A Functional Graph Library

Based on
Inductive Graphs and Functional Graph Algorithms
by Martin Erwig

Presentation by
Christian Doczkal
March 22nd, 2006
Motivation
Inductive graph definition
Implementation
 - Binary search trees
 - Version-tree implementation
Algorithms I (DFS)
Conclusions
Algorithms II
Motivation

• Goals
 - Find inductive model for graphs
 - Provide efficient graph implementations that meet imperative time bounds
 - Make functional languages suitable for teaching graph algorithms
 - Increase overall acceptance of functional languages

• Benefits
 - Inductive programming style gives clarity and elegance
 - Inductive proofs over graph algorithms possible
Inductive graph definition

```haskell
type Node = Int
type Adj b = [(b, Node)]

Context a b = (Adj b, Node, a, Adj b)
data Graph a b = Empty | Context a b & Graph a b

; Graph example:

([["down",2]],3,'c',[["up",1]]) &
([["right",1]],2,'b',[["left"],1]) &
([[],1,'a',[]]) & Empty
```
Inductive graph definition

• Fact 1 (Completeness): Each labeled multi-graph can be represented by a Graph term.

• Fact 2 (Choice of Representation) For each graph g and each node v contained in g there exist p, l, s and g' such that $(p, v, l, s) \& g'$ denotes g.
Implementation

• Requirements
 – Construction
 • Empty Graph (Empty)
 • Add context (&)
 – Decomposition
 • Test for Empty Graph (Empty-match)
 • Extract arbitrary context (&-match)
 • Extract specific context (&'-match)
• Definitions for time bounds G = (V,E):
 \[n := |V| \quad m := |E| \quad c_v := |suc v| + |pred v| \]
 \[c := \max \{ v \in V / c_v \} \]
Binary search trees

- Graph is represented as pair (t,m)
 - t = binary search tree of (node,(predecessor,label,successor))
 - m = highest node occurring in t
 - Predecessors/successors stored as binary search trees

- Time bounds
 - Node insertion:
 - Node deletion:
 - &/\&^v -match:
 \[O(c_v \log c \log n) \subseteq O(n \log^2 n) \]
Array version tree

- Implementation for functional arrays
- Implementation
 - Inward directed tree of (index, value) pairs
 - Original Array is the root of the tree
 - New versions inserted as children of the version they are derived from (\(O(1)\))
 - Every version is a pointer to some node in the tree
 - Lookup follows tree structure terminating at root
 - (\(O(u)\) where \(u\) is the number of updates to the array)
Version-tree representation

- context array
 version tree root (v0)

 - imperative cache array
 version 1
 version 1.1
 imperative cache array

 - version 1
 version 1.2
 version 1.2.1

 - version 2
 imperative cache array
Avoiding Node Deletion
- positive integer stamps for nodes and edges
- node deletion ≈ negate integer for that node
- adjacency ignores non matching stamps
- insertion ≈ negate again and increment stamp

&-match, Empty-match and insertion
- $k := |V|$ so Empty-match ≈ $k = 0$
- $elem$ array stores partition of deleted and inserted nodes
- $index$ array stores position of nodes in $elem$ array
- &-match ≈ $&^{elem[1]}$-match
ADT – version-tree time bounds

- Test for Empty Graph (Empty-match)
- Extract arbitrary context (&-match)
- Extract specific context (&v-match)
- Add context (&)

\begin{align*}
\{ & \{ O(1) \\
 & O(c_v \log c) \} \\
\end{align*}

- Multi threaded usage adds a factor \(u \) corresponding to number of previous updates
• Depth first search

\[
\text{dfs :: [Node] -> Graph a b -> [Node]}
\]
\[
\text{dfs [] g} = []
\]
\[
\text{dfs vs Empty} = []
\]
\[
\text{dfs (v:vs) (c &\text{\textasciitilde} v g) = v : dfs (suc c ++ vs) g}
\]
\[
\text{dfs (v:vs) g} = \text{dfs vs g}
\]

• Breadth first search:

\[
\text{bfs (v:vs) (c &\text{\textasciitilde} v g) = v : dfs (vs ++ suc c) g}
\]

(or queue implementation for efficiency)
Conclusions

- **Goals met?**
 - Code shows both clarity and elegance
 - Same time complexity as imperative implementations

- **Problems**
 - Double representation of edges and cache arrays cause a lot of memory overhead.
 - Time complexity met only on single threaded graph usage
DF Spanning Forest:

```haskell
data Tree a = Br a [Tree a]
postorder (Br v ts) = concatMap postorder ts ++ v

df :: [Node] -> Graph a b -> ([Tree Node], Graph a b)
df [] g = ([],g)
df (v:vs) (c & v g) = (Br v f:f',g2)
    where (f,g1) = df (suc c) g
         (f',g2) = df vs g1

df (v:vs) g = df vs g

dff :: [Node] -> Graph a b -> [Tree Node]
dff vs g = fst (df vs g)
```
Strongly connected groups:

topsort :: Graph a b -> [Node]
topsort g = reverse.concatMap postorder.(dff (nodes g) g)

scc :: Graph a b -> [Tree Node]
scc g = dff (topsort g) (grev g)
type Lnode a = (Node, a)
type Lpath a = [Lnode a]
type LRTree a = [Lpath a]

instance Eq a => Eq (Lpath a) where
 ((_,x):_) == ((_,y):_) = x == y

instance Ord a => Ord (Lpath a) where
 ((_,x):_) < ((_,y):_) = x < y

getPath Node -> LRTree a -> Path
getPath = reverse . map fst . first (\((w,_):_) -> w == v)

sssp :: Real b => Node -> Node -> Graph a b -> Path
sssp s t = getPath t . dijkstra (unitHeap [(s,0)])
Dijkstra SSSP:

```haskell
expand :: Real b =>
        b -> LPath b -> Context a b -> [Heap(LPath b)]
expand d p (_,_,_,s) = map(\(l,v) -> unitHeap((v,l+d):p)) s

dijkstra :: Real b =>
        Heap(LPath b) -> Graph a b -> LRTree b

dijkstra h g
   | isEmptyHeap h || isEmpty g = []

   dijkstra (p@((v,d):_)) << h) (c &^ g) =
       p:dijkstra (mergeAll (h:expand d p c)) g

dijkstra (_,_<< h) g = dijkstra h g
```