A Functional Graph Library

Based on Inductive Graphs and Functional Graph Algorithms by Martin Erwig

Presentation by Christian Doczkal March 22nd, 2006

Structure

- Motivation
- Inductive graph definition
- Implementation
 - Binary search trees
 - Version-tree implementation
- Algorithms I (DFS)
- Conclusions
- Algorithms II

Motivation

Goals

- Find inductive model for graphs
- Provide efficient graph implementations that meet imperative time bounds
- Make functional languages suitable for teaching graph algorithms
- Increase overall acceptance of functional languages

Benefits

- Inductive programming style gives clarity and elegance
- Inductive proofs over graph algorithms possible

Inductive graph definition

right

data Graph a b = Empty | Context a b & Graph a b

```
a left down

([(" down",2)],3,'c',[(" up",1)]) & ([("right",1)],2,'b',[("left"),1]) & ([],1,'a',[]) & Empty
```

Inductive graph definition

- •Fact 1 (Completeness): Each labeled multi-graph can be represented by a Graph term
- •Fact 2 (Choice of Representation)
 For each graph g and each node v contained in g there exist p,l,s and g' such that (p,v,l,s) & g' denotes g.

Implementation

- Requirements
 - Construction
 - Empty Graph (Empty)
 - Add context (&)
 - Decomposition
 - Test for Empty Graph (*Empty-match*)
 - Extract arbitrary context (&-match)
 - Extract specific context (&\(^v\)-match)
- Definitions for time bounds G = (V,E):

$$n:=|V| \quad m:=|E| \quad c_v:=|sucv|+|predv|$$

$$c:=max\{v\in V/c_v\}$$

Binary search trees

- Graph is represented as pair (t,m)

 - m = highest node occurring in t
 - Predecessors/successors stored as binary search trees
- Time bounds
 - Node insertion:
 - Node deletion:
 - &/&^v -match:

$$O(c_v \log c \log n) \subset O(n \log^2 n)$$

Array version tree

- Implementation for functional arrays
- Implementation
 - Inward directed tree of (index, value) pairs
 - Original Array is the root of the tree
 - New versions inserted as children of the version they are derived from (${\cal O}(1)$)
 - Every version is a pointer to some node in the tree
 - Lookup follows tree structure terminating at root
 - (O(u) where u is the number of updates to the array)

Version-tree representation

Version-tree optimizations

Avoiding Node Deletion

- positive integer stamps for nodes and edges
- node deletion ≈ negate integer for that node
- adjacency ignores non matching stamps
- insertion ≈ negate again and increment stamp
- &-match, Empty-match and insertion
 - -k:=|V| so Empty-match $\approx k=0$
 - elem array stores partition of deleted and inserted nodes
 - index array stores position of nodes in elem array
 - &-match ≈ &^{elem[1]}-match

ADT – version-tree time bounds

- Test for Empty Graph (Empty-match)
- Extract arbitrary context (&-match)
- Extract specific context (&^v-match)

Add context (&)

- $O(c_v \log c)$
- Multi threaded usage adds a factor u corresponding to number of previous updates

Algorithms I (DFS)

Depth first search

```
dfs [Node] -> Graph a b -> [Node]
dfs [] g = [] = []
dfs vs Empty = []

dfs (v:vs) (c & g) = v : dfs (suc c ++ vs) g

dfs (v:vs) g = dfs vs g
```

•Breadth first search:

```
bfs (v:vs) (c \&^v g) = v : dfs (vs ++ suc c) g
```

(or queue implementation for efficiency)

Conclusions

Goals met?

- Code shows both clarity and elegance
- Same time complexity as imperative implementations

Problems

- Double representation of edges and cache arrays cause a lot of memory overhead.
- time complexity met only on single threaded graph usage

Algorithms II

DF Spanning Forest:

```
data Tree a = Br a [Tree a]
postorder (Br v ts) = concatMap postorder ts ++ v
df :: [Node] -> Graph a b -> ([Tree Node], Graph a b)
df [] \qquad \qquad = ([],g)
df (v:vs) (c \&^v g) = (Br v f:f',g2)
                   where (f,g1) = df (suc c) g
                       (f',g2) = df vs g1
df (v:vs) g = df vs q
dff :: [Node] -> Graph a b -> [Tree Node]
dff vs q = fst (df vs q)
```

Algorithms II

Strongly connected groups:

```
topsort :: Graph a b -> [Node]
topsort g = reverse.concatMap postorder.(dff (nodes g) g)
scc :: Graph a b -> [Tree Node]
scc g = dff (topsort g) (grev g)
```

Algorithms II (Dijkstra)

```
type Lnode a = (Node, a)
type Lpath a = [Lnode a]
type LRTree a = [Lpath a]
```

```
instance Eq a => Eq (Lpath a) where
((_,x):_) == ((_,y):_) = x == y

instance Ord a => Ord (Lpath a) where
((_,x):_) < ((_,y):_) = x < y</pre>
```

```
getPath Node -> LRTree a -> Path
getPath = reverse . map fst . first (\((w,_):_) -> w == v)

sssp :: Real b => Node -> Node -> Graph a b -> Path
sssp s t = getPath t . dijkstra (unitHeap [(s,0)])
```

Algorithms II (Dijkstra)

Dijkstra SSSP:

```
expand :: Real b =>
           b -> LPath b -> Context a b -> [Heap(LPath b)]
expand d p ( , , s) = map((1,v) \rightarrow unitHeap((v,l+d):p)) s
dijkstra :: Real b =>
           Heap(LPath b) -> Graph a b -> LRTree b
dijkstra h q
   | isEmptyHeap h || isEmpty g = []
dijkstra (p@((v,d): ) << h) (c \&^{v} g) =
        p:dijkstra (mergeAll (h:expand d p c)) g
                           g = dijkstra h g
dijkstra ( << h)</pre>
```