A Functional Graph Library

Based on
Inductive Graphs and Functional Graph Algorithms
by Martin Erwig

Presentation by
Christian Doczkal
March 22", 2006

* Motivation
I * |nductive graph definition

* Implementation
— Binary search trees
- Version-tree implementation

* Algorithms | (DFS)
* Conclusions
* Algorithms Il

Structure

I Motivation
*Goals
- Find inductive model for graphs
- Provide efficient graph implementations that meet

Imperative time bounds

- Make functional languages suitable for teaching
graph algorithms

- Increase overall acceptance of functional languages

*Benefits

- Inductive programming style gives clarity and
elegance
- Inductive proofs over graph algorithms possible

Inductive graph definition

type Node = Int
type Adj b = [(b,Node)]
type Context a b (Adj b, Node, a, Adj b)

data Graph a b = Empty | Context a b & Graph a b

1 Jdght 2
(::);H_ b
up «down
s

e i ([(* down”,2)],3,'c',[(* up”,1)]) &
Ty ([(“right”,1)1,2,'b',[(“left”),1]) &
([1,1,'a"',[1) & Empty

Inductive graph definition

°Fact 1 (Completeness):

Each labeled multi-graph can be represented
by a Graph term

°Fact 2 (Choice of Representation)

For each graph g and each node v contained in
g there exist p,/,s and g’ such that

(p,v,l,s) & g' denotes g.

* Requirements
I — Construction
* Empty Graph (Empty)
* Add context (&)
- Decomposition

* Test for Empty Graph (Empty-match)
e Extract arbitrary context (&-match)
* Extract specific context (&"-match)

e Definitions for time bounds G = (V,E):

n:=|V| m:=|E| c, :=|sucv|+|predv|
c:=max{veVl/c,]

Implementation

I Binary search trees

- t = binary search tree of
(node,(predecessor,label,successor))
- m = highest node occurring in t
- Predecessors/successors stored as binary search
trees

* Time bounds
- Node insertion:
- Node deletion: O(c,logclogn)cO(nlog®n)
- &/&" -match:

I * Graph is represented as pair (t,m)

I Array version tree

* Implementation

- Inward directed tree of (index, value) pairs

- Original Array is the root of the tree

- New versions inserted as children of the version
they are derived from (O(1))

- Every version is a pointer to some node in the tree

- Lookup follows tree structure terminating at root

- (O(u) where u is the number of updates to the
array)

I * Implementation for functional arrays

Version-tree representation

imperative
cache array

~ ~
~ ~

version 1.1 version 12

imperative
cache array @

Imperative
cache array

I Version-tree optimizations

- positive integer stamps for nodes and edges
- node deletion = negate integer for that node

- adjacency ignores non matching stamps

- Insertion = negate again and increment stamp

* &-match, Empty-match and insertion

I * Avoiding Node Deletion

- k:=|V| so Empty-match = k=0
- elem array stores partition of deleted and inserted
nodes

— Index array stores position of nodes in elem array
- &-match = &*™'-match

I ADT — version-tree time bounds

* Test for Empty Graph (Empty-match)
I Extract arbitrary context (&-match) 0(1)
e Extract specific context (&-match)

* Add context (&) O(c,logc)

* Multi threaded usage adds a factor u
corresponding to number of previous
updates

*Depth first

Algorithms | (DFS)

search

dfs :: [Node] -> Graph a b -> [Node]

dfs [] g =[]
dfs vs Empty = 1]
dfs (v:vs) (¢ & g) = v : dfs (suc c ++ vs) g
dfs (v:vs) g = dfs vs g
*Breadth first search:
bfs (v:ivs) (¢ & g) = v : dfs (vs ++ suc c) g

(or queue implementation for efficiency)

e Goals met?

— Code shows both clarity and elegance
- Same time complexity as imperative
Implementations

* Problems
- Double representation of edges and cache arrays
cause a lot of memory overhead.
- time complexity met only on single threaded graph
usage

Conclusions

Algorithms i

DF Spanning Forest:

concatMap postorder ts ++ v

Graph a b)

df (suc c) g

df

VS

data Tree a = Br a [Tree a]

postorder (Br v ts) =

df [Node] -> Graph a b -> ([Tree Node],

df [] g = ([1,9)

df (v:vs) (c & g) = (Br v f:f',g2)
where (f,gl) =

(£',92) =

df (v:vs) g = df vs g

dff [Node] -> Graph a b -> [Tree Node]

dff vs g = fst (df vs qg)

gl

Algorithms i

Strongly connected groups:

topsort ::

SCC ¢

Graph a b -> [Node]
topsort g = reverse.concatMap postorder. (dff

Graph a b -> [Tree Node]
scc g = dff (topsort g)

(grev g)

(nodes g) qg)

Algorithms Il (Dijkstra)

type Lnode a = (Node, a)
type Lpath a = [Lnode a]
type LRTree a = [Lpath a]

instance Eq a => Eq (Lpath a) where
((_,/X):_) == ((_,Y):_) =X ==Y

instance Ord a => Ord (Lpath a) where
((_/x):_) < ((L/y):_) =xXx<y

getPath Node -> LRTree a -> Path

getPath = reverse . map fst . first (\((w,

_):

) —> w

sssp :: Real b => Node -> Node -> Graph a b -> Path
sssp s t = getPath t . dijkstra (unitHeap [(s,0)])

V)

Algorithms Il (Dijkstra)

Dijkstra SSSP:

expand :: Real b =>
b -> LPath b -> Context a b -> [Heap(LPath b)]
expand d p (_, , ,s) = map(\(l,v) -> unitHeap((v,1+d):p)) s

dijkstra :: Real b =>
Heap(LPath b) -> Graph a b -> LRTree b

dijkstra h g
| isEmptyHeap h || isEmpty g = []

dijkstra (p@((v,d):) << h) (c & g) =
p:dijkstra (mergeAll (h:expand d p c)) g

dijkstra (_ << h) g = dijkstra h g

