Seminar: Advanced Functional Programming

JoCaml: A Language for Concurrent Distributed and Mobile
Programming

Nicolas Bettenburg

Universitat des Saarlandes
Saarbriicken

22.03.2006

Nicolas Bettenburg Seminar: Advanced Functional Programming

Overview

o Introduction
@ Concurrent Programming
@ About JoCaml

Q Concurrent Programming
@ New Language features
@ Synchronization and Control
@ Example: A Reference Cell

e Distributed Programming
@ Distributed Model
@ Nameserver and Mobility
@ Termination

Q Summary

Nicolas Bettenburg Seminar: Advanced Functional Programming

Introduction
[]

Concurrent Programming

Concurrency: Definition and Concerns

Property of systems which consist of computations that execute
overlapped in time, and which may permit the sharing of
common resources between these computations.

@ Multiple Concurrency Models

o Lock-Based Approach
e Transactional Memory (as seen in Seminar)

@ Race Conditions, Deadlocks, Starvation
@ Debugging, Correctness

Nicolas Bettenburg Seminar: Advanced Functional Programming

Introduction

About JoCaml

New Approach: JoCaml

@ Underlying Concurrency Model: Join Calculus (1996)
@ Based on Objective Caml

Statically typed language

e Byte-code compiler (code mobility)

e Good system programming support

e Efficient Garbage Collector

e sequential, call-by-value evaluation, deterministic

@ Extension maintains original language features.

@ JoCaml extends OCaml with support

o for lightweight-concurrency
e Message Passing
e Message-based Synchronization

Nicolas Bettenburg Seminar: Advanced Functional Programming

Concurrent Programming
[lele}

New Language features

Expressions

@ Executed synchronously.
@ Every Ocaml expression is a Jocaml| expression

let x=1 in print(x); print(x+1); ;;
= 12

Nicolas Bettenburg Seminar: Advanced Functional Programming

Concurrent Programming
(o] le}

New Language features

Processes

Processes
@ Executed asynchronously
@ No result value

@ Communicate by sending messages on channels.

spawn { echo 1 };; can also be written as

spawn { echo 2 };; # spawn {echo 1 | echo 2};;
=> 12 (or 21 1)

Nicolas Bettenburg

Seminar: Advanced Functional Programming

Concurrent Programming
[efe]]

New Language features

Channels

Uni-Directional Channels

@ Synchronous, in expressions, send and await answer
(block).

@ Asynchronous, in processes, send message.

let def my_chan_sync x = print_int x; reply;;
val my_chan_sync: int — unit

let def my_chan_asynch! x = print_int x;
val my_chan_async <<int>>

Nicolas Bettenburg Seminar: Advanced Functional Programming

Concurrent Programming

Synchronization and Control

Synchronization and Concurrency Control

Synchronization by Pattern Matching
Join patterns extend port name definitions with synchronization.

let def fruit! f | cake! ¢ = print_string(f*" "Ac);
spawn{ fruit orange | fruit apple | cake sacher};;

3

Synchronization Barriers

Represent explicit synch-points also know as rendez-vous.

let def syncl () | sync2 () = reply to syncl | reply to sync2;;
spawn {for i=0 to 9 do synci1(); print_int 1 done;};;
spawn {for i=0 to 9 do sycn2(); print_int 2 done;};;

=> 12121212121212121212

Nicolas Bettenburg Seminar: Advanced Functional Programming

Concurrent Programming

L
Example: A Reference Cell

A reference cell

type ’'a jref = {set: 'a —> unit; get: unit — ’a}
let def new_ref u =

let def state! v | get () = state v | reply v
or state! v | set w = state w | reply
in state u | reply{get=get; set=set}

let r0 = new_ref 0
type ’‘a jref = { set: ’a—unit; get: unit—>’a}
val new_ref : b — b jref

val r0 : in jref

[N}
s

@ internal state of cell = content
@ lexical scoping keeps state internal
@ content stored as message v on channel state

Nicolas Bettenburg Seminar: Advanced Functional Programming

Distributed Programming
[]

Distributed Model

Distributed Model in JoCaml

Distributed Programming

Distributed Programming is the execution of computations on
one or more machines that share their resources.

@ Any machine may join or quit the computation.

@ At any time, every process or expression is running on a
given machine.

@ They may migrate from on machine to another.

@ System-Level processes communicate via TCP/IP over the
network.

Nicolas Bettenburg Seminar: Advanced Functional Programming

Distributed Programming

[Je]

Nameserver and Mobility

Nameserver

The Nameserver

Used to bootstrap a distributed computation. A built-in library
that exchanges a few channel names.

@ Needed since JoCaml has lexical scoping.
@ Function to register a channel in a global table.
@ Function to look-up a value in the global table.

spawn{ let def f x = reply xxx
in Ns.register "square" f vartype; };;

Nicolas Bettenburg Seminar: Advanced Functional Programming

Distributed Programming

oe

Nameserver and Mobility

Mobility: Locations and Mobility

Represent units of mobility.

let loc here

def square x = reply xxx

and cubic x = reply (square Xx)*x
do {print_int (square 2); } ;;

let loc mobile

do {

let there = Ns.lookupo "here" vartype in go there;

let sqr = Ns.lookup "square" vartype in

let def sum (s,n) =

reply (if n=0 then s else sum (s+sqr n, n—1)) in
print_string (sum(0,5)); } ;;

Nicolas Bettenburg Advanced Functional Programming

Distributed Programming

Termination

Termination and Failure (Recovery)

Some parts of distributed computation may fail.
Detect failures and take adequate measures

o Cleanly report the problem
e Abort related parts of computation
e Make another attempt on a different machine

a location can run a halt() process
a location can detect if another location has halted

Up to the programmer to define locations as suitable units
of failure recovery !

Up to the programmer to provide a recovery mechanism !

Nicolas Bettenburg Seminar: Advanced Functional Programming

Summary
[]

Summary

Summary

@ Based on Join Calculus
@ Nice extension of OCaml

@ Idea of join calculus also applicable to other languages like
C Sharp.

@ Different Model than Memory Transactions. (atomic vs.
joins)

@ Programmer has to consider concurrency while writing
application.

@ Distributed Programming based on concurrency.

Nicolas Bettenburg Seminar: Advanced Functional Programming

Summary

Literature

List of References

@ F. Le Fessant, C. Fournet, L. Maranget and A. Schmitt:
JoCaml: a Language for concurrent
Distributed and Mobile Programming. [AFPS
2002]

@ C. Fournet and G. Gonthier: The join calculus: a
language for distributed mobile

programming. [APPSEM 2000, LNCS vol 2395 p.
268-332]

Nicolas Bettenburg Seminar: Advanced Functional Programming

Questions

Questions

Thank you for your listening.
Questions?

	Introduction
	Concurrent Programming
	About JoCaml

	Concurrent Programming
	New Language features
	Synchronization and Control
	Example: A Reference Cell

	Distributed Programming
	Distributed Model
	Nameserver and Mobility
	Termination

	Summary
	Summary
	Literature
	Questions

