
Hipikat: A Project Memory
for Software Development

Davor !CCubrani"cc, Gail C. Murphy, Member, IEEE Computer Society,
Janice Singer, and Kellogg S. Booth

Abstract—Sociological and technical difficulties, such as a lack of informal encounters, can make it difficult for new members of
noncollocated software development teams to learn from their more experienced colleagues. To address this situation, we have

developed a tool, named Hipikat, that provides developers with efficient and effective access to the group memory for a software
development project that is implicitly formed by all of the artifacts produced during the development. This project memory is built

automatically with little or no change to existing work practices. After describing the Hipikat tool, we present two studies investigating
Hipikat’s usefulness in software modification tasks. One study evaluated the usefulness of Hipikat’s recommendations on a sample of

20 modification tasks performed on the Eclipse Java IDE during the development of release 2.1 of the Eclipse software. We describe
the study, present quantitative measures of Hipikat’s performance, and describe in detail three cases that illustrate a range of issues

that we have identified in the results. In the other study, we evaluated whether software developers who are new to a project can
benefit from the artifacts that Hipikat recommends from the project memory. We describe the study, present qualitative observations,

and suggest implications of using project memory as a learning aid for project newcomers.

Index Terms—Software development teams, project memory, software artifacts, recommender system, user studies.

!

1 INTRODUCTION

A software developer who joins an existing software
development team must come up-to-speed on a large,

varied amount of information before becoming produc-
tive. Sim and Holt, for instance, interviewed newcomers to
a project and found that they had to learn intricacies
about the system, the development processes being used,
and the organizational structure surrounding the project,
amongst others [1]. In collocated teams, this knowledge is
often gained through mentoring: An existing member of
the team works closely with each of the newcomers,
looking over their shoulders, and imparting the oral
tradition of the project, as the newcomers work on their
first assigned tasks [1].

As Berlin observed in her study of interactions between

newcomers and mentors [2], mentors use these exchanges

to provide a rich array of information, often tangential to

the newcomers’ actual questions, but nonetheless crucial for

their development into experts. Initially, this extra informa-

tion includes basic concepts relevant to the problem domain

and tips on using the tools effectively. Over time, the focus

switches to the system’s design rationale, goals, and trade-
offs. Mentors emphasize hard-to-find information that is
typically difficult for the newcomers to acquire on their
own: the unwritten design choices, historical quirks, or the
code’s assumptions and interactions between different
modules. Mentors also introduce the newcomers to useful
information sources, including other teammates’ areas of
expertise and relevant documentation and its reliability.

Most of the time, a newcomer works independently. The
mentor is not like a tutor who is there all of the time, but
rather the mentor checks up on the newcomer, perhaps
once per day, monitoring the newcomer’s progress and
providing feedback and advice. The mentor is the person
the newcomer turns to for help when stuck. These
interactions are typically informal and lightweight, such
as a quick question asked over the cubicle divider or at the
water cooler during chance encounters.

These lightweight interaction channels are not always
available in virtual teams, where the members of the team
are not collocated. Moreover, studies show that workers are
less likely to help their noncollocated colleagues [3], making
it even harder for a newcomer to come up-to-speed on a
project in a virtual team.

Fortunately, the situation is not hopeless. By their nature,
virtual teams work and communicate through electronic
media, such as mailing lists, source code versioning
systems, and systems for recording and tracking work on
issues such as problem reports and requested features.
Arguably, the collection of all such artifacts created in the
course of development of a software system implicitly
forms a group memory—a repository of information that a
work group can use to benefit from its past experience to
respond more effectively to present needs [4], [5]. We call
this implicitly-formed group memory the project memory.

446 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 6, JUNE 2005

. D. !CCubrani"cc is with the Department of Computer Science, University of
Victoria, Box 3055 STN CSC, Victoria, BC V8W 3P6, Canada.
E-mail: cubranic@cs.uvic.ca.

. G.C. Murphy and K.S. Booth are with the Department of Computer
Science, University of British Columbia, 201–2366 Main Mall, Vancouver,
BC V6T 1Z4, Canada. E-mail: {murphy, ksbooth}@cs.ubc.ca.

. J. Singer is with the Institute for Information Technology, National
Research Council Canada, M-50, 1200 Montreal Road, Ottawa, ON K1A
0R6, Canada. E-mail: janice.singer@nrc-cnrc.gc.ca.

Manuscript received 22 Oct. 2004; revised 18 Jan. 2005; accepted 2 Feb. 2005;
published online 29 June 2005.
Recommended for acceptance by A. Hassan and R. Holt.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSESI-0227-1004.

0098-5589/05/$20.00 ! 2005 IEEE Published by the IEEE Computer Society

However, this information is not easily accessible
because of its sheer volume, the lack of tools to navigate
the repositories effectively, and the difficulty of making
connections between logically related items in disparate
repositories. General search engines, such as Google,1 are
commonly used for this purpose, but limit the developer to
searching for exact words in documents within a single
collection (e.g., the Web or a user’s email). The developer
has to know the right terms to use in the search, and the
search engine cannot take advantage of the properties of
different artifact types and relationships between them.

We have built a tool called Hipikat2 to provide
developers efficient and effective access to the project
memory. We currently focus on open-source software
projects, a subset of virtual teams that typically have
extensive public archives of all artifacts relevant to the
project. Despite the availability of artifacts, newcomers to
open-source software projects still have a particularly hard
time coming up-to-speed and learning about the system.

Hipikat is intended to assist newcomers by recommend-
ing items from the project memory—source code, problem
reports, newsgroup articles, etc.—that are relevant to their
current task, in effect making it easier for them to “learn
from the past” even when a mentor is not available. The
project memory is built automatically and with little or no
change to existing work practices. We believe that this low
barrier to introducing our tool into a project is crucial for
Hipikat to be accepted in the real world because it has
been repeatedly found that CSCW systems that require
significant changes to work practice, or that require users
to constantly externalize and map their knowledge,
ultimately fail [6].

This paper presents our approach to the Hipikat tool, its
implementation, and empirical investigation of its perfor-
mance. We begin with an overview of related work. We
then briefly describe our project memory model and the
implementation of the Hipikat tool. We continue by
presenting the results of two empirical studies. In one
study, we evaluated the quality of Hipikat’s recommenda-
tions on a sample of software modification tasks drawn
from a large open-source software project. In the other
study (the “Eclipse newcomers”), we investigated how
Hipikat was used by a group of newcomer developers
under realistic conditions. (The order in which we present
the studies is not chronological: The Eclipse newcomer
study was done first but is described second, and is only
summarized in this paper for completeness. Its full details
are in an earlier paper [7].) We conclude with a discussion
of research results and future research directions.

2 RELATED WORK

2.1 Group/Organizational Memory

A group memory for software development teams was
proposed by Terveen et al. [8]. Their system, Design
Assistant, guided the developer through a sequence of
design decisions and produced a recommendation on code
structure and usage of APIs. However, unlike Hipikat,

Design Assistant relied on human experts for building and
maintaining the group memory. It also required changes to
the development process to be effective, something we
expressly wanted to avoid.

Berlin et al. [5] presented a system, called TeamInfo, that
built a group memory from messages that had been sent to
a special email address. These messages were categorized
automatically, using preconfigured keyword patterns, or
explicitly by users. Hipikat similarly collects developer
communication into a group memory, with the important
distinction that it monitors activity in a public forum and,
so, does not require the developers to “remember” to
include it on the “CC” list. Hipikat also goes beyond Berlin
et al.’s approach by correlating information from multiple
sources (e.g., the discussion about a bug and the code
implementing the solution). Berlin et al. used a taxonomy of
categories to organize the collection; Hipikat recommends
relevant items on a case-by-case basis.

Initial steps toward integrating information sources with
little extra overhead required from users were made by
Lougher and Rodden [9], whose system allowed main-
tenance engineers to make annotations on the code. The
annotations supported asynchronous communication about
the maintenance changes, while at the same time capturing
the discussions and decisions that were made and associat-
ing them with the source code. The drawback of this
approach is that it requires the developer to look at the
exact spot in the source code to see the annotation, which
may not be useful for a relative newcomer trying to grasp
tens of thousands of lines of source in a multimegabyte
artifact corpus.

2.2 Recommender Systems

By its philosophy, Hipikat is closest to recommenders like
Remembrance Agent [10] and CodeBroker [11]. Remembrance
Agent integrates with productivity applications like e-mail
readers and text editors, mining information sources such
as a user’s email folders, and text notes to present
documents relevant to the one currently being edited.
CodeBroker likewise monitors the source code file that a
developer is editing, watches for method declarations and
the descriptions of those methods in comments, and uses
information retrieval methods to recommend software
library components that can potentially be reused instead.
In contrast, when used as a reuse tool, Hipikat can work on
a higher level of abstraction, providing information such as
documents describing how a component is to be used with
other components.

Both Remembrance Agent and CodeBroker work more
like recommenders/search engines within a single collec-
tion, whereas Hipikat helps integrate multiple information
sources. As an example of the usefulness of integrating
information, we have found that problem reports stored in
an issue tracking database often contain more information
than is recorded as part of a check-in for the associated
source code that fixes the problem. Automatically correlat-
ing this information can provide the developer with more
useful information in a single search. There are other
important differences. Unlike Hipikat, Remembrance Agent
does not use information about the structure of the
documents or their metadata to make recommendations.

!CCUBRANI"CC ET AL.: HIPIKAT: A PROJECT MEMORY FOR SOFTWARE DEVELOPMENT 447

1. http://www.google.com.
2. Hipikat means “eyes wide open” in the West African language Wolof.

The CodeBroker approach relies on a developer properly
formatting documentation in the component being defined,
and on the presence of properly formatted documentation
in the components in the reuse library. Hipikat avoids
placing any additional requirements on the developers, but
instead makes use of less formal information.

2.3 Programming from Examples

One of the important coding strategies used by both
beginner [12] and expert programmers [13], [14] is to use
existing code as a template while developing a solution to
the task at hand. This kind of code reuse philosophy is
particularly strong in the world of open-source software
and is partly the reason behind the tongue-in-cheek
expression “Use the source, Luke:”3 The system’s source
code is, in effect, full of examples of how to access the API,
handle errors, and implement various functionality. How-
ever, it is difficult for a newcomer to build an under-
standing of a large software system simply by reading its
source code. It is equally difficult to find useful examples in
the source code since finding (and recognizing) them
requires a certain level of understanding of the code.
Hipikat helps newcomers find those examples by recom-
mending modifications from a project’s history similar to
the user’s current task. This approach differs from the
existing systems that provide examples, such as Reuse View
Matcher [16] and Explainer [17], whose libraries of examples
are created specifically for that purpose, rather than drawn
from existing related code.

2.4 Mining Software Artifact Repositories to
Aid Software Maintenance

While the information in software repositories can be mined
to study the evolution of the software for the purpose of
retrospective analysis (e.g., see [18]), it is also directly useful
to a developer engaged in maintenance and evolution tasks.
Grinter observed developers’ use of configuration manage-
ment tools and reported that the history of changes was
commonly accessed to learn what previous developers did
[19]. A number of approaches have attempted to make it
easier for a developer to access this information. Most
existing systems focus on a single repository type, usually a
source revision system such as CVS. For example,
CVSSearch by Chen et al. [20] works as a search engine,
where a developer can type in search terms and receive in
response fragments of source code associated with the
check-in comments in which the search terms occurred.
Expertise Browser by Mockus and Herbsleb [21] and Expertise
Recommender by McDonald and Ackerman [22] use source
change data to identify developers and groups with
experience in given elements of a software project. Zimmer-
man et al. [23] and Ying et al. [24] applied data mining
techniques to source repositories to find change patterns,
which can be used to make recommendations about
potentially relevant files to a developer working on a
software change.

3 THE PRINCIPLES OF THE HIPIKAT APPROACH

The core idea of our approach is to recommend artifacts
created as part of the development of a software system that
may be of relevance to a developer working on software
evolution tasks for that system. Hipikat can be viewed as a
recommender system for software developers that draws its
recommendations from a project’s development history.

There are two distinct functions performed by Hipikat.
First, the tool forms a project memory from artifacts that
were created during a software development project. The
artifacts are not limited to source code and documentation
(for example requirements specifications), but include
communications conducted through electronic media that
are captured (email messages or discussion forum post-
ings), bug reports, and test plans. Second, Hipikat recom-
mends to a developer artifacts selected from the project
memory that it considers to be relevant to the task being
performed.

These two functions are implemented in modules that
operate concurrently and independently. Recommenda-
tions can be made as soon as any part of the project
memory is created. The formation of the project memory is
an ongoing process: As new project information is created,
the project’s information sources—the code repository, the
issue database, etc.—are monitored for additions and
modifications, and the project memory is updated accord-
ingly. Depending on the information source, the monitoring
may be continuous or periodic, and once the project
memory updates are committed, they can be included in
recommendations to users.

3.1 Forming the Project Memory

The project memory consists of the project artifacts
themselves and also of links between those artifacts
indicating relationships. Thus, we can model the project
memory as an entity-relationship diagram [25]. Both
artifacts and relationships are typed. There are four types
of artifacts in our model, corresponding to artifacts that are
typically created in open-source software projects: change
tasks (i.e., problem reports and feature request descriptions
recorded in an issue tracking system such as Bugzilla4),
source file versions (e.g., checked into a source repository
such as CVS5), messages posted on developer forums (e.g.,
newsgroups and mailing lists), and other project documents
(e.g., design documents posted on the project’s Web site).
Fig. 1 shows the schema of these artifacts in the project
memory together with the relationships we establish
between them. The figure also shows a fifth entity, person,
which represents the author of an artifact. Each artifact is
uniquely identified by an artifact key, so that it can be
referred to in queries and recommendations. The artifacts in
the figure are annotated with the names of tools that
produced them in the implementation of project memory
presented here (in italics); however, Hipikat is designed to
relatively easily accommodate other tools producing similar
information.

Relationships (links) between the artifacts are established
either from existing information about artifacts that is

448 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 6, JUNE 2005

3. The expression is a pun on a line in the original Star Wars movie
trilogy, “Use the force, Luke [Skywalker];” the acronym “UTSL” is often
used instead [15]. A common corruption is “read the source Luke,” or
“RTSL,” probably derived by analogy to “read the [fine] manual,” another
piece of advice commonly given to newcomers.

4. http://www.mozilla.org/projects/bugzilla.
5. http://www.cvshome.org.

available from the project management tools or that is
inferred by Hipikat. For example, the creator of a file
version checked into the repository is always known from
the configuration management tool, as is the author of a
newsgroup posting. Hipikat infers links by combining
information contained within the project artifacts and the
metainformation about the artifacts from different informa-
tion sources. For instance, some links between feature
requests and file revisions can be inferred when there is a
project convention to include within the check-in comment
associated with a revision a reference to the issue-tracking
system entry that describes the feature request. Other links
between entries in the issue-tracking system and file
versions can be inferred based on metainformation, such
as when particular project artifacts were created or
modified; for example, it is likely that the author of a bug
fix has checked in source code revisions close to the time
that the problem report was closed in the issue-tracking
system. The specifics of our link inference algorithms are
discussed next in Section 4.

Entries in the project’s issue-tracking system are a locus
within the schema because these entries typically represent
a logical unit of work on the project. Those entries also serve
as a focus for artifacts in other repositories. For example,
source code versions are checked into the source repository
fixing a particular set of issues, and newsgroup postings
and mailing list messages often contain discussion that
either results in a new entry in the issue-tracking system or
that is about an existing issue. Other documentation may
contain information about a particular entry in the issue-
tracking system, such as specific design trade-offs related to
a feature request, milestone plans, or regression tests.

3.2 Making Recommendations

When selecting and presenting recommendations to a
developer, the relationship links are used to determine
relevant artifacts in response to a query. The query can be
initiated explicitly by the user, or implicitly based on the
user’s navigation and other actions in the workspace. The
two options are not mutually exclusive, although our
prototype client currently implements only the former.

The query identifies the artifact that is the “subject” of
the query, and optionally can contain additional context or
recommendation filtering choices selected by the user or
Hipikat as appropriate to the situation. The server receives
the artifact key as part of the query, finds the artifact in the
project memory, and uses the relationships to find the
artifacts to include in the recommendation lists.

For example, when a developer starts working on a
feature modification task, the developer may be interested
in other change tasks that have a similar description. These
artifacts are selected for recommendation by following
similar-to links (see Fig. 1) and are returned to the user
to inspect. (See Table 1 for a full list of artifact types and
places in the IDE where a Hipikat query can be made.)

Once the developer has identified a change task that
appears to be similar, a query on it leads to source revisions
that implemented the task of interest (via the implements

link). These revisions may help a developer identify code
that might have to be modified or understood for the task at
hand. The completed similar tasks may also have related
discussions about which design options were examined,
and which decisions were made that might impact the task
at hand.

4 THE HIPIKAT TOOL

We have built a working Hipikat prototype that implements
the project memory model and the functionality described
above. The prototype has been designed to adapt easily to
any project that follows the common open-source develop-
ment model [26] and that produces at least a subset of the
artifact types contained in the project memory schema.

The Hipikat prototype is a client-server system. The
client and the server communicate over a SOAP RPC
protocol [27], with the recommendations returned by the
server in an XML format, described next in Section 4.1. The
characteristics of the protocol allow language and platform-
independent implementation. This allows a client to be
written that is appropriate to a particular project and the
development tools used by its members.

!CCUBRANI"CC ET AL.: HIPIKAT: A PROJECT MEMORY FOR SOFTWARE DEVELOPMENT 449

Fig. 1. Artifact types in the Hipikat project memory and the relationships between them.

4.1 Hipikat Client-Server Protocol

The client issues to the server a request for recommenda-
tions, and displays returned results to the user. The client
request identifies the artifact for which related items are
sought and identifies the user anonymously.6 The server
replies with a list of matches that the client then formats and
presents in human-readable format. Each item recom-
mended by the server is represented by a tuple of four
values: a key that uniquely identifies the artifact and is used
if the user decides to open it or make a subsequent query on
it; a human-readable description of the artifact (e.g., a file
version’s check-in comment); the reason for recommending
the item; and the server “confidence,” or relative strength of
this relationship. The confidence value can be descriptive,
as in “High—checked in within five minutes” for a file
version’s link to a bug report, or numeric in the case of a
text similarity measure. The reason for a numeric value for
text similarity is because values are not always comparable
across sets of recommendations and, therefore, difficult to
discretize. Instead, we chose to simply use the value
calculated by the similarity algorithm with the expectation
that Hipikat users would, with time, develop a sense for the
relevance of bugs based on a combination of the value of

their own similarity, their rank in the list, and the similarity
value of other bugs in the list.

4.2 Hipikat Server

The server implements three distinct functions:
Artifact store update. The project’s archives must be

monitored for additions and changes that result from the
development and evolution of the system, and the project
memory must be updated accordingly to reflect the
additions and changes.

Link identification. As artifacts are added to a project’s
memory, the links between related artifacts must be
identified and added to the memory. These additions might
cause changes or deletions of the existing links for some
relationship types (e.g., text similarity).

Recommendation selection. In response to client
queries, relevant artifacts must be selected for recommen-
dation and returned to the caller.

As Fig. 2 shows, each function is encapsulated in a
module. Each module is divided into submodules that
handle a single artifact type or link inference. The modules
do not communicate directly with each other, but instead
share access to the database where the artifacts and artifact
links are stored.

The server is written in Java. The project memory is
stored in a MySQL relational database.7

450 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 6, JUNE 2005

TABLE 1
Places Where a Hipikat Query Can Be Performed in Eclipse and the Artifact Type on Which the Query Is Invoked

Fig. 2. Hipikat server architecture.

6. Users are represented in the query to facilitate future extensions to
selection mechanisms such as user-modeling and collaborative filtering. In
the interests of privacy, user ids in queries do not personally identify the
user. 7. http://www.mysql.org.

4.2.1 Artifact Database

The artifact database saves primarily the metadata from the
new and changed artifacts that are needed to establish
relationships between the artifacts. Text from the artifact’s
contents and metadata may be indexed, depending on the
artifact’s type. The indexed text is used for searching and
making similarity comparisons, which we will describe
below in the Identification section.

4.2.2 Update

The update module has a separate submodule to handle
each different type of project information source, such as
Bugzilla, CVS, or the mailing list archive. Each update
submodule monitors its information source for changes, as
appropriate for its type. For example, a Web site is scanned
in the usual Web-spider fashion [28] by starting from the set
of known pages (initially just the project home page) and
following all links to pages local to the site. New and
changed artifacts are inserted into Hipikat’s artifact
database, and change listeners in the identification module
are notified of the updates.

4.2.3 Identification

The identification system determines links between related
artifacts and stores them in the database. Links are
determined by applying one or more heuristics to artifacts
newly added to the database or modified in some way. The
identification system in Hipikat is designed to support
multiple heuristics. The identification supervisor manages
the registration of each heuristic module and their interfaces
with the update system.

Each identification module is registered with the
update system as a listener for changes on artifact types
for which it is responsible. There are currently five such
modules (described in detail below): log-matcher, activity-
matcher, text similarity matcher, CVS check-in package
matcher, and newsgroup thread matcher. When informed
of a new instance of an artifact, or a change to an existing
artifact, the identification modules attempt to infer links
within the implicit project memory, following the schema
from Fig. 1. The identification modules are also notified
when the update system’s periodic update of an informa-
tion source is finished, in case they need to do any
identification postprocessing, such as recalculating the
text similarities.

Log matcher. The log matcher exploits the convention
used by open-source developers that comments entered
during the check-in of source code versions (the “log”)
contain the id(s) of the bug report(s) that is (are) being fixed
by the version’s changes. The log matcher uses a small set of
regular expressions to search for certain phrases and
constructions commonly used by project developers (such
as, “Fix for bug 1234”). When a Bugzilla id is detected in a
check-in comment, the matcher inserts an implements link
into the project memory to connect the change task with the
file version(s) that were checked in. If no regular expres-
sions match the check-in comment, the log matcher does
nothing.

Activity matcher. The activity matcher tries to comple-
ment the log-matcher by taking advantage of natural work

patterns used by the developers, rather than loose conven-
tions, such as the check-in comment, that are not regularly
enforced. Shortly after the relevant source changes have
been checked in, a developer will usually change the status
of the corresponding item in Bugzilla (e.g., to mark it
“fixed”), or post a comment notifying others of his or her
progress. The activity matcher monitors updates of the
Bugzilla database and looks for check-ins that are close to
(within six hours of) changes of status of an existing
Bugzilla item to “resolved fixed.” Check-ins are then
grouped into likely work units by looking for all check-ins
by a given developer within a small time window (six
minutes). (A similar strategy was employed by Mockus et
al. in their study of Mozilla development process [26], and
German [29] in his softChange tool. The time windows used
in these tools were three and approximately 10 minutes,
respectively. Neither of the two report on the accuracy of
their algorithms, but they do claim to have chosen values
that seem to work well. We followed this approach in our
implementation of the activity matcher.) Versions in each
work unit are linked to the change task in which the activity
occurred with an implements link, which also records the
time difference between the check-in and the activity for
later ranking and presentation to the user.

Text similarity matcher. The text similarity matcher
works in two phases. First, the text of new artifacts is
indexed and each artifact—for example, a Bugzilla descrip-
tion and its comments, or a document on the project Web
site—is turned into a document vector whose dimensions
correspond to words in the vocabulary. The component
magnitudes are the weights of words in the document and
are calculated using a product of the ith term’s global weight,
GðiÞ, indicating its overall importance in the entire collec-
tion, and its local weight, Lði; jÞ, which depends only on the
frequency of terms within the jth document. We use a log-
entropy [30] combination for the two weights. The local
weight is calculated as Lði; jÞ ¼ logð1þ tfijÞ, and the global
weight is calculated as GðiÞ ¼ 1% 1

logðNÞ
PN

j¼1 pijlogðpijÞ,
where tfij is the number of times term i occurs in document
j, N is the number of documents in the collection, pij ¼ tfij

di
,

and di is the number of documents in the collection
containing term i. The document vector is then projected
into a semantic space using Latent Semantic Indexing (LSI)
[31] to produce a lower-dimensional vector Dj for the jth
document. In the second phase, the text similarity matcher
uses a standard information retrieval vector-space cosine
similarity measure [32] to infer is-similar-to links
between artifacts. Specifically, the similarity between two
documents is calculated as simðDm;DnÞ ¼ Dm&Dn

kDmkkDnk . A
selection submodule is responsible for using the computed
measures to recommend a small set of nearest neighbors to
an artifact (currently capped at 15).

This text similarity approach is also used in user-
specified search queries: A user’s query is treated just like
any other document vector, allowing matching artifacts to
be sorted by relevance based on their degree of similarity to
the search query.

CVS check-in package matcher. This identification
module links file versions that were checked in together
as part of the same check-in into the repository. It looks for

!CCUBRANI"CC ET AL.: HIPIKAT: A PROJECT MEMORY FOR SOFTWARE DEVELOPMENT 451

other versions with the same author and comments that
were checked-in within a six-minute window, similar to the
grouping performed by the activity matcher. Thread
matcher. The simplest identification submodule is the
newsgroup thread matcher, which looks for “References”
headers in newsgroup articles (mandated by the RFC 1036
standard) and reconstructs conversation threads of a news-
group posting and subsequent replies. When a user chooses
a recommended article for viewing, the Hipikat client opens
the article in a newsreader using the “news:” URL, which
does not allow navigation to preceding and subsequent
articles (as opposed to a user interactively opening it from a
subscribed newsgroup). Instead, the user can receive the
conversation thread in a Hipikat recommendation and open
the individual articles from the recommendation list.

An equivalent approach is applied to matching conversa-
tion threads in email archives. A standard email message (as
defined in the RFC 822 standard) contains a header
referencing the id of the message to which it is a reply.
Alternatively, email archives with a Web front end often
have navigation links to a message’s replies. A Web crawler
can then be tailored to the front end to take advantage of
those links and present them in recommendations.

4.2.4 Selection

The selection phase takes a set of candidate recommenda-
tions, orders it, and possibly removes items from the set to
generate a refined recommendation list. Selection works by
following links from the artifact specified in a client’s
request to find a set of related artifacts. Similar to
identification, selection is designed to support multiple link
types. Selection modules are specialized to make recom-
mendations for a subset of artifact types and their links—for
example, one module makes recommendations on CVS and
Bugzilla artifacts by following implements (and its
reverse, is-implemented-by) links. In general, each
selection module pairs up with one or more identification
modules and works with their link types.

Each module provides a reason for recommending the
artifact and a confidence describing the strength of the
relationship. If an artifact is reached by multiple links, the
selection module will take that into account when giving a
reason for the recommendation and a confidence. For
example, a bug report can be related to a file revision both
by the id match in the CVS log and by the bug activity
match. If that is the case, the selection module will use only
the CVS log id match as the reason for the selection, since it
has higher confidence than the bug activity match. Higher
confidence is assigned to the log id match because it is
explicitly entered by the developer doing the check-in, so
when it is present, it almost always indicates the correct
relationship between revision(s) and bug report(s). (For a
complete description of how reasons and confidences are
calculated, see [33].)

4.3 Hipikat Client

We have implemented a Hipikat client as a plug-in for the
Eclipse IDE. One of Eclipse’s primary design goals was ease
of extensibility, which means that the Hipikat client appears
seamlessly integrated into the IDE, and can be used with
other software engineering tools plugged into Eclipse. For

example, an Eclipse developer can access from the same
Search dialog both the Hipikat search and the Java search
feature that is bundled with the default Eclipse distribution,
simply by clicking on the appropriate tab in the search
dialog.

Fig. 3 shows a screenshot of Hipikat running within the
Eclipse development environment. User interaction with
Hipikat is kept as simple and unobtrusive as possible: A
user makes a query by selecting an artifact in the Eclipse
project workspace and choosing “Query Hipikat” from the
context menu. The selection can be made from most views
in the IDE, such as a list of files in the workspace, a Java
editor, or a bug report viewer (Fig. 3a). (See Table 1 for a full
list of artifact types and places in the IDE where a Hipikat
query can be made.) The server responds with a list of
related artifacts, which can in turn be opened and/or used
for further querying. The developer can leave the querying
cycle to explore the source code or documentation, as
prompted by Hipikat’s suggestions, and return to issue
more queries at any later point.

Additionally, the Hipikat artifact database can be
searched based on search terms specified by the developer.
As already mentioned, this functionality is accessed
through a “Hipikat search” pane in the regular Eclipse
search dialog.

The identifier of the selected artifact is passed as the
second argument in the request to the Hipikat server,
described earlier in Section 4.2. The results of a query or
search are displayed in a Hipikat Results viewwithin Eclipse
(see Fig. 3b). The view lists for each recommendation its
type (Web page, news article, CVS revision, or a Bugzilla
item), its name, why it was recommended, and—if
applicable—an estimate of the closeness of the match. The
recommendations are grouped by artifact type and by
selection criteria as determined by the identification
submodule that reported a link.

Double-clicking on a recommendation in the results
view opens the artifact for viewing (Fig. 3a). Bug reports
and CVS artifacts are opened within Eclipse; news articles
and Web pages are opened in a Web browser. Right-
clicking on a recommendation pops up a context menu.
From this Menu, the developer can also open the
recommended item for viewing; more importantly, it
can be used to issue another Hipikat query. Recommen-
dations that the developer considers irrelevant to the
current task can be removed from the recommendation
list to clean up the results view (“given the thumbs-
down”); others can be marked as particularly relevant to
the query (“given the thumbs-up”), which moves them to
the top of the list. (We plan to use this information in the
future to add collaborative filtering capabilities.) Lastly,
for a CVS file version, its differences from the preceding
revision can be shown in the standard Eclipse “Compare
CVS revisions” view. The intent of this feature is to make
it easier for the developer to see changes to the code that
were made in the recommended revision.

5 HIPIKAT RECOMMENDATION QUALITY STUDY

To investigate the usefulness and accuracy of Hipikat for
providing information relevant to a developer working on

452 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 6, JUNE 2005

a software modification task, we evaluated Hipikat’s
recommendations on a sample drawn from the issue-
tracking database of a large open-source software project.
We used Eclipse, an extensible integrated development
environment that is written in Java and contains around a
million lines of code.

5.1 Selecting the Sample

Our study targeted modification tasks that were completed
for Release 2.1 of Eclipse. Eclipse uses Bugzilla as its issue-
tracking database.8 In general, in open-source software
development an issue being tracked in Bugzilla that is
marked fixed corresponds to a single modification task that
was completed by a developer. We thus initially defined the
set of eligible tasks as all issues from Eclipse’s Bugzilla
database that were marked “fixed” between 27 June 2002
(the day Eclipse 2.0 was released) and 27 March 2003 (the
day of the 2.1 release). This is the same time period from
which we selected change tasks that we used in our other
study (Section 6) and, consequently, is the phase of Eclipse
development with which we are the most familiar and for
which we can best evaluate the relevance of Hipikat’s
recommendations.

We further narrowed the set of eligible modification
tasks to those that a newcomer may have been assigned.
Although there are no clear rules that can be used to
identify automatically such modifications, a good approx-
imation is to use the severity field of the Bugzilla issue. A
severity value of minor is defined in Eclipse.org’s online

help for Bugzilla9 as a “minor loss of function, or other
problem where an easy workaround is present.” From
anecdotal evidence gathered through observing activity in
Eclipse’s bug database, we noticed that newcomers on the
Eclipse team were frequently assigned bugs of this severity
during their first few weeks. We therefore concluded that if
a bug’s severity has been set to the value of “minor,” it is
usually a good indication that fixing the bug is an
appropriate task for a project newcomer and, for the
purposes of this investigation, it is the most practical
method to select such tasks.

A total of 215 bugs from the Eclipse Bugzilla database
matched our criteria (bugs of severity “minor” that were
resolved to “fixed” between 27 June 2002 and 27 March
2003). From this set, we randomly selected a sample of
20 bugs for investigation. As we investigated these bugs, we
found that some did not represent modification tasks. In
these cases, we discarded the bug and drew another one.
(One reason nonmodification bugs were present was that
the bug was inappropriately marked as “fixed”—for
example, if in reality the problem described in the bug
was determined not to be a real problem in Eclipse. There is
a separate bug status to indicate this situation, called
“invalid,” but occasionally developers do not use it when
they should and mark the bug “fixed” instead.) We also
discarded a selected bug if we could not determine how it
was fixed, which usually was because it had been fixed as a
side-effect of another (larger) modification task. The
solution that was accepted by the Eclipse team for the
Release 2.1 formed the base against which we compared
Hipikat’s recommendations.

!CCUBRANI"CC ET AL.: HIPIKAT: A PROJECT MEMORY FOR SOFTWARE DEVELOPMENT 453

8. In the Bugzilla terminology, all issues tracked by Bugzilla are called
“bugs” even though they can comprise new features, re-engineering, and
other development activity. We will follow this usage of the term bug in its
all-inclusive sense in this article. 9. https://bugs.eclipse.org/bugs/queryhelp.cgi#severity.

Fig. 3. A screenshot of Hipikat being used within Eclipse IDE during the Eclipse newcomer study (Section 6). Zoomed-in rectangles show a change

task, (a) problem report 116 and (b) list of related artifacts.

5.2 Evaluation Criteria

Since we knew which source files were relevant to each of
the bugs in the sample, based on the fix that was eventually
implemented, we could evaluate how useful Hipikat’s
recommendations would have been by looking at the
overlap between the files it recommended and the actual
solution set. This is a simplified measure of recommenda-
tion quality because it does not take into account informa-
tion contained in other artifact types that Hipikat
recommends, such as bugs and newsgroup articles, but it
gave us at least a conservative indication of Hipikat’s
usefulness for finding the relevant information.

The performance of information retrieval systems is
often evaluated in terms of recall and precision [32].
Informally, precision is the proportion of retrieved material
that is actually relevant to the query, and recall is the
proportion of relevant material that is actually retrieved.

We consider as the relevant material in this case the files
checked into the CVS repository that can be reached
through the two-step investigation procedure of querying
Hipikat first on the assigned task, and then on bugs in the
returned recommendation list that were marked as “fixed.”
This was the same search strategy that was used by the
newcomer participants in our other study (see Section 6.3.3),
and we therefore believe that this evaluation of the
relevance of files recommended by Hipikat is a good
approximation of the helpfulness of Hipikat to a newcomer.

More formally, we define the solution of a modification
task m to be the set of files that Hipikat returns as the
implementation of the task; we denote this as fsolðmÞ. The
Hipikat recommendation HðmÞ is the set of all project
artifacts that Hipikat returns in response to a query on bug
report m. We then define the set of recommended files
frðmÞ as the union of solutions to completed modification
tasks b in HðmÞ:

frðmÞ ¼
[

b2HðmÞ
ffsolðbÞ j b is a completed modification taskg:

The precision of a set of recommended files frðmÞ is thus
the fraction of recommendations that did contribute to the
files in the solution fsolðmÞ of the modification task m:

precisionðfrðmÞÞ ¼ jcorrectðfrðmÞÞj
jfrðmÞj ;

where

correctðfrðmÞÞ ¼ frðmÞ \ fsolðmÞ:

The recall of a recommendation is the fraction of the files in
the solution fsolðmÞ of the modification task m that are
recommended:

recallðfrðmÞÞ ¼ jcorrectðfrðmÞÞj
jfsolðmÞj

:

However, there is more value in Hipikat recommenda-
tions than just finding the location where the solution
should be implemented. The usefulness of recommenda-
tions may lie in their examples of use of the relevant APIs,
rather than pointing to the class that contained the solution.
We therefore extend the definition of the solution to a

modification task with the set of constructs csolðmÞ that were
part of the implementation. These constructs can include
method calls or specific API use patterns in the case of Java
classes, or portions of the XML files that are used to define
Eclipse plug-ins and their connections, for example. How-
ever, we will not calculate the precision and recall for
constructs because precisely defining the granularity and
number of relevant constructs in a given solution is a matter
of individual judgement. Instead, we will describe the
relevant constructs and their presence in Hipikat recom-
mendations in the detailed description of results for the
three representative bugs in the next section.

5.3 Results

The results of this investigation are summarized in Table 2.
For each bug report in our sample, we list the precision and
recall of recommended files. In each case, we also include
the rank of the first recommendation that contained the
right files or construct, respectively. The “Average” row
gives the mean and median for precision and recall of the
sample. The “First-useful” column indicates the rank of the
first recommendation that pointed to the right files or
construct. For both files and constructs, we give two
numbers: the “All bugs” column indicates the absolute
rank among all recommended bug reports, while the
“Completed” column gives the rank when taking into
account only those recommendations that represented
completed modification tasks (i.e., the ones marked “fixed”)
that also had attached file revisions.

We will return to Table 2 in the next section (5.4), when
we discuss our study results in more detail. But first, in the
remainder of this section we describe in detail recommen-
dations for three specific bugs from the sample. These bugs
were selected as examples of a situation in which Hipikat
made very good, moderately useful, and poor recommen-
dations, respectively. We use them to illustrate the kind of
help that can be expected from Hipikat in practical
situations.

5.3.1 An Example of a Very Useful Recommendation

Bug report 23,719 points out an inconsistency in names of
automatically generated getter and setter methods when the
underlying field is a boolean with a name like “isFoo.” In
that case, the getter name will be “isFoo,” but the setter will
be automatically named “setIsFoo” instead of the correct
“setFoo,” which causes interoperability problems with
development tools that depend on this common naming
convention.

Solution. The solution of this bug involves several
classes. The core is in the proposeSetterName method
of class NameProposer, which, if the field is a Boolean
whose name starts with “is,” removes the “is” before
adding the “set” prefix to the field name. The changes to
this method mean that an extra Boolean parameter has to be
added in its callers. Last, a JUnit test was written and added
to the suite of tests for the JDT UI plug-in.

Recommendations. Hipikat can help solve this bug
because it provides a highly ranked recommendation that
points out the relevant location and constructs. The top
Hipikat recommendation for bug 23,719 is bug 6,887, which
corresponds to the modification task that changed the name

454 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 6, JUNE 2005

of automatically generated getter names for Boolean fields
from “getfield” to “isfield.” Again, in this case, the core of the
task’s solution was in the NameProposer class, but this
time in the proposeGetterName method.

Applying the recommendations. The top Hipikat
recommendation for bug 23,719, thus, contains all con-
structs needed to solve the new report. These constructs
will have to be applied in a different method of class
NameProposer (proposeSetterName as opposed to
proposeGetterName), but that difference should be fairly
obvious from the two operations. The recommendation also
points out all of the other source code files that will have to
be changed as part of the implementation, although this
would be evident from compilation errors caused in those
files by the changes in NameProposer.

The only aspect of the real fix to bug 23,719 that the
recommendation missed is the introduction of the corre-
sponding JUnit tests. However, the code recommended by
Hipikat in this case should be sufficient for even a
newcomer to implement the functionality. Given the

complexity of the API for manipulating the model of Java
programs in Eclipse, this is very helpful.

5.3.2 Moderately Useful Recommendations

Bug 6,732 points out that expanding a node in the tree
widget in the Navigator view can take a long time when a lot
of elements are present. The reporter of the bug suggests
that the widget follow accepted HCI practice by showing a
busy cursor while node expansion is in progress.

Solution. The solution is to perform the node expansion
operation using the method showWhile(Runnable) of
class BusyIndicator, with the operation encapsulated in
a Runnable interface.

Recommendations. Hipikat recommendations for this
bug do not point to the location of the solution. However,
the first bug in the recommendation list that is marked
“fixed,” bug 2,937, contains the exact constructs to imple-
ment the busy cursor, although in a different context. In
total, three out of four bugs in the recommendation list that
were marked “fixed” lead to the relevant constructs

!CCUBRANI"CC ET AL.: HIPIKAT: A PROJECT MEMORY FOR SOFTWARE DEVELOPMENT 455

TABLE 2
Recall and Precision of Recommendations for a Sample of 20 Bug Reports

(bugs 2,937, 15,506, and 9,687). The remaining completed
modification task that was recommended but not useful
(bug 3,790) is linked, with low confidence, to three file
revisions that seem to be irrelevant to the task. (It appears
that in this case the developer in charge did not use any of
the practices that allow Hipikat to make the connection
between CVS check-in comments and Bugzilla items.)

Applying the recommendations. Arguably, after read-
ing these recommendations, a newcomer should have no
trouble realizing how to implement this modification,
although finding the exact location (AbstractTreeViewer)
might be challenging.

5.3.3 Unhelpful Recommendations

Bug report 33,182 is an example in which Hipikat did not
provide any help, either to locate the file(s) involved, or to
identify the constructs necessary for the solution. The topic
of the report is the inclusion of certain sections into the so-
called “update preview” display even when they contained
no information. The solution that was implemented is very
simple and is contained in a couple of setter methods in a
Java class, with the text messages externalized in a proper-
ties file for easy localization of the user interface.

There are two related reasons for the lack of useful
recommendations. One is that the problem report itself is
very terse. (This seems to be the case for most problem
reports that we have come across in this particular
subsystem, “Platform-Update”.) Its contents are fairly
generic to the subsystem and, so, none of the recommended
problem reports are truly similar, although 10 of them are
from the area. In addition, programmers working on this
part of the code rarely enter CVS check-in comments, which
makes recommending much more difficult for Hipikat. (As
an illustration, out of 71 revisions of the class containing the
solution to this bug, 63 have no check-in comment at all,
four had only the number of the bug being fixed by the
revision, and one had a two-word description of the feature
implemented in the revision.) Given that, at the time, almost
all work in this area was done by only two developers and
that there were no other modules that depended on it, it is
perhaps not surprising that Hipikat did not perform well in
this kind of environment.

5.4 Discussion

Table 2 shows that in 12 modification tasks, out of a sample
of 20, Hipikat was able to point out all of the files involved
in the task’s solution (recall 1.0). In three more cases,
Hipikat recommended half or more of the relevant files. We
did not numerically evaluate Hipikat’s performance on
recommending constructs useful for the solution, but, in our
sample, there are two cases when Hipikat successfully
identified constructs even when it did not identify files
(bugs 6,732 and 32,067). Intuitively, this will be true even
with a perfect recommender if new functionality is being
introduced into a module that is already present in other
parts of the system (as in our example of a moderately
successful Hipikat recommendation, bug 6,732).

Just as importantly, useful recommendations are usually
ranked high among completed modification tasks. Relevant
files and constructs are found from the first or second top-
ranked completed modification in 11 out of 16 cases for files

and 10 out of 13 times for constructs—and always within
the top four. This is important because we observed in the
Eclipse newcomer study that the participants were reluctant
to investigate too far down the list.

Rankings of useful recommendations are lower when all
bug reports included in Hipikat recommendations are taken
into account. However, users know that bug reports that
have not been marked “fixed” do not need to be further
investigated to look for associated code. In this respect, we
expect the developer to make sensible choices when
investigating Hipikat recommendations, which we believe
is a reasonable assumption. Hipikat recommends all bug
reports, not just the ones marked “fixed,” in case they
contain interesting discussion, for example, mention of
other bug reports or reasons why the report will not be
considered for implementation.

Although Hipikat’s precision in this study was quite low,
it is part of the inevitable trade-off to get better recall.
Again, we feel that it was the right choice to make; there is a
lot of useful information that developers get just from
seeing the name and module of a file, and they can use this
information to quickly filter the recommendations for those
most likely to be really relevant to the task. We saw this
behavior in the participants in the Eclipse newcomer study
described in the next section, and it has also been observed
in other studies of programmer strategies of code reuse [13].
However, giving a smaller number of recommendations
and using different criteria to select an artifact for
recommendation remain open areas of research.

6 THE ECLIPSE NEWCOMER STUDY

In addition to investigating Hipikat’s performance on
information retrieval measures, we also observed how it
was used by programmers under realistic conditions in an
earlier study that we summarize here. We focused on the
following three questions:

1. Can newcomer software developers use information
from the project memory about past modifications
completed on the project to help them in a current
modification task?

2. When and from which artifacts will newcomer
developers who are working on a software change
task query Hipikat?

3. How will the newcomers evaluate Hipikat’s recom-
mendations and how can they utilize those recom-
mendations in their tasks?

To ensure that we studied realistic participants working
on realistic tasks, we selected a large open-source software
project for which a full history of changes to the code,
developer discussions, and problem reports were publicly
available. As in the recommendation quality study
(Section 5), this project was the Eclipse IDE. We then
selected two previously completed enhancement requests
from the Eclipse issue tracking database as tasks in the
study. In selecting the change tasks, we were looking for
modifications that were complex enough to challenge the
study participants and to require serious effort to under-
stand the problem and come up with a solution. By
choosing enhancements to an earlier version of Eclipse,

456 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 6, JUNE 2005

we were able to devise a set of correctness criteria based on
the solutions adopted by the Eclipse team. We could then
check the participants’ solutions against the correctness
criteria. We created a copy of the Eclipse project artifacts as
they existed at the time when the enhancement requests
were made, and formed an instance of the project memory
on this copy.

Because we were interested in studying newcomers, not
novices, the study participants were required to have
adequate programming experience in the programming
language of the system under study (that is, Java), but they
had to have no previous experience as developers on the
system itself. We also required participants to have had
experience developing large or medium-sized software
systems, and to be familiar with issues involved in working
on such systems, as well as tools commonly used to manage
projects of such size (e.g., configuration management or
issue tracking systems). This made the pool of potential
participants much smaller, as we could not use easily
recruitable computer science undergraduates who would
have had insufficient knowledge and experience.

Given the questions asked in this research and the
complexity of the tasks analyzed, we determined that a case
study was the appropriate methodology for this stage of the
research, using multiple cases to try to capture individual
working styles. Because we wanted to look in detail at how
developers accessed Hipikat and used its recommendations
while working on modifications to a new software system,
we ruled out a controlled experiment. Instead, we chose a
largely qualitative analysis that would allow us to look for
patterns across the cases and handle large individual
differences among the participants in programming and
exploration styles.

Because we wanted to be able to compare the solutions
with each other, all participants worked on the same set of
tasks. We also wanted to compare the newcomers’ end
products with those of experienced developers who worked
on the project, so we recruited several members from the
Eclipse development team and asked them to work on the
same tasks and serve as our baseline for comparison. This
design allowed us to study Hipikat under conditions
similar to those faced by newcomers to many large open-
source systems, to test the system on real tasks, and to
compare the results of the newcomers using Hipikat with
those of experienced team members not using Hipikat and
with the “correct” solution of the bug.

6.1 Design

Each participant worked on two change tasks, which we
describe below in more detail. One task was easier than the
other. The order in which the participants worked on the
tasks was randomized to control for learning effects.

6.1.1 Easy Task

This modification request10 described a need, when the
mouse is hovering over a particular point in an editor for
Java source code, to display a breakpoint’s properties in a
pop-up window. The request initially asked for displaying a
few basic properties, such as the breakpoint’s line number.

A subsequent comment in the request’s discussion sug-
gested displaying an additional property of a breakpoint:
whether it stops the execution of the entire VM or just the
current thread. The participants were told that the latter
was an optional property that they could implement if they
so chose.

6.1.2 Difficult Task

The second modification request11 involved the interaction
of a developer with the UI during versioning operations on
a group of files. A file can be in one of three states: new (no
versioning information), versioned in the repository, or
ignored for all versioning operations (typically temporary
and automatically generated files). The request noted that
committing a new file to the repository requires two steps:
“adding” to mark it as a versioned file and then “commit-
ting.” It asked for a more intelligent handling of this case,
similar to the way it is done through the “synchronization
view,” where new files can be automatically versioned
when they are committed, if the user chooses to do so.

6.2 Procedures

Because of the time required of each participant, the study
was divided into two sessions, training and programming,
that took place within three days of each other, depending
on the participant’s schedule. The experts did not need the
training session and had their programming session on a
weekend, to avoid interference with their regular jobs.

Each of the eight newcomers underwent four hours of
“hands-on” Eclipse training. The participants individually
worked through three online tutorials that included
frequent exercises applying the covered material. The
tutorials covered using Eclipse, programming Eclipse
plug-ins, and using Hipikat. The participants worked on
their own, but the researcher was present in the room to
answer any questions. The four experts did not go through
any training because they all had significant experience
with Eclipse and did not have Hipikat available during the
programming session.

The programming session was divided into two parts,
one for each change task. The maximum time allowed for
each task was fixed at two and a half hours. The
participants were asked to complete a change plan and
describe it to the experimenter before proceeding with
implementing the change. Once the change plan was
completed, we conducted a semistructured interview in
which we asked both about the details of the plan and the
process used to come up with it, including tools used and
information accessed. At the end of the task, we conducted
another semistructured interview where the participant
showed us the details and described the process of
implementation. During this interview we asked critical
incident-type open-ended questions about the most difficult
part of solving the task and how the participant went about
solving it.

We collected all code modifications that the participants
made while they worked on each task. These were checked
for correctness against a set of criteria that we had identified
previously. These criteria—shown in Tables 3 and 4—are

!CCUBRANI"CC ET AL.: HIPIKAT: A PROJECT MEMORY FOR SOFTWARE DEVELOPMENT 457

10. Request 6,660 in the Eclipse problem report database. 11. Request 20,982 in the Eclipse problem report database.

sufficiently abstract to cover the required functionality of
added features, but still allow variation within the actual
implementations. We also included special cases that are
not always covered explicitly in the feature request
description, but would result in bugs under certain
circumstances if they were not recognized (shown italicized
in the two tables). Last, we required that the added code be
readable and maintainable, and that it follow the Eclipse
team’s coding practices.

6.3 Results

6.3.1 Easy Task Solutions

All of the participants implemented the basic require-
ments of this task: displaying a pop-up window with the
breakpoint properties on mouse hover. However, many
participants did not handle the special cases properly,
which introduced bugs into their solutions. Surprisingly,
this was even more the case among the experts, where
only one of the four participants (25 percent) correctly
updated the information in the pop-up after the break-
point’s properties were changed by the user. Of the eight
newcomers, three participants (38 percent) handled this
correctly, and two more (for a total of 63 percent) handled
it correctly within the scope of basic range of properties
that they chose to implement (that is, the line number,
condition, and hit count).

The cause of nearly all faulty solutions was missed
method inheritance interactions between the concrete and
abstract breakpoint classes. An examination of the plans
created by the expert participants who failed to handle
those special cases shows that all of them talked exclusively
about the concrete subclass. Conversely, the newcomers’
change plans regularly mention both classes. We believe

that the newcomers did so well because both classes were
included in the Hipikat recommendation from which they
were starting and, so, they were used to thinking about the
two classes as a single unit, which was reflected in their
plans and implementations. This is a good example of a
valuable bit of information that was never explicitly written
down anywhere in the project artifacts and, yet, was
implicit in the links between the artifacts and became
obvious to the newcomers during their exploration of the
memory. Without viewing Hipikat’s suggestion, it was not
at all obvious that both classes would need to be updated.
Indeed, half of the expert participants overlooked it,
causing bugs in their solutions.

6.3.2 Difficult Task Solutions

The participants were less successful in solving this task.
Although the two groups have virtually the same group
average score (8.4 out of the 15 criteria for the experts and
8.6 for the newcomers), the expert group arguably
performed better on the basic requirements of the task:
detecting new uncommitted files, displaying the message
dialog to the user, marking them as versioned when
directed by the user, and proceeding to commit to the
repository. Three of the four experts (75 percent) solved
these requirements correctly. The unsuccessful expert was
completely on the wrong track with her planned solution
and did not implement any of these steps. Thus, the expert
group’s average score is partly skewed lower by the one
unsuccessful member; however, that’s not the sole reason,
since the other three experts’ solutions—although solving
the basic requirements of the task—still did not handle
correctly a number of special cases, and had an average
score of 10.7 (71 percent).

458 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 6, JUNE 2005

TABLE 3
Correctness Criteria for the Easy Task

Italicized criteria are the special cases referred to in Section 6.2.

In the newcomer group, three of the eight participants
(38 percent) managed to implement all of the basic
requirements (average score 11.7, or 78 percent). Two more
newcomers were able to detect the new files and displayed
the required message dialog to the user, but then did not
implement marking those files as versioned. Of the other
three newcomers, one’s solution was almost correct but for
a runtime error, one still had syntax errors in the code when
the time ran out, and the last one did not get beyond
correctly identifying the methods where his solution should
go. In this respect, all of the newcomers got farther than the
unsuccessful expert since even their incomplete solutions
were on the right track.

The participants had more difficulty with the special
cases in this task. For example, none of their solutions
looked within directories that were being committed to
check whether they contained any new files. The new-
comers should arguably have been aware of this special
case. Detecting these files during the commit operation

was discussed and accepted as desired in an earlier

problem report when the corresponding feature was being

added in the “Synchronize view.” This problem report

was recommended to them by Hipikat—ranked highly in

the recommendation list for its similarity to the assigned

task—and they even used it as the basis of their solutions.

However, it was easy to overlook this point, buried as it

was in the middle of a lengthy discussion within the

problem report.

6.3.3 Accessing Hipikat

Not surprisingly, Hipikat was accessed less during the easy
task than during the difficult task. An average of 3.6 and
6.3 queries were made, respectively.12 Almost all queries

!CCUBRANI"CC ET AL.: HIPIKAT: A PROJECT MEMORY FOR SOFTWARE DEVELOPMENT 459

TABLE 4
Correctness Criteria for the Difficult Task

Italicized criteria are the special cases referred to in Section 6.2.

12. Statistics in this section refer to unique queries made in each task.
Occasionally, participants queried on the same artifact more than once
during the course of a task. Because those repeat queries were probably
used as an alternate query “history” mechanism, we did not count them
when calculating the averages.

were made within the first hour, especially when a
participant was successful in formulating a solution plan.
(Slightly less than 20 percent of all queries were made after
the first hour, or 0.7 and 1.1 query in the easy and difficult
task, respectively.) Once a participant knew the file(s) to be
changed and had determined a general plan of how to
implement the change, he or she did not make any more
Hipikat queries. Hipikat was apparently used as a tool to
help get an initial understanding of the assigned task, but
not in the execution of the task.

6.3.4 Evaluating and Using Hipikat’s Recommendations

Based on the query and access patterns described above, it
appears that the participants’ exploration was focused on
solving the assigned task, rather than gaining deeper
understanding of the code. Furthermore, their exploration
appears to be defined by a sequence of subgoals. The most
important thing was to find code relevant to the current
subgoal. The strategy followed by the newcomers was to
use Hipikat’s recommendations to find code that could be
reused in the task’s solution and/or the probable location of
where the solution should be implemented. However, using
the recommendations poses its own challenges. First, a
potentially useful recommendation has to be recognized.
Then, the recommended piece of code has to be understood
in terms of what it does and how it fits into the larger
system. Finally, that code has to be adapted to its new
purpose, which may involve moving it to a different place
in the system’s architecture.

We found that the crucial first condition to recognizing a
useful recommendation was whether the description of a
problem report looked “interesting.” That is, it had to be
similar enough to the current task to make it likely that the
associated code could be reused, or at least that the
participant could learn from it information relevant to the
task. Not surprisingly, participants searched for similar
reports by going down the list of recommendations
returned in response to the query on the task’s problem
report. Given the effort needed to understand the code
associated with more complex recommendations, we ob-
served reluctance to investigate too many recommendations
down the list. If anything, we noted that participants tended
to stop their exploration as soon as they had a starting point
from which to look at source code.

In some cases, such as in the top recommendation in the
easy task, the code in the recommended revisions was easy
to understand just by seeing the modified lines highlighted
by Hipikat. At this point, the participant would switch from
the Hipikat view to working with the source code directly
in order to understand it more fully, and especially how this
code interacted with the rest of the system.

In other cases and, in particular, in the difficult task, this
could require significant effort. For instance, some highly-
rated recommendations in the difficult task included up to
nine files that were implementing the fix for a problem.
Understanding just how changes in those nine files were
related to each other, what exactly they do, and which of
them were relevant to the actual task was a serious
challenge. The way Hipikat presented the recommendations

involving file revisions was not sufficiently helpful in such
cases. A common “shortcut” used in such situations by the
study participants was to consider the names of the files
included in those revisions as an indication of their potential
relevance, and to switch to viewing source code even if the
revision’s changes were not quite understood. Participants
preferred to build their understanding of such files from
scratch by reading it in an editor, at the risk of following a
false lead and having to return to searching.

7 DISCUSSION

7.1 Model

Our approach depends on the existence of extensive
repositories of software development artifacts. This depen-
dence on artifact repositories is not far-fetched in the
modern world of software development, both open-source
and commercial. In this section, we discuss some of the
open issues regarding certain aspects of the Hipikat model,
but do not question the basic assumption that those artifact
repositories exist in the first place.

7.1.1 Unit of Recommendation

Hipikat makes recommendations at the artifact level of
granularity; that is, what is recommended is a bug report, a
file revision, a Web page, etc. This level of granularity
follows naturally from artifact sources and usually results
in recommendations that are logically self-contained. (For
example, even though there are multiple individual com-
ments in a bug report, they are all related to a single bug.)

In some cases, it may be desirable to recommend only
a portion of an artifact, such as when only a couple of
comments in a long bug report are relevant to a query.
This could be accommodated in the existing Hipikat
model by recommending entire artifacts and highlighting
the most relevant passages, similar to the way Google
highlights the search terms in cached pages. The high-
lights could be represented uniformly and independently
of the artifact type as a collection of ranges of text in the
artifact. This kind of relevant passage detection could be
automated for artifacts consisting of natural language text
(i.e., not computer code) by using existing information
retrieval techniques for topic detection within documents
(e.g., [34]). For a discussion of manual identification of
such passages, see the later section on collaborative
filtering (Section 7.1.3).

At other times, the unit of recommendation should be a
set of mutually related artifacts, such as a set of file versions
that were checked in together to fix a bug. It makes sense to
think of all files in the set as a single change; trying to
understand modifications in one class in this set (if the files
are Java source code, for example) will be futile without
taking into account code modified in other classes in the set.
A general way in which such sets of artifacts could be
recommended as a group would be by returning a
hierarchy of recommendations, rather than the flat list
format we currently use. That way a single recommenda-
tion could either point to a single artifact, or (recursively)
contain sets of recommendations.

460 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 6, JUNE 2005

7.1.2 Better Time Awareness

The value of information contained in artifacts usually
diminishes with time as the system changes. Therefore,
even if an artifact were the best match to a query on the
basis of text similarity, it will not be very useful if it
describes the functionality of an old version of the system
that no longer works that way. (Even worse, it may be
especially misleading to the novice who does not know
enough project background to recognize that the informa-
tion is out of date.) Some existing recommender systems
attempt to model this information decay by decreasing the
calculated similarity value by a factor that takes into
account the age of the document under consideration
(e.g., [35]). The challenge inherent in this approach is that
the time decay factor is essentially arbitrary, chosen by trial-
and-error, and not necessarily portable across different
document collections.

However, not all information about a software system
gets out of date at the same rate. If a module has not
changed much over time, even old artifacts related to it will
still be relevant. Information does not decay monotonically
as it ages: A system whose architecture has degraded over
time can be refactored to restore it and reverse the entropy.
Therefore, dealing with this issue remains an open research
question.

7.1.3 Collaborative Recommendation

Hipikat’s recommendations are currently made purely
based on the content of artifacts. However, given a large
enough user base, it becomes possible to make use of other
user’s interactions with the tool when choosing artifacts to
recommend. Such collaborative recommending uses ratings
given to artifacts by other users to select the ones that are
the most relevant to a given query. One way to obtain the
ratings is explicitly, asking the user to manually rate the
artifacts. We have implemented this approach in the current
prototype as the “thumbs-up” operation in the Hipikat
results view: Giving a thumbs-up to a recommendation
means that in the future it will be ranked nearer the top of
recommendations when it matches a query. This is a very
simplified form of collaborative recommending, and one
that was intended primarily as a proof-of-concept. A more
complete implementation would take into account the
closeness of the current query and the query (or queries)
for which a recommendation was given the thumbs-up or
the similarity in user profiles (e.g., interests or expertise)
between the current users and the users who created the
ratings. Ideally, collaborative criteria should be integrated
into a single recommendation model with the content-based
criteria (cf. [36]).

Using explicit ratings has a significant drawback, as it
requires the users to perform additional work which is not
going to directly benefit them, which, as Grudin has noted
[6], is therefore unlikely to get done. Perhaps even more
problematic is the fact that the action of rating a
recommendation fits rather awkwardly into the existing
software development process: As we have found in our
user studies, recommendations are investigated in the
initial stages of a change task, but the natural point to rate

their usefulness would be once the task has been completed,
when the developer can truly evaluate which ones were the
most useful. Trying to rate recommendations early on, as
they are investigated, not only introduces room for error, it
is actually disruptive to the user’s main task—understand-
ing and planning the software change.

Typical collaborative recommenders that use explicit
ratings do not suffer from this drawback because they
naturally fit the act of rating into an existing process:
people like giving their opinions on movies (e.g., [37]),
music (e.g., [38]), or books (e.g., the reader reviews on
Amazon.com). In Hipikat’s target domain, we argue that
this is not the case; an approach that uses implicit rating
(i.e., inferred from users’ actions) would be more appro-
priate. While the best way to obtain these ratings for
Hipikat needs to be empirically established, two basic
approaches that have been used in other recommender
domains are applicable to our case. The action of viewing
an artifact can be taken as a positive rating (cf. [39]).
Moreover, the developers’ history of navigation within the
IDE and Hipikat can be used to extract patterns in the
temporal order of viewing of artifacts (e.g., [40]). By
discovering these patterns, the tool can then recommend
artifacts that were consistently accessed in similar contexts.
The unresolved problem with navigation patterns is how
to identify the “dead ends” and distinguish them from
useful paths. Especially newcomers exploring the code will
likely not have the experience to recognize dead ends; so,
by following such irrelevant paths, they will increase those
artifacts’ future rank, to the detriment of all users.

7.2 Implementation

7.2.1 Presentation of Query Results

Both the presentation of Hipikat’s recommendation list
and its display of recommended artifacts could be
improved. Showing matches in a flat list sorted by their
relevance is the dominant way of presenting results by
recommenders and search engines in general, in a
multitude of domains. However, when the user’s purpose
is exploratory browsing of a collection, such a flat-list
presentation does not indicate relationships within the
results, only to the query itself. If the user can see
similarities between individual matches, he or she can
identify clusters within the results, making it easier to
discard subsets which match the query in ways not
relevant to the user’s current purpose (e.g., [41]). This
task can be made even easier when the clusters are
automatically labeled with their most salient keywords
(e.g., as in WebRat [42]).

As we have already noted in Section 6.3, even after
participants in the Eclipse newcomer study recognized the
potential relevance of a recommendation, understanding
the recommended artifacts was sometimes more difficult
than it could have been. This is particularly the case for file
revisions. Even when a developer can see a revision side-
by-side with its predecessor and with changes highlighted,
understanding how those changes work is still a challenge
when the changed code is scattered across many files and

!CCUBRANI"CC ET AL.: HIPIKAT: A PROJECT MEMORY FOR SOFTWARE DEVELOPMENT 461

changes need to be correlated to see how they work
together and fit into the rest of the system. We believe
presenting these changes and relationships graphically
would assist the user.

7.2.2 Scaling Up

The main bottleneck in the heuristics that are currently used
in Hipikat is using Latent Semantic Indexing (LSI) for
determining text similarity. LSI uses singular value decom-
position (SVD), which is a costly operation in terms of both
memory consumption and computation time. In addition,
LSI’s precision-recall performance tends to degrade as
document collections become very large and heterogeneous
[43]. There is, however, ongoing research into scaling up LSI
to handle such large selections. For example, Tang et al.
report several orders of magnitude better efficiency than
LSI, while maintaining LSI’s retrieval quality even for large
and heterogeneous document collections [44]. Incorporating
such a technique into Hipikat should allow it to scale even
to projects of the size and duration of Mozilla.

7.3 Validation

7.3.1 Types of Artifacts Most Used in the Study

Our studies did not fully explore all artifact types and links
present in the project memory. In the study evaluating the
quality of Hipikat recommendations (Section 5), we drew
our sample of modification tasks from minor severity bugs,
which meant that the changes did not require much
discussion or elaboration of features. Our measures conse-
quently focused on getting to the relevant files and code
constructs.

In the Eclipse newcomer study (Section 6), the two
change tasks used in the study, combined with the
Eclipse.org project practices, meant that the most useful
artifacts were again bug reports and file revisions. In
general, bug reports were used to identify similar change
tasks done in the past whose solutions could be reused or
serve as a springboard for understanding relevant code.
The reuse and learning were then done from the associated
file revisions, until eventually participants switched to
working with the source code directly.

Study participants used other artifact types (Web pages
and newsgroups) far less, but it should be emphasized that
the issue-tracking system (that is, Bugzilla), as used in
Eclipse.org and other open source projects, is not simply a
collection of descriptions of how to reproduce a bug or of
requests for new features. It serves an important additional
purpose as a forum for discussing design rationale and
implementation alternatives. As we noted in the study
analysis (Section 6.3.4), these parts of bug reports did not
seem to be read as carefully or understood fully; the
participants appeared focused on finding code useful to get
the change task done. We do not believe that this detracts
from the study’s support of our research claims; however, a
closer examination of the usefulness of rationale contained
in the project memory and how developers try to access it
using Hipikat would be an essential step to be done in
future research.

7.3.2 Measure of Effectiveness

The primary measures we used in the Eclipse newcomer
study to evaluate the participants’ performance were the
correctness criteria we identified from the “real” imple-
mentations of the two features as they were developed by
the Eclipse team and included in subsequent releases of the
software. Although we tried to make them as objective as
possible, there is always some room for a rater’s subjective
interpretation.

The correctness criteria should not be treated like a
standardized test instrument, or statistical significance
expected from the numerical values of participants’ scores.
The correctness scores were simply a means to monitor the
progress of the participants’ solutions and help identify
situations where using Hipikat was helpful or where it
failed. The correctness scores are complemented with more
detailed observations of the participants’ work, as well as
by their comments in interviews. We believe this combina-
tion gave us a good picture of the issues we studied. Using
an alternative “pure” code quality measure would not have
been as helpful in this context; neither would simply
focusing on the time needed to solve the tasks. The latter
measure is particularly problematic because the only way to
meaningfully use it for comparison across participants is if
their solutions are all correct. Yet, evaluating partial
solutions and pointing out to a participant cases that still
need to be handled would provide so much guidance as to
completely skew the results even if it did ensure that all
solutions were correct.

7.4 Impact of Extended Use of Hipikat

Although one of our starting principles was that little or no
change to the development process should be required in
order to use Hipikat, it would be interesting to see how
extended use of Hipikat would affect the developers’
behavior. Our study focused on fresh project newcomers,
but even if they were the only ones using Hipikat, it is
possible that this would affect the development practices of
the entire team, once most of its members had used it
during their “apprenticeship.” For example, would devel-
opers voluntarily adopt practices that would help Hipikat
be more useful, such as summarizing and highlighting
important parts of discussions in order to make them more
understandable if they were recommended by Hipikat to a
newcomer in the future? An intriguing question is whether
developers would be willing to accept being asked to do
more in order to make Hipikat more effective, if they came
to recognize the tool’s usefulness. (For example, would
good development norms, such as requiring bug id’s in
code check-in comments, be followed to a greater degree?)
If developers would do more, a feedback mechanism on the
relevancy of Hipikat recommendations might be introduced
into the development process. Recommendations could be
evaluated along with new code during code review,
similarly to the process proposed by Terveen et al. [8].

7.5 Hipikat’s Applicability

In this research, we focused on a particular subset of virtual
software development teams: open-source software (OSS).

462 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 6, JUNE 2005

An important aspect of OSS is its culture of openness,
where all important project discussions are either con-
ducted or summarized in public forums, such as devel-
opers’ mailing lists. At the same time, open-source software
developers rarely keep thorough and up-to-date documen-
tation. The combination of the “culture of communication”
and the general disregard for documentation makes open-
source software projects a natural fit for a project memory
approach.

Within the open-source software community, we expect
Hipikat to be most useful to projects that have relatively
large developer teams (with 10 or more members) and that
have been running for a longer period of time. A project’s
size encourages the richness and wider range of informa-
tion sources, while a project’s age ensures that there is a
sufficient accumulation of experiences to go into the project
memory; we expect Hipikat will become increasingly useful
as time passes and the project grows and evolves. Given
these likely preconditions for a successful introduction of
Hipikat into a project, we believe it would be most useful in
the following types of situations:

Refining existing functionality. The functionality to be
added in the easy task in the Eclipse newcomer study
built on top of an existing feature that was added at a
discrete point in time and that had a very distinct record
in the project memory. These factors makes it relatively
easy to find the location for the modification and to see
how to graft the functionality onto the existing system
from the Hipikat recommendations.

Learning API usage. The “moderately useful” case in the
recommendation quality study is an example where a
developer was implementing a common procedure that
required knowing a complex API. Hipikat recommenda-
tions identified several instances when this action was
implemented elsewhere in the system. From those
examples, it was easy to see the relevant API and how
it is to be used because of the common elements that
reappear in multiple different contexts.

Recovering design rationale. One of the top recommenda-
tions related to the difficult task in the Eclipse newcomer
study provides a good example of recovering design
rationale. The recommendation includes a lengthy
discussion of several behavioral issues that arose when
related functionality was added to another Eclipse
module. The same issues would have to be considered
during the implementation of the new functionality,
although its solution would be implemented somewhat
differently because of internal module differences.
Nevertheless, the discussion and the choices made in
the older bug are relevant, especially for the sake of
consistency in behavior in similar components across the
entire system.

Avoiding common errors. Sometimes there are undocu-
mented aspects of the API that cause problems to
developers who are not familiar with it. These are often
reported as bugs in the bug-tracking system or men-
tioned on the discussion lists, where more experienced

developers can give an explanation. Although this
explanation is not always transferred to formal docu-
mentation, it becomes a part of the project memory
accessible through Hipikat.

8 SUMMARY

Thanks to electronic communication mechanisms, groups
today can work with members distributed over various
locations and multiple time zones. It can be difficult for
newcomers to join such groups because it is hard to obtain
effective mentoring. In this paper, we investigated how an
implicit group memory from the digital archives of an open
source software project could be utilized to facilitate
development. Using Hipikat we can form such a group
memory, and Hipikat can recommend appropriate parts of
the memory to newcomers working on enhancement tasks.
We presented two studies of Hipikat’s effectiveness in such
situations. The recommendation quality study showed that,
in most of the cases examined, Hipikat was able to provide
a useful pointer to the files involved in the solution of the
task, the constructs necessary for the solution, or both. The
Eclipse newcomer study showed that newcomers can use
the information presented by Hipikat to achieve results
comparable in quality and correctness to those of more
experienced members of the team. We found difficulties for
newcomers in understanding recommended artifacts in the
context of the past system and in taking the knowledge
forward and applying it to the current context.

The two studies support our claim of Hipikat’s useful-
ness to newcomers engaged in software modification tasks.
They also raise some wider questions regarding potential
limits of using project memories to learn from the past. The
recommendation quality study made it clear that Hipikat’s
usefulness depends on the amount of information, espe-
cially communication, captured in the project’s artifacts.
Knowing whether and to what extent developers would
voluntarily adopt practices that help Hipikat make better
recommendations would be valuable for further develop-
ment of the tool. The Eclipse newcomer study highlighted
the problem of too-shallow understandings of recommen-
dations. It would be interesting to know if this is an
inherent outcome of learning from the past or if systems
such as Hipikat can be designed to encourage deeper
understanding.

ACKNOWLEDGMENTS

This work was supported by NSERC and IBM as part of the
Consortium for Software Engineering Research in Canada.
The New Media Innovation Centre (Vancouver) and the
National Research Council Canada’s Institute for Informa-
tion Technology (Ottawa) provided observation facilities for
the Eclipse newcomer study. The authors would like to
thank the study participants for their time and effort, and
the reviewers for their many helpful suggestions that
greatly improved the organization of the paper.

!CCUBRANI"CC ET AL.: HIPIKAT: A PROJECT MEMORY FOR SOFTWARE DEVELOPMENT 463

REFERENCES

[1] S.E. Sim and R.C. Holt, “The Ramp-Up Problem In Software
Projects: A Case Study of How Software Immigrants Naturalize,”
Proc. 20th Int’l Conf. Software Eng., pp. 361-370, 1998.

[2] L.M. Berlin, “Beyond Program Understanding: A Look at
Programming Expertise in Industry,” Proc. Empirical Studies of
Programmers: Fifth Workshop, pp. 6-25, 1993.

[3] J.D. Herbsleb, A. Mockus, T.A. Finholt, and R.E. Grinter, “An
Empirical Study of Global Software Development: Distance and
Speed,” Proc. 23rd Int’l Conf. Software Eng., pp. 81-90, 2001.

[4] M.S. Ackerman and T.W. Malone, “Answer Garden: A Tool for
Growing Organizational Memory,” Proc. Conf. Office Automation
Systems, pp. 31-39, 1990.

[5] L.M. Berlin, R. Jeffries, V.L. O’Day, A. Paepcke, and C. Wharton,
“Where Did You Put It? Issues in the Design and Use of a Group
Memory,” Proc. SIGCHI Conf. Human Factors in Computing Systems,
pp. 23-30, 1993.

[6] J. Grudin, “Groupware and Social Dynamics: Eight Challenges for
Developers,” Comm. ACM, vol. 37, no. 1, pp. 92-105, Jan. 1994.

[7] D. !CCubrani"cc, G.C. Murphy, J. Singer, and K.S. Booth, “Learning
From Project History: A Case Study for Software Development,”
Proc. ACM Conf. Computer Supported Cooperative Work (CSCW ’04),
pp. 82-91, 2004.

[8] L.G. Terveen, P.G. Selfridge, and M.D. Long, “From ‘Folklore’ to
‘Living Design Memory’,” Proc. SIGCHI Conf. Human Factors in
Computing Systems, pp. 15-22, 1993.

[9] R. Lougher and T. Rodden, “Supporting Long Term Collaboration
in Software Maintenance,” Proc. Conf. Organizational Computing
Systems, pp. 228-238, 1993.

[10] B.J. Rhodes and T. Starner, “Remembrance Agent: A Continuously
Running Automated Information Retrieval System,” Proc. First
Int’l Conf. Practical Application of Intelligent Agents and Multi-Agent
Technology (PAAM ’96), pp. 487-495, 1996.

[11] Y. Ye and G. Fischer, “Information Delivery in Support of
Learning Reusable Software Components on Demand,” Proc.
2002 Int’l Conf. Intelligent User Interfaces (IUI ’02), pp. 159-166, 2002.

[12] P. Pirolli and J. Anderson, “The Role of Learning From Examples
in the Acquisition of Recursive Programming Skills,” Canadian J.
Psychology, vol. 35, pp. 240-272, 1985.

[13] M.B. Rosson and J.M. Carroll, “The Reuse of Uses in Smalltalk
Programming,” ACM Trans. Computer-Human Interaction, vol. 3,
no. 3, pp. 219-253, 1996.

[14] B.M. Lange and T.G. Moher, “Some Strategies of Reuse in an
Object-Oriented Programming Environment,” Proc. SIGCHI Conf.
Human Factors in Computing Systems, pp. 69-73, 1989.

[15] E.S. Raymond, The New Hacker’s Dictionary, third ed. MIT Press,
1996.

[16] M.B. Rosson, J.M. Carroll, and C. Sweeney, “A View Matcher for
Reusing Smalltalk Classes,” Proc. ACM SIGCHI Conf. Human
Factors in Computing Systems (CHI ’91), pp. 277-283, 1991.

[17] D.F. Redmiles, “Reducing the Variability of Programmers Perfor-
mance Through Explained Examples,” Proc. ACM INTERCHI ’93
Conf. Human Factors in Computing Systems, pp. 67-73, 1993.

[18] H. Gall, M. Jazayeri, and J. Krajewski, “CVS Release History Data
for Detecting Logical Couplings,” Proc. Int’l Workshop Principles of
Software Evolution (IWPSE ’03), pp. 13-23, 2003.

[19] R.E. Grinter, “Using a Configuration Management Tool to
Coordinate Software Development,” Proc. Conf. Organizational
Computing Systems, pp. 168-177, 1995.

[20] A. Chen, E. Chou, J. Wong, A.Y. Yao, Q. Zhang, S. Zhang, and A.
Michail, “CVSSearch: Searching through Source Code Using CVS
Comments,” Proc. Int’l Conf. Software Maintenance (ICSM 2001),
pp. 364-373, 2001.

[21] A. Mockus and J.D. Herbsleb, “Expertise Browser: A Quantitative
Approach to Identifying Expertise,” Proc. 24th Int’l Conf. Software
Eng. (ICSE ’02), pp. 503-512, 2002.

[22] D.W. McDonald and M.S. Ackerman, “Expertise Recommender: A
Flexible Recommendation System and Architecture,” Proc. ACM
2000 Conf. Computer Supported Collaborative Work, pp. 231-240,
2000.

[23] T. Zimmermann, P. Weisgerber, S. Diehl, and A. Zeller, “Mining
Version Histories to Guide Software Changes,” Proc. 26th Int’l
Conf. Software Eng. (ICSE ’04), pp. 563-572, 2004.

[24] A.T.T. Ying, G.C. Murphy, R. Ng, and M.C. Chu-Carroll,
“Predicting Source Code Changes by Mining Revision History,”
IEEE Trans. Software Eng., vol. 30, pp. 574-586, Sept. 2004.

[25] P.P. Chen, “The Entity-Relationship Model—Toward a Unified
View of Data,” ACM Trans. Database Systems, vol. 1, no. 1, pp. 9-36,
Mar. 1976.

[26] A. Mockus, R.T. Fielding, and J. Herbsleb, “Two Case Studies of
Open Source Software Development: Apache and Mozilla,” ACM
Trans. Software Eng. and Methodology, vol. 11, no. 3, pp. 1-38, July
2002.

[27] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn,
H.F. Nielsen, S. Thatte, and D. Winer, Simple Object Access Protocol
(SOAP) 1.1, World Wide Web Consortium, 2000.

[28] F.-C. Cheong, Internet Agents: Spiders, Wanderers, Brokers, and Bots.
Indianapolis, In: New Riders Publishing, 1996.

[29] D.M. German, “Mining CVS Repositories, the Softchange Experi-
ence,” Proc. First Int’l Workshop Mining Software Repositories
(MSR ’04), pp. 17-21, May 2004.

[30] S. Dumais, “Improving the Retrieval of Information from External
Sources,” Behavior Research Methods, Instrument, and Computers,
vol. 23, no. 2, pp. 229-236, 1991.

[31] S.C. Deerwester, S.T. Dumais, T.K. Landauer, G.W. Furnas, and
R.A. Harshman, “Indexing by Latent Semantic Analysis,” J. the
Am. Soc. of Information Science, vol. 41, no. 6, pp. 391-407, 1990.

[32] G. Salton and M.J. McGill, Introduction to Modern Information
Retrieval. McGraw-Hill, 1983.

[33] D. !CCubrani"cc, “Project History as a Group Memory: Learning from
the Past,” PhD dissertation, Univ. of British Columbia, 2004.

[34] M.A. Hearst, “TextTiling: A Quantitative Approach to Discourse
Segmentation,” Computational Linguistics, vol. 23, no. 1, pp. 33-64,
Mar. 1997.

[35] A. Arampatzis, “Adaptive and Temporally-Dependent Document
Filtering,” PhD dissertation, Katholieke Univ. Nijmegen, Nijme-
gen, The Netherlands, 2001.

[36] M. Balabanovi"cc and Y. Shoham, “Fab: Content-Based Collabora-
tive Recommendation,” Comm. ACM, vol. 40, no. 3, pp. 66-72, Mar.
1997.

[37] W. Hill, L. Stead, M. Rosenstein, and G. Furnas, “Recommending
and Evaluating Choices in a Virtual Community of Use,” Proc.
ACM Conf. Human Factors in Computing Systems, vol. 1, pp. 194-
201, 1995.

[38] U. Shardanand and P. Maes, “Social Information Filtering:
Algorithms for Automating ‘Word of Mouth’,” Proc. ACM Conf.
Human Factors in Computing Systems, vol. 1, pp. 210-217, 1995.

[39] J.A. Konstan, B.N. Miller, D. Maltz, J.L. Herlocker, L.R. Gordon,
and J. Riedl, “GroupLens: Applying Collaborative Filtering to
Usenet News,” Comm. ACM, vol. 40, no. 3, pp. 77-87, Mar. 1997.

[40] M. Chalmers, K. Rodden, and D. Brodbeck, “The Order of Things:
Activity-Centred Information Access,” Proc. Seventh World Wide
Web Conf., pp. 359-367, 1998.

[41] R.B. Allen, P. Obry, and M. Littman, “An Interface for Navigating
Clustered Document Sets Returned by Queries,” Proc. Conf.
Organizational Computing Systems (COOCS ’93), pp. 166-171, 1993.

[42] V. Sabol, W. Kienreich, M. Granitzer, J. Becker, K. Tochtermann,
and K. Andrews, “Applications of a Lightweight, Web-Based
Retrieval, Clustering, and Visualisation Framework,” Proc. Conf.
Practical Aspects of Knowledge Management (PAKM ’02), pp. 359-368,
2002.

[43] C.-M. Chen, N. Stoffel, M. Post, C. Basu, D. Bassu, and C. Behrens,
“Telcordia LSI Engine: Implementation and Scalability Issues,”
Proc. 11th Int’l Workshop Research Issues in Data Eng. (RIDE ’01),
pp. 51-58, 2001.

[44] C. Tang, S. Dwarkadas, and Z. Xu, “On Scaling Latent Semantic
Indexing for Large Peer-to-Peer Systems,” Proc. 27th Ann. Int’l
Conf. Research and Development in Information Retrieval (SIGIR ’04),
pp. 112-121, 2004.

464 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 6, JUNE 2005

Davor !CCubrani"cc received the BS degree from
the University of Southern Mississippi in 1995 in
computer science and mathematics, and the
MSc and PhD degrees in computer science from
the University of British Columbia in 1998 and
2005, respectively. He is currently a postdoctoral
researcher in the Department of Computer
Science at the University of Victoria. His
research interests are in collaborative software
development, computer-supported collaborative

work, empirical methods in software engineering, and software
engineering education.

Gail C. Murphy received the BSc degree in
computing science from the University of Alberta
in 1987 and the MS and PhD degrees in
computer science and engineering from the
University of Washington in 1994 and 1996,
respectively. From 1987 to 1992, she worked as
a software designer in industry. She is currently
an associate professor in the Department of
Computer Science at the University of British
Columbia. Her research interests are in software

evolution, software design, and source code analysis. She is a member
of the IEEE Computer Society.

Janice Singer received the PhD degree in
cognitive psychology from the University of
Pittsburgh. She is a cognitive psychologist
working in the National Research Council of
Canada’s Software Engineering Group. She
also heads the NRC’s Human-Computer Inter-
action program. Her interests lie in collaboration,
cognition, and improving software processes
and tools by understanding the cognitive and
social demands of work.

Kellogg S. Booth received the BS degree from
Caltech in 1968 in mathematics, and the MA
degree in 1970 and the PhD degree in 1975 from
the University of California, Berkeley, in compu-
ter science. He is a professor of computer
science and the founding director of the Media
and Graphics Interdisciplinary Centre at the
University of British Columbia. He has worked
in the fields of computer graphics and human-
computer interaction since 1968. Prior to joining

UBC, he was a faculty member in the Department of Computer Science
at the University of Waterloo (1977-1990), and before that a staff
member at Lawrence Livermore National Laboratory (1968-1976).
Research interests include human-computer interaction, collaboration
technology, visualization, computer graphics, user interface design, and
analysis of algorithms. He is involved in a number of interdisciplinary
research projects at UBC and elsewhere.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

!CCUBRANI"CC ET AL.: HIPIKAT: A PROJECT MEMORY FOR SOFTWARE DEVELOPMENT 465

