
Introduction Concurrent Programming Distributed Programming Summary

Seminar: Advanced Functional Programming
JoCaml: A Language for Concurrent Distributed and Mobile

Programming

Nicolas Bettenburg

Universität des Saarlandes
Saarbrücken

22.03.2006

Nicolas Bettenburg Seminar: Advanced Functional Programming

Introduction Concurrent Programming Distributed Programming Summary

Overview

1 Introduction
Concurrent Programming
About JoCaml

2 Concurrent Programming
New Language features
Synchronization and Control
Example: A Reference Cell

3 Distributed Programming
Distributed Model
Nameserver and Mobility
Termination

4 Summary

Nicolas Bettenburg Seminar: Advanced Functional Programming

Introduction Concurrent Programming Distributed Programming Summary

Concurrent Programming

Concurrency: Definition and Concerns

Concurrency
Property of systems which consist of computations that execute
overlapped in time, and which may permit the sharing of
common resources between these computations.

Multiple Concurrency Models
Lock-Based Approach
Transactional Memory (as seen in Seminar)

Race Conditions, Deadlocks, Starvation
Debugging, Correctness

Nicolas Bettenburg Seminar: Advanced Functional Programming

Introduction Concurrent Programming Distributed Programming Summary

About JoCaml

New Approach: JoCaml

Underlying Concurrency Model: Join Calculus (1996)
Based on Objective Caml

Statically typed language
Byte-code compiler (code mobility)
Good system programming support
Efficient Garbage Collector
sequential, call-by-value evaluation, deterministic

Extension maintains original language features.
JoCaml extends OCaml with support

for lightweight-concurrency
Message Passing
Message-based Synchronization

Nicolas Bettenburg Seminar: Advanced Functional Programming

Introduction Concurrent Programming Distributed Programming Summary

New Language features

Expressions

Expressions
Executed synchronously.
Every Ocaml expression is a Jocaml expression

l e t x=1 i n p r i n t (x) ; p r i n t (x +1) ; ; ;
=> 12

Nicolas Bettenburg Seminar: Advanced Functional Programming

Introduction Concurrent Programming Distributed Programming Summary

New Language features

Processes

Processes
Executed asynchronously
No result value
Communicate by sending messages on channels.

spawn { echo 1 } ; ; can also be w r i t t e n as
spawn { echo 2 } ; ; # spawn { echo 1 | echo 2 } ; ;
=> 12 (or 21 ! !)

Nicolas Bettenburg Seminar: Advanced Functional Programming

Introduction Concurrent Programming Distributed Programming Summary

New Language features

Channels

Uni-Directional Channels
Synchronous, in expressions, send and await answer
(block).
Asynchronous, in processes, send message.

l e t def my_chan_sync x = p r i n t _ i n t x ; r ep l y ; ;
va l my_chan_sync : i n t −> u n i t

l e t def my_chan_asynch ! x = p r i n t _ i n t x ; ; ;
va l my_chan_async << i n t >>

Nicolas Bettenburg Seminar: Advanced Functional Programming

Introduction Concurrent Programming Distributed Programming Summary

Synchronization and Control

Synchronization and Concurrency Control

Synchronization by Pattern Matching

Join patterns extend port name definitions with synchronization.

l e t def f r u i t ! f | cake ! c = p r i n t _ s t r i n g (f ^ " "^ c) ; ; ;
spawn { f r u i t orange | f r u i t apple | cake sacher } ; ;

Synchronization Barriers
Represent explicit synch-points also know as rendez-vous.

l e t def sync1 () | sync2 () = rep l y to sync1 | r ep l y to sync2 ; ;
spawn { f o r i =0 to 9 do sync1 () ; p r i n t _ i n t 1 done ; } ; ;
spawn { f o r i =0 to 9 do sycn2 () ; p r i n t _ i n t 2 done ; } ; ;
=> 12121212121212121212

Nicolas Bettenburg Seminar: Advanced Functional Programming

Introduction Concurrent Programming Distributed Programming Summary

Example: A Reference Cell

A reference cell

type ’ a j r e f = { set : ’ a −> u n i t ; get : u n i t −> ’ a }
l e t def new_ref u =
l e t def s t a t e ! v | get () = s ta t e v | r ep l y v
or s ta te ! v | se t w = s ta te w | rep l y
i n s ta te u | r e p l y { get=get ; se t=set }
l e t r0 = new_ref 0 ; ;
type ’ a j r e f = { set : ’ a−>u n i t ; get : un i t −>’a }
va l new_ref : ’ b −> ’ b j r e f
va l r0 : i n j r e f

internal state of cell = content
lexical scoping keeps state internal
content stored as message v on channel state

Nicolas Bettenburg Seminar: Advanced Functional Programming

Introduction Concurrent Programming Distributed Programming Summary

Distributed Model

Distributed Model in JoCaml

Distributed Programming

Distributed Programming is the execution of computations on
one or more machines that share their resources.

Any machine may join or quit the computation.
At any time, every process or expression is running on a
given machine.
They may migrate from on machine to another.
System-Level processes communicate via TCP/IP over the
network.

Nicolas Bettenburg Seminar: Advanced Functional Programming

Introduction Concurrent Programming Distributed Programming Summary

Nameserver and Mobility

Nameserver

The Nameserver
Used to bootstrap a distributed computation. A built-in library
that exchanges a few channel names.

Needed since JoCaml has lexical scoping.
Function to register a channel in a global table.
Function to look-up a value in the global table.

spawn { l e t def f x = rep l y x∗x
i n Ns . r e g i s t e r " square " f var type ; } ; ;

Nicolas Bettenburg Seminar: Advanced Functional Programming

Introduction Concurrent Programming Distributed Programming Summary

Nameserver and Mobility

Mobility: Locations and Mobility

Locations
Represent units of mobility.

l e t l oc here
def square x = r e p l y x∗x
and cubic x = rep l y (square x)∗ x
do { p r i n t _ i n t (square 2) ; } ; ;

l e t l oc mobi le
do {
l e t there = Ns . lookupo " here " var type i n go there ;
l e t sqr = Ns . lookup " square " var type i n
l e t def sum (s , n) =
rep l y (i f n=0 then s else sum (s+sqr n , n−1)) i n
p r i n t _ s t r i n g (sum (0 , 5)) ; } ; ;

Nicolas Bettenburg Seminar: Advanced Functional Programming

Introduction Concurrent Programming Distributed Programming Summary

Termination

Termination and Failure (Recovery)

Some parts of distributed computation may fail.
Detect failures and take adequate measures

Cleanly report the problem
Abort related parts of computation
Make another attempt on a different machine

a location can run a halt() process
a location can detect if another location has halted
Up to the programmer to define locations as suitable units
of failure recovery !
Up to the programmer to provide a recovery mechanism !

Nicolas Bettenburg Seminar: Advanced Functional Programming

Introduction Concurrent Programming Distributed Programming Summary

Summary

Summary

Based on Join Calculus
Nice extension of OCaml
Idea of join calculus also applicable to other languages like
C Sharp.
Different Model than Memory Transactions. (atomic vs.
joins)
Programmer has to consider concurrency while writing
application.
Distributed Programming based on concurrency.

Nicolas Bettenburg Seminar: Advanced Functional Programming

Introduction Concurrent Programming Distributed Programming Summary

Literature

List of References

F. Le Fessant, C. Fournet, L. Maranget and A. Schmitt:
JoCaml: a Language for concurrent
Distributed and Mobile Programming. [AFPS
2002]
C. Fournet and G. Gonthier: The join calculus: a
language for distributed mobile
programming. [APPSEM 2000, LNCS vol 2395 p.
268-332]

Nicolas Bettenburg Seminar: Advanced Functional Programming

Introduction Concurrent Programming Distributed Programming Summary

Questions

Questions

Thank you for your listening.
Questions?

Nicolas Bettenburg Seminar: Advanced Functional Programming

	Introduction
	Concurrent Programming
	About JoCaml

	Concurrent Programming
	New Language features
	Synchronization and Control
	Example: A Reference Cell

	Distributed Programming
	Distributed Model
	Nameserver and Mobility
	Termination

	Summary
	Summary
	Literature
	Questions

