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Concurrent Programming

Concurrency: Definition and Concerns

Concurrency
Property of systems which consist of computations that execute
overlapped in time, and which may permit the sharing of
common resources between these computations.

Multiple Concurrency Models
Lock-Based Approach
Transactional Memory (as seen in Seminar)

Race Conditions, Deadlocks, Starvation
Debugging, Correctness
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About JoCaml

New Approach: JoCaml

Underlying Concurrency Model: Join Calculus (1996)
Based on Objective Caml

Statically typed language
Byte-code compiler (code mobility)
Good system programming support
Efficient Garbage Collector
sequential, call-by-value evaluation, deterministic

Extension maintains original language features.
JoCaml extends OCaml with support

for lightweight-concurrency
Message Passing
Message-based Synchronization
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New Language features

Expressions

Expressions
Executed synchronously.
Every Ocaml expression is a Jocaml expression

# l e t x=1 i n p r i n t ( x ) ; p r i n t ( x +1 ) ; ; ;
=> 12
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New Language features

Processes

Processes
Executed asynchronously
No result value
Communicate by sending messages on channels.

# spawn { echo 1 } ; ; can also be w r i t t e n as
# spawn { echo 2 } ; ; # spawn { echo 1 | echo 2 } ; ;
=> 12 ( or 21 ! ! )
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New Language features

Channels

Uni-Directional Channels
Synchronous, in expressions, send and await answer
(block).
Asynchronous, in processes, send message.

# l e t def my_chan_sync x = p r i n t _ i n t x ; r ep l y ; ;
va l my_chan_sync : i n t −> u n i t

# l e t def my_chan_asynch ! x = p r i n t _ i n t x ; ; ;
va l my_chan_async << i n t >>
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Synchronization and Control

Synchronization and Concurrency Control

Synchronization by Pattern Matching

Join patterns extend port name definitions with synchronization.

# l e t def f r u i t ! f | cake ! c = p r i n t _ s t r i n g ( f ^ " "^ c ) ; ; ;
# spawn { f r u i t orange | f r u i t apple | cake sacher } ; ;

Synchronization Barriers
Represent explicit synch-points also know as rendez-vous.

# l e t def sync1 ( ) | sync2 ( ) = rep l y to sync1 | r ep l y to sync2 ; ;
# spawn { f o r i =0 to 9 do sync1 ( ) ; p r i n t _ i n t 1 done ; } ; ;
# spawn { f o r i =0 to 9 do sycn2 ( ) ; p r i n t _ i n t 2 done ; } ; ;
=> 12121212121212121212
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Example: A Reference Cell

A reference cell

# type ’ a j r e f = { set : ’ a −> u n i t ; get : u n i t −> ’ a }
# l e t def new_ref u =
# l e t def s t a t e ! v | get ( ) = s ta t e v | r ep l y v
# or s ta te ! v | se t w = s ta te w | rep l y
# i n s ta te u | r e p l y { get=get ; se t=set }
# l e t r0 = new_ref 0 ; ;
type ’ a j r e f = { set : ’ a−>u n i t ; get : un i t −>’a }
va l new_ref : ’ b −> ’ b j r e f
va l r0 : i n j r e f

internal state of cell = content
lexical scoping keeps state internal
content stored as message v on channel state
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Distributed Model

Distributed Model in JoCaml

Distributed Programming

Distributed Programming is the execution of computations on
one or more machines that share their resources.

Any machine may join or quit the computation.
At any time, every process or expression is running on a
given machine.
They may migrate from on machine to another.
System-Level processes communicate via TCP/IP over the
network.
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Nameserver and Mobility

Nameserver

The Nameserver
Used to bootstrap a distributed computation. A built-in library
that exchanges a few channel names.

Needed since JoCaml has lexical scoping.
Function to register a channel in a global table.
Function to look-up a value in the global table.

# spawn { l e t def f x = rep l y x∗x
i n Ns . r e g i s t e r " square " f var type ; } ; ;
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Nameserver and Mobility

Mobility: Locations and Mobility

Locations
Represent units of mobility.

# l e t l oc here
# def square x = r e p l y x∗x
# and cubic x = rep l y ( square x )∗ x
# do { p r i n t _ i n t ( square 2 ) ; } ; ;

# l e t l oc mobi le
# do {
# l e t there = Ns . lookupo " here " var type i n go there ;
# l e t sqr = Ns . lookup " square " var type i n
# l e t def sum ( s , n ) =
# rep l y ( i f n=0 then s else sum ( s+sqr n , n−1)) i n
# p r i n t _ s t r i n g (sum ( 0 , 5 ) ) ; } ; ;
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Termination

Termination and Failure (Recovery)

Some parts of distributed computation may fail.
Detect failures and take adequate measures

Cleanly report the problem
Abort related parts of computation
Make another attempt on a different machine

a location can run a halt() process
a location can detect if another location has halted
Up to the programmer to define locations as suitable units
of failure recovery !
Up to the programmer to provide a recovery mechanism !
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Summary

Summary

Based on Join Calculus
Nice extension of OCaml
Idea of join calculus also applicable to other languages like
C Sharp.
Different Model than Memory Transactions. (atomic vs.
joins)
Programmer has to consider concurrency while writing
application.
Distributed Programming based on concurrency.
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Literature

List of References
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language for distributed mobile
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Questions

Questions

Thank you for your listening.
Questions?
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