
Andi Scharfstein,
Seminar on Functional Programming 2006

Why are we here?

[Live Demo of the „Orbitz Bug“:

1. Visit orbitz.com in a web browser

2. Open multiple flights in multiple windows]

3. Try to book a flight. Regardless of which flight was
 selected in your window, the flight that will be
 booked will always be the flight from the most
 recently opened window (even if it was closed in
 the meantime)]

We want to fix such bugs!

Constructing the Model

ClientWeb Server

The Web Server

ClientWeb Server

The Web Server

ClientWeb Server

• Internal storage
• Consists of key/value pairs
• Represented by σ: Key → Value
• Describes server state

flight 815
dest. SF
... ...

The Web Server

ClientWeb Server

• Internal storage
• Consists of key/value pairs
• Represented by σ: Key → Value
• Describes server state

flight 815
dest. SF
... ...

• Scripts (dynamic pages, forms)Scripts

The Web Server

ClientWeb Server

• Internal storage
• Consists of key/value pairs
• Represented by σ: Key → Value
• Describes server state

flight 815
dest. SF
... ...

Scripts

display-
flights.htm

<?php
 for i in flights
 display(i)
 end>

... ...

• Scripts (dynamic pages, forms)
• Lookup function P: URL → Form

The Web Server

ClientWeb Server

• Internal storage
• Consists of key/value pairs
• Represented by σ: Key → Value
• Describes server state

flight 815
dest. SF
... ...

Scripts

The Client

ClientWeb Server

flight 815
dest. SF
... ...

Scripts

The Client

ClientWeb Server

flight 815
dest. SF
... ...

Scripts

Current
form• Active page

The Client

ClientWeb Server

flight 815
dest. SF
... ...

Scripts

Current
form• Active page

...
• Browser cache
• All previously
 seen forms

<html>
<form action=‘book-flight.html‘>

 <input name=‘flight‘
 type=‘text‘
 value=‘815‘>

<input name=‘destination‘
 type=‘text‘
 value=‘San Francisco‘>

<input name=‘submit‘
 type=‘submit‘
 value=‘Submit!‘>

</form>
</html>

Forms

<html>
<form action=‘book-flight.html‘>

 <input name=‘flight‘
 type=‘text‘
 value=‘815‘>

<input name=‘destination‘
 type=‘text‘
 value=‘San Francisco‘>

<input name=‘submit‘
 type=‘submit‘
 value=‘Submit!‘>

</form>
</html>

Forms

Representation:

URL: book-flight.html

flight 815

destination San
Francisco

Supported Actions

• Users may do any of the following at any time:

- Enter data into the current form

- Switch to a cached page
(e.g., click on the back button)

- Submit a form

What happens, when...
• Users enter form data:

- The key/value vector of the form is modified to
store the updated value

URL: book-flight.html

flight 816

destination San
Francisco

What happens, when...
• Users enter form data:

- The key/value vector of the form is modified to
store the updated value

- The updated form is added
to the browser cache

URL: book-flight.html

flight 816

destination San
Francisco

Current

...

What happens, when...

• Users switch to some form:

- The new form is set as the
client‘s „current page“ (but
only if it‘s found in the cache)

Current
form

...

What happens, when...

• Users submit a form?

flight 815
dest. SF
... ...

Form Submissions

ClientWeb Server

Scripts

Current
form

...

Current
form

...

flight 815
dest. SF
... ...

Form Submissions

ClientWeb Server

Scripts

Current
form

...

• Server computes the new form

Current
form

...

flight 815
dest. SF
... ...

Form Submissions

ClientWeb Server

Scripts

Current
form

...

• Server state (storage) is updated

Current
form

...

flight 815
dest. SF
... ...

Form Submissions

ClientWeb Server

Scripts

Current
form

...

• Client‘s „current page“ is set to the new form

...

flight 815
dest. SF
... ...

Form Submissions
• New form is added to client‘s browser cache

ClientWeb Server

Scripts

Current
form

...

Attention, Mini-Test!
How does switching work again? Explain.

Current
form

...

Attention, Mini-Test!
How does switching work again? Explain.

Current
form

...

„Rewriting“ describes the transition
directly and precisely:

<s, <f , f >>⁰
➝

➞ ¹<s, <f , f >>➝
where ¹ f ➝f ∈

• Use identifiers, variables

• Create functions

• Apply functions

• Create new forms

• Extract values from forms (via keys)

• Basic I/O (Server storage read/write)

Scripting Language

• Use identifiers, variables

• Create functions

• Apply functions

• Create new forms

• Extract values from forms (via keys)

• Basic I/O (Server storage read/write)

Scripting Language

flight
dest.
... ...

Modelling the Bug

Scripts

-Show
Flights

-

Web ServerWeb Pages

flight
dest.
... ...

Modelling the Bug

Scripts

-

Flight 1
Details

Show
Flights

-

Web ServerWeb Pages

flight
dest.
... ...

Modelling the Bug

Scripts

815

Flight 1
Details

Show
Flights

SF

Web ServerWeb Pages

flight
dest.
... ...

Modelling the Bug

Scripts

815

Flight 1
Details

Show
Flights

Flight 2
Details

SF

Web ServerWeb Pages

flight
dest.
... ...

Modelling the Bug

Scripts

1632

Flight 1
Details

Show
Flights

Flight 2
Details

SF

Web ServerWeb Pages

flight
dest.
... ...

Modelling the Bug

Scripts

1632

Flight 1
Details

Show
Flights

Flight 2
Details

SF

Book
Flight

Web ServerWeb Pages

flight
dest.
... ...

Modelling the Bug

Scripts

1632

Flight 1
Details

Show
Flights

Flight 2
Details

SF

Book
Flight

Web ServerWeb Pages

Explaining the Bug

• Obviously, submitting „outdated“ forms causes
undesired behaviour

• The HTTP Observer Problem: Server cannot „push“
updates to the client (as in MVC)

➡ At least produce warnings when detecting outdated
 requests

Detecting outdated requests

• Server needs a notion of time:

➡ Model as number of
 submits

• Storage records time of last
write for each field

Scripts

time 4

flight 815 3
dest. SF 1
... ...

Detecting outdated requests
• Introduce „carrier sets“ into forms:

All locations accessed by this script

• Each form stores its creation time

URL: book-flight.html

flight 815

destination San
Francisco

time 4 carriers ...

Scripts

time 4

flight 815 3
dest. SF 1
... ...

Detecting outdated requests

• Whenever a form is submitted, check its carrier set
against current storage state and compare time stamps

• The carrier set represents the assumptions the script
made while working

• If any location from this set was overwritten, script
assumptions may have been violated

Thank you!
• We have built a comprehensive, yet simple model of

web interactions

• Three basic semantic rules suffice to describe all
possible user actions:

- „switch“

- „fill-out“

- „submit“

• Any questions?

References

• Shriram Krishnamurti, Robert Bruce Findler, Paul
Graunke, Matthias Felleisen:
„Modeling Web Interactions and Errors“ (2004)

• Daniel R. Licata, Shriram Krishnamurthi:
„Verifying Interactive Web Programs“ (2005)

Addendum: Fun with Types

• Make forms typed!

• Enables static checks for common bugs, like trying
to access form data that never got submitted

• Also enables us to give some other safety guarantees

• But: How to keep track of types in a dynamic
setting?

Incremental Type Checking

• Uses constraints along with regular type judgements

• Constraints are introduced by creating forms:

- The successor url of any form must contain a
program that takes as input exactly the data (type)
of that form

• Otherwise, forms behave essentially like records

Consistency

• Consistency is achieved by checking that all types
registered for some form at a particular URL are
equivalent

• Since type constraints can be introduced by the
regular type system as well as by additional
constraints, this is not always the case

• If the types are not consistent, refuse to execute the
script

