Quick Check

A Lightweight Tool for Random
Testing of Haskell Programs

Koen Claessen, John Hughes

Verification versus Validation

We want a program to be correct.
Problem: To verify it, we need specifications.

We can validate 1t by testing 1it.

In Haskell, testing 1s quite efficient, because of
purity.
(When every function 1s correct and has no
side-effects, the whole program will be correct)

Example

fac_naive n
| n<?2 =1
lotherwise = n * fac_naive (n-1)

fac n = foldr (*) 1 [0..n]

prop_fac .- Int => Bool
prop_fac x = fac x == fac_naive X

Main> quickCheck prop_fac

Falsifiable, after 1 tests:
1

Main> fac 1
0

Example

fac_naive n
| n<?2 =1
lotherwise = n * fac_naive (n-1)

fac n = foldr (*) 1 [1..n]
prop_fac .- Int => Bool

prop_fac x = fac x == fac_naive X

Main> quickCheck prop_fac
OK, passed 100 tests.

How to generate test data?

(x —
Main> quickCheck proBecty

class Arbitrary where

arbitrary :: Gen a
Bool:
instance Arbitrary Bool where
arbitrary = elements [True, False]
Int:

instance Arbitrary Int where
arbitrary = choose (—1000, 1000)

Int = (Int = Bool) = [Char] — Int

Generating more complex data

Gen X
- Gen (&, B)
Gen P
Gen X
— Gen [K]
Gen PosInt ——

choose (0, 100)

Combinators

return o X = Gen X

clements] = Gen &

choose :: (Int, Int) = Gen Int
oneof .. |Gen] = Gen &
frequency :: [(Int, Gen &)] = Gen &

sized . (Int = Gen @) = Gen &

Generating user defined data

data Colour = Red | Blue | Green

instance Arbitrary Colour where
arbitrary = oneof [return Red,return Blue, return Green]

data Treea=La | T (Tree a) (Tree a)

instance Arbitrary a => instance Arbitrary Tree a where
arbitrary = oneof [liftM L arbitrary,
liftM2 T arbitrary arbitrary]

return ::a-> Gen a

oneof ::[Gen a] -> Gen a

liftM @ (@a->1t)->Gena->Cent

liftM2 :(@->b->t)-> Gena->Genb ->Gen't

Generating user defined data

return - a-> Gena
oneof :: [Gen a] -> Gen a
frequency .. [(Int, Gen a)] -> Gen a

data Treea=La | T (Tree a) (Tree a)

instance Arbitrary a => instance Arbitrary Tree a where

arbitrary = oneof [liftM L arbitrary,
liftM2 T arbitrary arbitrary]

Generating user defined data

return a-> Gen a

oneof . [Gen a] -> Gen a
frequency .. [(Int, Gen a)] -> Gen a
sized 2 (Int => Gen a) -> Gen a

data Treea=La | T (Tree a) (Tree a)

instance Arbitrary a => instance Arbitrary Tree a where

arbitrary = frequency [(1, liftM L arbitrary),
(2, liftM2 T arbitrary arbitrary)]

Generating user defined data

return a-> Gen a

oneof . [Gen a] -> Gen a
frequency .. [(Int, Gen a)] -> Gen a
Sized 2 (Int => Gen a) -> Gen a

data Treea=La | T (Tree a) (Tree a)

instance Arbitrary a => instance Arbitrary Tree a where
arbitrary = sized arbTree

arbTree > Int => Gen a
arbTree O = |iftM L arbitrary
arbTree n = frequency [(1, liftM L arbitrary),

(2, liftM2 T (arbTree (n "div" 2))
(arbTree (n "div' 2)))]

What about functions?

Generating functions

newtype Gen = Int & Rand — &

v N\
Gen (x = B) =Int » Rand & o —

B

& = Gen B =0t = Int = Rand — P

promote . (x = Gen B) = Gen (& —)

Modifying the Random Number Seed

We need a function: & — Gen

B

We have: variant :: Int @ Gen X = Gen X

original seed variant a 659 '19 '199 2, 11,
1,38,-12, 6,-472, ... <
-52, 0, 41, -20, 1, ...

variant b

How does variant solve our problem?

Coarbitrary

We still need a function: & — Gen 3

variant : Int 2 Gen X = Gen X
coarbitrary :: & = Gen = Gen
Bool:

instance Coarbitrary Bool where
coarbitrary b g =
if b then variant 0 g else variant 1 g

Putting the stuff together

coarbitrar
Coarbitrary &: o =’Geny — Geny —l
Arbitrary P: Ge1n B o _l’ Gen 3
arbitrary
promote . (X = Gen B) = Gen (& — B)

instance (Coarbitrary a, Arbitrary b) => Arbitrary (a -> b) where

arbitrary = promote (\x -> coarbitrary x arbitrary)
Gen (x — (X) (Gen B)

3 kinds of errors:

Errors 1n the test data generator
Diverging Generators

Generators that produce nonsense

Errors 1n the program
fac n = foldr (*) 1 [0..n]

Errors 1n the specification

Ill-defined properties
Missunderstanding of the code

Monitoring Test Data

prop_fac . Int => Property
prop_fac x = classify (x mod 2 == 0) ,even”
(fac x == fac_naive x)

Main> quickCheck prop_fac
OK, passed 100 tests (52% even).

prop_fac . Int => Property
prop_fac x = collect (x mod 3) (fac x == fac_naive x)

Main> quickCheck prop_fac

OK, passed 100 tests.
38% 2.
27% 0.
25% 1.

Advanced Properties

prop_fac :: Int => Property
prop_facx =x<1==>facx ==
prop_fac :: Property

prop_fac = forAll nicelnt (\x -> fac x == fac_naive x)

The trivial data Problem

Prop_Insert .. Int => [Int] => Property
Prop_Insert x xs = ordered xs ==> ordered (insert x Xxs)

Main> quickCheck prop_Insert
OK, passed 100 tests.

The trivial data Problem

Prop_Insert .. Int => [Int] => Property
Prop_Insert x xs = ordered xs ==> classify (length xs < 3)
Jtrivial® (ordered (insert x Xs))

Main> quickCheck prop_Insert
OK, passed 100 tests (95% trivial).

