single package. The remaining 7 de-

pendencies are from four different classes within Azureus.

Double-clicking on the call edge to AEMonitor.enter(),

we were presented with drawChart(..)’s source code

highlighted with the references to AEMonitor. From

this annotated source view we could see that AEMonitor

was concerned with locking within the core of Azureus.

This was not a feature we cared to reuse so we collapsed

AEMonitor’s methods into itself and marked it as rejected.

Another 15 minutes of investigation resulted in the reuse

plan shown in Figure 4.

Using Figure 4, we could see that we were going to reuse

5 complete classes and 1 partial class. We were going to

have to manage 4 dependencies on source code (involving

the Azureus network locks and configuration) that were re-

jected from the reuse task. Five classes in the swt pack-

age were common between Azureus and UltiGPX; no ac-

tion was required of us to satisfy the dependencies on these

classes. From this sketch, we can see that it should not

be too difficult to extract this feature and integrate it with

UltiGPX. Performing the extraction and integration—and

following the plan—took less than an hour and resulted in

708 lines of reused code; in this process we had to comment

out 2 methods and 5 other lines of code to conform to the

decisions we made about rejected dependencies. The reuse

plan helped in accomplishing the task, as whenever a com-

pile error was encountered in the reused code fragments, we

could check the reuse plan to see how we should manage it;

this helped direct our integration plans.

It is important to note that we could not have simply

called graphics functionality in Azureus as it did not pro-

vide an API for this feature. This is not unreasonable as its

developers could not have foreseen reusing this functional-

ity within a GPS application. While we could have written

this code from scratch, by reusing the functionality we were

able to leverage the feature they had created—and tested—

over several versions of their own product. The reuse plan

provided by Gilligan helped to show what (and how many)

dependencies would be involved in the reuse task, allowing

us to make an informed decision about its feasibility.

4. Related work

Reuse has long been investigated in the literature as a so-

lution for many problems plaguing software engineers [11].

However, reuse research has focused primarily on the cre-

ation of reusable software components and libraries, and us-

ing these to create software end-products. While pragmatic

reuse tasks (also called code scavenging) have been shown

to be effective [9], little work has been done to follow-up on

these findings.

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00  © 2007



Figure 4. Azureus graphics feature reuse plan. (Screenshot is annotated for greyscale reproduction.)

4.1. Past approaches
While many approaches have advocated refactoring code

into reusable APIs, this is not always possible. The orig-

inal code may no longer be maintained or its maintainers

may not be willing to refactor the code to meet the new

requirements. Indeed it has been shown that reused code

must be frequently modified in some way to work within

its new context [16]. Frakes and Kang note that dedicated

reuse strategies within companies require a large up-front

cost that must be justified in terms of business goals. They

also found that most software systems are variants on pre-

existing systems [5]. As new systems are extensions of the

old, it is natural that pragmatic reuse will take place in sit-

uations where the new requirements do not align perfectly

with the old.

Our tool addresses two issues identified by Frakes [4]

through an industrial reuse questionnaire. First, he iden-

tified that CASE tools may not be effective at promoting

reuse. By extending a popular IDE with features specific to

pragmatic reuse tasks, we hope this can improve the envi-

ronment’s ability to help developers engage in these tasks.

Second, he identified that the lack of process hampers reuse

efforts. Our tool provides developers with a unified ap-

proach for investigating reuse tasks; this approach can help

reduce the ad hoc nature of source traversal inherent in how

developers currently perform unanticipated reuse tasks.

4.2. Developer practices
Parsons and Saunders [15] determined that developers were

able to perform tasks by anchoring their understanding to

existing code and adjusting the code to meet their needs.

While this evaluation was only tested for one small case

(albeit with many developers), it is an encouraging endorse-

ment for so-called “white box” reuse. By providing devel-

opers with a concrete reuse plan, we aim to help developers

anchor the reuse task so they can better understand how the

code needs to be adjusted to meet their needs.

Selby [16] analyzed 25 projects at NASA and discovered

that 32% of the modules within those projects were reused

from prior projects. Of these reused modules, 47% required

modification from their original form; we take this as fur-

ther motivation for our approach which aims to help devel-

opers plan these changes.

Reuse in the manner we are advocating can be seen as

creating code clones. While these clones have in the past

been perceived negatively, recent research has found that

clones are frequently short lived, and when they are long-

lived they are not easily refactored [8]. Short-lived clones

are those that are reused and then modified to meet the new

system’s requirements. Non-refactorable clones indicate

that the original API could not be refactored to meet the re-

quirements of both the old and new usage. These cases are

no worse than implementing the features from scratch but

the developers still get the added benefit of having reused

code (reduced effort and tested code). One problem with

reusing code in this manner, however, is that when bugs are

fixed in the original source they are not automatically prop-

agated to the reused versions; support for such a process is

an active research topic [7].

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00  © 2007



4.3. Feature location

Feature location approaches help developers locate those

portions of the source code relevant to a particular feature.

Chen [2] investigated feature location using a graph-based

technique. The FEAT [14] tool helps developers create a

concern description for a scattered software feature. Our ap-

proach extends this model by providing annotations for de-

veloper decisions and specifically targeting it at pragmatic

reuse tasks. Recent work by Robillard [13] suggests that

Gilligan could be further enhanced by automatically rec-

ommending nodes of interest to the developer. Techniques

for locating feature entry points within applications that use

GUI frameworks have also been investigated [12].

Other systems have looked at creating reusable compo-

nents from existing code. CARE [1] takes a metrics-based

approach to identifying reusable components while Lanu-

bile and Vissagio used program slicing to identify these

components [10]. While these tools can identify many com-

ponents that are reusable, our goal is to help the developer

prepare a reuse plan for the specific feature they wish to

reuse. Coelho and Murphy have also investigated graphi-

cal approaches for visualizing the structural dependencies

of crosscutting code in a scalable way [3].

Our research focus is different from these previous ap-

proaches. We are interested in how industrial developers

undertake pragmatic reuse tasks. Instead of recommending

these developers create and use reusable components, we

are interested in working within the framework of their cur-

rent practices.

5. Evaluation

Our evaluation consists of two parts. First, we conducted a

survey with industrial developers into their reuse practices.

Second, we gave Gilligan to industrial developers and asked

them to use it to plan their reuse tasks. These evaluations

were undertaken to answer two key questions. Do develop-

ers perform pragmatic reuse tasks? Can Gilligan help de-

velopers plan industrial reuse tasks?

5.1. Reuse in industry

This work depends on one important premise: developers

engage in pragmatic reuse tasks. In order to investigate

this claim we conducted a survey with 12 developers from

6 companies. The subjects had between two and twelve

years of experience working in industry. Each of the com-

panies produce software targeted at different domains. Our

respondents were all employed in full-time active develop-

ment positions. This survey investigated how developers

think about, and perform, software reuse tasks through a set

of statements (which subjects were asked to agree/disagree

with on a seven-segment Likert scale) and a set of open-

ended questions. The key statements and responses are

summarized in Table 1. From these surveys we have identi-

fied three main themes:

Developers are performing pragmatic reuse tasks. De-

velopers agreed that they had reused source code (Ta-

ble 1, #1) and that these reuse tasks frequently encompassed

whole classes (Table 1, #2). However, they were split when

asked about reusing whole features (Table 1, #3). In the

long answer section the developers indicated that their reuse

tasks usually ranged from 4 lines to 50 (several methods or

a portion of a class), but sometimes included whole classes

(up to 1000 lines). Their comments also indicated that reuse

of this nature frequently occurred while prototyping new

features, or in the early stages of a project when function-

ality was incorporated from existing products. Develop-

ers generally agreed they would rather reuse a feature than

reimplement it themselves (Table 1, #4).

Developers reuse code to save time and improve quality.

The most popular reason for reusing source code was so

the developers could save themselves time (Table 1, #5).

This was backed up repeatedly in the written questions with

comments such as “reusing code is quicker and easier than

[starting from scratch]”. The next major reason for these

reuse activities was to increase the reliability of their code

(Table 1, #6). The developers wanted to “leverage existing

testing”. Code was more desirable if tests existed for it as

they increased the developers’ trust in the quality of that

code.

Developers want to understand a feature’s dependencies.

Reasoning about source code, especially code someone else

has written, can be very difficult. Our subjects agreed (Ta-

ble 1, #7) that keeping track of the facts relevant to a reuse

task while navigating the source code was difficult. Specifi-

cally, identifying the dependencies of the code they wanted

to reuse on its original system was of importance (Table 1,

#8).

While attempting to understand a particular piece of

code, many developers sketched out its structure visually on

paper. Several others wrote notes either on paper or as anno-

tations within the code itself. Other developers still would

copy the code out of its original context and into their en-

vironment to see how the code “bleeds” (compilation errors

are shown in red in their IDE) in order to get a feel for how

compatible the code fragment might be with their system.

Developers have access to large amounts of code. Our

respondents strongly agreed that their organizations had

large repositories of code available to reuse from (Table 1,

#9). Additionally, they reported that portions of the features

they developed were available in other systems for which

they had access to the source code (Table 1, #10).

5.2. Industrial evaluation

To ensure that developers could plan, and perform, real

reuse tasks using Gilligan, we gave the tool to four indus-

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00  © 2007



Strongly Somewhat Somewhat Strongly
# Question

Agree
Agree

Agree
Neutral

Disagree
Disagree

Disagree

1 I have reused source code 10 2 0 0 0 0 0

2 I have reused whole classes 7 3 2 0 0 0 0

3 I have reused whole features 4 0 1 1 4 2 0

4 I would rather reimplement a

feature than reuse an existing one
0 0 2 1 3 4 2

5 I reuse code to save time 6 4 2 0 0 0 0

6 I reuse code to increase reliability 4 7 0 1 0 0 0

Keeping track of the relevant details

7 of a piece of source code while 2 6 2 1 0 1 0

navigating its text can be difficult

Understanding what dependencies a

feature has on its context is important
8

for me to determine whether I
7 5 0 0 0 0 0

should reuse it

My organization has a large amount of
9

code available to be reused
5 1 4 1 1 0 0

Portions of features I am developing
10

already exist
1 4 5 0 1 1 0

Table 1. Responses from the industrial reuse questionnaire.

trial developers working in different companies. We identi-

fied these four developers during our survey as they all work

with the the Java programming language within the Eclipse

IDE, the same environment Gilligan currently supports. In

addition to verifying that the developers could plan reuse

tasks, we wanted to know if the developers felt they could

tackle larger reuse tasks with the tool than they would nor-

mally attempt. The four developers applied our tool to their

reuse tasks and filled in a short questionnaire about each

task they tried. Gilligan was also instrumented to record the

developers’ navigation and decision actions as they were in-

vestigating their reuse task.

5.2.1 Case study 1

The first developer undertook two tasks: he extracted code

from the open-source SWT framework for parsing both

BMP and PNG image files. He wanted to reuse these pieces

of code because they involved complex binary file format

I/O that he did not want to have to write himself and he was

unable to reuse all of SWT (which comprises 68 kloc spread

across 458 classes4).

BMP extraction. The developer started Gilligan with the

WinBMPFileFormat class as the initial node. Using the

graphical view, the developer was able to quickly reject

several methods in this class as they pertained to the writ-

ing of these files, which he was not interested in. Fur-

ther exploration led him towards LEDataInputStream

and ImageData. He reused the former in its entirety, and

just the data structure from the latter. In the end, he reused

4http://www.eclipse.org/swt/

497 lines of code and had no latent dependencies on SWT.

Of the 14,081 possible nodes in SWT, the developer only

visited 60. His final view of the feature had 27 visible

nodes. Of the nodes he visited, he accepted 38, rejected 16,

remapped 2, and 4 were already provided.

The developer then demonstrated how he would

have undertaken the task manually. First, he copied

WinBMPFileFormat into his new project. He then went

down the list of compilation problems (there were many)

and dealt with them individually. Any dependency he

could not easily manage he left until later. At the end he

went through the remaining difficult dependencies and also

copied LEDataInputStream and the ImageData data

structure into his workspace. Once the compilation errors

were resolved he was done. His methodology was similar

to what our tool provides: he used the compilation errors

as markers for structural dependencies that were not satis-

fied within his target environment. Unfortunately, doing this

manually forces the developer to undertake the task without

having first determined that it is feasible.

PNG extraction. The developer began his investigation

with the PNGFileFormat class. He was interested in im-

mediately noting all of the class-level dependencies of this

471-line class. Unfortunately, the tool is currently designed

to support a bottom-up investigation style and he had to

open PNGFileFormat’s methods to see these dependen-

cies. After opening these dependencies he had 92 nodes

on the screen and had discovered that there were at least

20 classes of interest to him for this task. During this

investigation the developer was interrupted multiple times

by co-worker questions. After these interruptions he was

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00  © 2007



able to go back to the visual plan to remember where he

was; because his decisions were noted on the plan, these

distractions did not cause him to go back and re-evaluate

any nodes. With 92 nodes visible, the developer indicated

he would appreciate being able to filter the nodes based

on their type (for instance, only show class nodes) in or-

der to make it easier to understand. In the end, the devel-

oper marked 20 classes as accepted, 2 as rejected and 1 as

remapped.

When the developer actually did this reuse task he reused

23 classes (comprising ∼3 kloc). During this reuse task
he decided to change his mind about three decisions: he

accepted one previously-rejected class, he changed the

remapped class to accepted, and accepted one class he over-

looked during the investigation. These changes were made

primarily due to the complexity of the task he was pursuing.

In the post-task questionnaire the developer stated, “Af-

ter trying to reuse the SWT BMP decoder, I wasn’t con-

vinced additional tooling was necessary (300 lines reuse,

fairly isolated to one to three classes). After trying to reuse

the SWT PNG decoder, I changed my mind.” He also in-

dicated that he strongly agreed that Gilligan could help him

“attempt larger, more complex reuse tasks”. However, this

case highlighted the need for further refinement of the user

interface. While Gilligan did initially help the developer

identify those types that were relevant to his task, he was

eventually overwhelmed and had to use a hybrid approach

that used both Gilligan and the manual techniques demon-

strated in the last case. In Section 6 we discuss future work

to address his concerns.

5.2.2 Case study 2

This developer wanted to reuse a feature that serialized his

Java objects into XML so they could be sent over the net-

work. This feature needed to be reused because the originat-

ing project was no longer being maintained. The developer

started with a class he knew was involved with the XML se-

rialization functionality and explored its dependencies. He

accepted 4 classes, remapped 2, and found that 8 were al-

ready provided within his target system. During his investi-

gation he investigated 84 nodes (33 of which were visible in

the final plan), accepting 13, rejecting 2, and remapping 4,

while 18 were automatically marked as common. This reuse

task took approximately 2 hours and in the end ∼900 lines
of code were reused. The reuse task was a starting point

for a refactoring task to make the old feature conform to the

new system. The developer found that the tool “helped me

visualize the scope of reuse tasks and how much I would be

able to reuse and what I would have to write.”

5.2.3 Case study 3

The third developer wanted to reuse the virtual file system

from a third-party application to add this functionality to his

own system. The reuse task involved reusing 9 classes and

remapping two of the classes to equivalent functionality al-

ready provided within his own system; this task involved

reusing ∼3000 lines of code. The developer investigated
49 nodes in the visual view, with 32 of them remaining

in his final reuse plan; this investigation took 25 minutes.

He accepted 25 nodes, while 5 were already provided. He

also marked two nodes for remapping; he wanted to con-

nect these nodes, corresponding to logging functionality, to

those within his own application. During his investigation,

he also investigated the source code for 12 specific method

calls. This developer found that Gilligan helped him decide

that this task was possible before carrying it out; however,

he wanted the tool to clearly highlight which method-nodes

had external dependencies on them. He also wanted the

ability to hide nodes such as those representing already pro-

vided functionality.

5.2.4 Case study 4

The fourth developer also completed two tasks. In his first

task, he wanted to reuse an implementation of an old fea-

ture within a new system; however, he needed to modify

this implementation in ways that were inconsistent with the

old application. In this task, he visited 42 nodes, with 24 ul-

timately being of interest to him. Of these, he marked 12 as

accepted and 5 as remapped; 15 were automatically marked

as already provided within his target system. The task ulti-

mately reused only 200 lines of code and took only 20 min-

utes to accomplish.

In the second task, the developer attempted to reuse the

GraphML parsing code from the Jung open source project5.

This was a complex task that involved over 2000 lines of

reused code. During the investigating phase, the developer

identified the need for a “verify plan” feature for the tool;

this feature would check one’s accepted nodes and confirm

that they do not have any non-triaged dependencies. He re-

quested this feature because during this task he investigated

72 nodes (of the 23,157 nodes in Jung) which he found to be

somewhat overwhelming to keep track of. He noted that the

tree view was especially important for tracking large reuse

tasks as the entries in this view are also coloured with the

developer’s decisions. In this task he accepted 10 nodes,

rejected 4, remapped 5, and 13 were marked as already pro-

vided.

6. Discussion

In this section, we will discuss a few remaining issues with

the approach.

Usability improvements. In the case studies (Sec-

tion 5.2), the developers made some specific suggestions

to improve Gilligan’s user interface, including: implement-

ing node filtering and ranking features that can help elide,

5http://jung.sf.net

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00  © 2007



and promote, nodes from the graph. These suggestions are

aimed at making the tool scale to larger reuse tasks. Devel-

opers also wanted the tool to verify the completeness of the

reuse plan. We are currently implementing these improve-

ments.

Semi-automating the reuse task. Planning pragmatic

reuse tasks is only the first step of the pragmatic reuse pro-

cess; we are currently investigating providing support for

the semi-automatic application of the reuse plan. Using a

complete reuse plan, the tool can extract the necessary code

and help the developer apply program transformations to

manage some of the remapped and rejected dependencies.

Can Gilligan be used to successfully plan reuse tasks?

After the case studies, each of the four industrial develop-

ers agreed that Gilligan helped them plan larger reuse tasks

than they would usually attempt; indeed, the tasks the devel-

opers attempted were all larger than the typical sizes iden-

tified in the survey. These case studies involved four in-

dustrial developers who performed six realistic, pragmatic

reuse tasks. While we cannot claim their experiences will

definitely generalize, these developers, and their tasks, were

varied enough to suggest that Gilligan is a valuable tool for

planning, and reasoning about, pragmatic reuse tasks.

Further evaluation. With the planned extensions to Gilli-

gan, a more through evaluation is required. An experiment

to compare the effectiveness of developers supported by our

tool, compared to their standard practice, is needed to en-

sure that our technique can help improve developer produc-

tivity and reduce error-rates. As this type of evaluation is

difficult and time-consuming to conduct well, we plan to

extend Gilligan before this takes place.

7. Conclusion

Developers must undertake pragmatic reuse tasks in situa-

tions where traditional component-based reuse is not feasi-

ble. The literature, along with our industrial survey, confirm

that these types of reuse tasks frequently arise in industry.

We have developed a lightweight process to help develop-

ers plan pragmatic software reuse tasks. We performed sev-

eral case studies with industrial developers using the tool we

created to realize this process. These developers confirmed

that the process our tool promotes aligns with how they per-

form pragmatic reuse tasks. The developers successfully

used the tool to plan larger reuse tasks than they would typ-

ically attempt. The developers were then able to perform

their reuse tasks based on these plans. Future enhance-

ments, particularly those supporting the semi-automated ap-

plication of these reuse plans, will lay the foundation for

a more thorough experiment investigating the effectiveness

of our approaches compared to current developer practice.

While our current results remain exploratory, they are an

encouraging endorsement of our proof-of-concept tool, and

process, in an industrial setting.

8. Acknowledgments

We would like to thank the subjects who responded to our

surveys and participated in our case studies, and Joseph

Chang for his comments on drafts of this work. This re-

search was funded in part by IBM and in part by the Natural

Sciences and Engineering Research Council.

References

[1] G. Caldiera and V. R. Basili. Identifying and qualifying

reusable software components. Computer, 24(2):61–70,

1991.
[2] K. Chen and V. Rajlich. Case study of feature location using

dependence graph. In Proc. Int’l Wkshp. Program Compre-

hension, pp. 241–247, 2000.
[3] W. Coelho and G. C. Murphy. ActiveAspect: presenting

crosscutting structure. In In Proc. Wrkshp. Modeling &

Analysis of Concerns in Softw., pp. 1–4, 2005.
[4] W. B. Frakes and C. J. Fox. Sixteen questions about software

reuse. Communications of the ACM, 38(6):75–87, 1995.
[5] W. B. Frakes and K. Kang. Software reuse research: Status

and future. IEEE Trans. Softw. Eng., 31(7):529–536, 2005.
[6] D. Garlan, R. Allen, and J. Ockerbloom. Architectural mis-

match: Why reuse is so hard. IEEE Softw., 12(6):17–26,

1995.
[7] M. Kim and D. Notkin. Program element matching for

multi-version program analyses. In Proc. Int’l Wrkshp. on

Mining Softw. Repositories, pages 58–64, 2006.
[8] M. Kim, V. Sazawal, D. Notkin, and G. Murphy. An empir-

ical study of code clone genealogies. In Proc. Joint Europ.

Softw. Eng. Conf. and ACM SIGSOFT Int’l Symp. Founda-

tions Softw. Eng., pp. 187–196, 2005.
[9] C. W. Krueger. Software reuse. ACM Comput. Surv.,

24(2):131–183, 1992.
[10] F. Lanubile and G. Visaggio. Extracting reusable functions

by flow graph-based program slicing. IEEE Trans. on Softw.

Eng., 23(4):246–259, 1997.
[11] D. Mcilroy. Mass-produced software components. In Softw.

Eng., Report on a conf. sponsored by the NATO Science

Committee, pp. 88–98, 1968.
[12] A. Michail. Browsing and searching source code of applica-

tions written using a gui framework. In Proc. Int’l Conf. on

Softw. Eng., pp. 327–337, 2002.
[13] M. P. Robillard. Automatic generation of suggestions for

program investigation. In Proc. Joint Europ. Softw. Eng.

Conf. and ACM SIGSOFT Int’l Symp. Foundations Softw.

Eng., pp. 11–20, 2005.
[14] M. P. Robillard and G. C. Murphy. Concern graphs: Finding

and describing concerns using structural program dependen-

cies. In Proc. Int’l Conf. Softw. Eng., pp. 406–416, 2002.
[15] C. Saunders and J. Parsons. Cognitive heuristics in software

engineering: Applying and extending anchoring and adjust-

ment to artifact reuse. IEEE Trans. Softw. Eng., 30(12):873–

888, 2004.
[16] R. W. Selby. Enabling reuse-based software development of

large-scale systems. IEEE Trans. Softw. Eng., 31(6):495–

510, 2005.

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00  © 2007


