Iy

/..../ N\
MW.wm..../ﬁ.m/gg/
o ux/ /@///

N / M/w /E
/s./ M/ A

/
E%/m

Restructuring
<ﬂlﬂmﬂlﬁl<1l>‘ﬂ ni

Automatica

T~ o
Bojet o g
// ,/%@

= /@%
/// //E

Programs for the Web

Matthews, Graunke, Krishnamurthi, Findler, Felleisen

Web Scripts

> 50% of Web pages are generated on
demand.

The so-called Web “scripts” are
nowadays complex, evolving programs.

However, existing technology is
inadequate.

Interactive Programming Paradigm

fun 1 nput neg =
print nsg;
r ead

fun adder =
print
(1 nput
“1st number?”)
+
(1 nput
“2nd number?’)

Pro: interaction is computation driven;
—> natural programming style.

Serious Engineering Problem

Web scripts must terminate after producing
one single page (exception: Fast CGl);

—> control information is erased between
user interactions (Fast CGI solves this
problem).

Back button + window cloning;

—> the client becomes a co-routine with
unbounded resumption points (Fast CGI
can’t solve it).

Current Approaches

Solution: come up with a hack to
explicitly store/recover state per hand.

fun produce-htm nsg hidden-mark env = ...

fun adder =
hi dden-mar k = extract-hi dden- nar k
env = extract-env
ans = extract-answer

| f hi dden-mark = undefi ned then
produce-htm “1st number?’ “step 1" []

else if hidden-mark = “step 1" then
produce- htm “2nd number?’” “step 2" [ans]
else if hidden-mark = “step 2" then

produce-htm ((hd env) + ans) “done” []

Current Approaches

Program Inversion: the interaction
becomes user driven!

But inversion is:
unnatural;
complicated;
error prone, if done per hand;
counter-productive.

A Better Solution?

Use a PL that can explicitly manipulate
continuations to grab and store them on

the server [Queinnec 2000].

Problems:

most PLs don’t support cal |/ cc

—> existing infrastructure becomes
useless;

distributed garbage collection
problem;

timeouts are an imperfect solution.

A Better Solution?
TseaPL thathascolt e

Write usual interactive programs in
your favourite PL and environment;

use existing, well understood FP
techniques to aufomatically transform
them into programs for the Web.

The Preprocessing Solution

How can we grab, send, and resume
continuations in an arbitrary PL? By
transforming the program with:

continuation passing style (CPS),
lambda lifting,
defunctionalization.

One last step generates a
program for the web.

Continuation Passing Style

fun 1 nput neg = fun i nput neg f =
print nseg; print nsg;
r ead f read
fun adder = fun adder =
print i nput
(1 ‘r“pUt) “1st number?”
X 1st number?”) A ng =>
(I nput | npUt
“2nd number?”) " 2nd number?”
An, =>

print n, + ng

Lambda lifting

fun I nput neg f = fun input neg f env
print msg; print nsg;
f read f env read
fun adder = fun adder =
| nput | nput “ 1st number?”
“lst number?’ foll
A ng => -
| nput fun f5[] ng =
“« ond number?” | nput “ 2nd number?”
A n, => f 1 [ne]

print ny, + n,

fun f4[ny n; =
47;;& print n, + n;

Defunctionalization

fun i nput neg f env =
print nsg;
f env read

fun adder =
| nput “ 1st number?’

foll

fun fo[] ng =
| nput “ 2nd number?”
1 [Nl
fun fy[ng] ng =
print n, + n;

fun I nput nsg i dx env
print nsg;
apply 1dx env read

vector funs = {f,, f}

fun apply 1dx env =
funs.1 dx env

fun adder =
| nput “ 1st number?’

0[]

funfy[] ng =
| nput “ 2nd number?”

i;;ig-l [No)
fun~t,[ng] ny =

print ny,+ n,

The Preprocessing Solution

What have we done till now?

CPS: the only function that interacts
with the user (i nput) is passed a
continuation.

A lifting: the structure of the
program is flattened; all functions
are named and global.

Defunctionalization: no function
iIs passed or returned.

Till now, the function | nput
simply executes the
continuation passed to it...

Interactive Program — CGI Program
fun i nput neg idx env =
produce- ht m
neg | dx env

fun I nput neg I dx env

pri nt
apply
vector f

nNsg,
| dXx env read

uns. . .

fun apply...

fun adde

| nput

fun f,. ..
fun f,...

I f—

“l1st number?’

0[]

vector funs...
fun apply...

fun adder =

| dX
env
ans

extract-1dx:
extract-env;
extract - answer ;

apply i1 dx env ans;
handl e NoCont =>
| nput “ 1st number?”

0[]

You can do it also in C...

#i ncl ude <stdi o. h>

t ypedef struct {
I nt code;
void *env;

} cl osure;

t ypedef void
(*cl osuretype) (voi d*, void*);

void input(char *s, closure *k);

cl osure *make_cl osure(
i nt code, void *env){
cl osure *k = (cl osure*)
mal | oc(si zeof (cl osure));
k- >code = code, k->env = enyv;
return k;

}

void f (void *env, void *ny) {
closure *k = nake_closure(l, n);
i nput ("2nd nunber?", Kk);

}

void f,(void *n0O, void *n;) {
printf("%l\n", (int) n, + (int) n));
}

cl osuretype closures|] {fo .}
voi d appl y(cl osure *k, void *args){
I nt code = k->code;
void *env = k->env;
free(k);
(*(cl osures[code])) (env, args);

}

voi d input(char *s, closure *k){
char buffer[10];
int iI;
printf("%", s);
fgets(buffer, 10, stdin);
| = atoi (buffer);
apply(k, (void *) i);

}

int main() {
cl osure *k =
make cl osure(0, (void *) 0);
| nput (" 1st nunber?", Kk);
return O;

}

...or even in BASIC...

The dispatcher:
REM adder

| F 1 dx 0 THEN GOTO 100
ELSE IF idx = 1 THEN GOTO 200

100 REM O

200 REM f 1

Save Store in Cookies

Problem: the store is independent from
the continuations.

val high _score = ref O;
high score := !'high _score + 1;

Solution: save the store in a cookie.

Web Server

Problem: Race Conditions

2

Web Client
154.34.0.1

DBalance:900€7

Web Server

Problem: Race Conditions

Buy a
flatscreen...

O

@
Web Client

154.34.0.1
DBalance:900€7

Web Server

Problem: Race Conditions

ﬂBaIance:900€T

<3

UY=FLATSCREEN g

Web Client
154.34.0.1

DBalance:900€7

Problem: Race Conditions

2

DBalance:160€7

Web Client
154.34.0.1

Web Server DBaI ance:900€7

Problem: Race Conditions

DBalance:160€7

rBaI ance:160€ﬂ @
14 Th k _ " Web Cllent
ank_you)> 154.34.0.1

Web Server DBaI ance:900€7

Problem: Race Conditions

Buy a
scanner...

DBalance:160€7

O

=
rBaI ance:160€ﬂ @
1 Th k _ n Web Cllent
ank_you)> 154.34.0.1

Web Server DBaI ance:900€7

Problem: Race Conditions

DBalance:160€7

ﬂBaIance:900€T

< BUY=SCANNER @
rBaIance:160€ﬂ
ank_you)> 154.34.0.1

Web Server DBaI ance:900€7

Problem: Race Conditions

DBalance:160€7

2 .
o .
2 .
.
.
.

ﬁ/qﬂBalance:900€T

BUY=SCANNER

.
.
o
*
.
.
.
.
.
.
.

*
o
3

rBaIance:160€ﬂ”xg i,
A 154.34.0.1

Web Server D Bal ance=9 OO€]

Solution: Sequence Numbers

2

Web Server
154.34.0.1: 7665671

Web Client
154.34.0.1

|

SEQ=7665671

Bal ance=900

:

Solution: Sequence Numbers

Buy a
flatscreen...

Web Client
154.34.0.1
Web Server IBSITQ:766—5960701€7
154.34.0.1: 7665671 al ance=

Solution: Sequence Numbers

Web Server
154.34.0.1: 7665671

ﬂ SEQ=7665671

Balance:900€7
<3UY:FLATSCREEN

Web Client

154.34.0.1

|

Bal ance=900

SEQ:76656717
€

Solution: Sequence Numbers

2

DBalance:160€7

Web Client
154.34.0.1
Web Server IBSFTQ:n766—5960701€7
154.34.0.1: 7665671 al ance=

Solution: Sequence Numbers

2

DBalance:160€7

Web Client
154.34.0.1
Web Server IBSFTQ:n766—5960701€7
154.34.0.1: 7665672 al ance=

[/

Solution: Sequence Numbers

DBalance:160€7

rSECF7665672r1

Bal ance=160¢€ .
14 Th k : _ " Web Cllent
ank you)> 154.34.0.1

D SEQ:76656717

Web Server
154.34.0.1: 7665672

[/

Bal ance=900€

Solution: Sequence Numbers

Buy a
scanner...
DBalance:160€7

O

<
rSEQ=7665672 ﬂ @
Bal =160€
: T%a%rllciou -)> Web Client
154.34.0.1

D SEQ:76656717

Web Server
154.34.0.1: 7665672

[/

Bal ance=900€

Solution: Sequence Numbers

Balance:160€7
ﬂ SEQ:76656717

Bal ance=900€
< BUY=SCANNER

rSECF7665672r1

Bal ance=160€¢ _

“Thank you :-)> Web Client

154.34.0.1
Web Server IBSFTQ:?GG—SgGo?ol 7
154.34.0.1:7665672 al ance= €

[/

Solution: Sequence Numbers

DBalance:160€7 <<;i27

ﬂ SEQ:76656717
Bal ance=900€

% < BUY=SCANNER
ITIIM rSEQ:7665672ﬂ

Bal ance=160¢€ .
U Thank you :_)> Web Client

154.34.0.1

Web Server BS|TQ:766_5960701 7
154.34.0.1: 7665672 al ance= €

[/

(Reintroduces the server side storage
management problem.)

Security/Efficiency

Problem:

a malicious user may forge the
continuation;

3 <iurious user may inspect sensitive
ata.

Solution: encrypt/sign continuation.

Problem: continuations may be large
pieces of data.

Solution: compress them.

Problem: Debugging

Executed code bears little
resemblance to programmer’s code.
How do you debug it?

Answer: still an open question...
Ad hoc solution for PL’s with cal | / cc:
don’t preprocess;

reimplement the i nput function to
store continuations and send HTML
to Web browsers;

reimplement the main function to
resume current continuation.

Literature

Paul Graunke, Shriram Krishnamurthi, Robert Bruce Findler, Matthias Felleisen
(2001): Automatically Restructuring Programs for the Web.

Jacob Matthews, Paul Graunke, Shriram Krishnamurthi, Robert Bruce Findler,
Matthias Felleisen (2004): Automatically Restructuring Programs for the Web.

Christian Queinnec (2000): 7he influence of browsers on evaluators or,
continuations to program Web servers. In: ACM SIGPLAN International
Conference on Functional Programming.

Andrew W. Appel (1992): Compiling with Continuations. Cambridge University
Press.

Thomas Johnson (1985): Lambda Lifting: Transforming Programs to Recursive
Equations. In: Proceedings of the Conference on Functional Programming
Languages and Computer Architecture. Nancy, France.

John C. Reynolds (1972): Definitional Interpreters for Higher-Order
Programming Languages. In: Proceedings of the 25t ACM National
Conference. pp. 717-740.

Conclusion

Automatic restructuring of programs

for the Web enables programmers to:
use existing paradigms and tools;
structure programs in a natural way;

be more productive.

Thank you!

