
A Model for Browser/Server Interaction

Andi Scharfstein, 2006

Saarland University, 66041 Saarbruecken, Germany

Abstract. Interactions between web servers and clients are still not
well-understood, since no formal descriptions exist for them. A paper by
Krishnamurti et al. [1], which gives a first attempt at a formal model for
these interactions, is presented and discussed.

1 Introduction

”Programming for the Web is essentially a solved problem.”

Well, is it? It is true that we have come a long way since the conception of
the web. Scripting languages used to construct dynamic web sites have seen a
great surge in interest, large stores like Amazon or eBay have been successfully
erected, and most users surf these sites without ever encountering problems.
Now, why should the last item be treated like an achievement? Could it be the
case that somehow, users are expected to run into problems in a way they never
would in a regular store, and that preventing them from doing so is a cause for
celebration and admiration of this technical (or sociological) feat? As a matter
of fact, it is, and the rest of this paper will deal with an attempt to clarify
and remedy this situation – that is, explain what bugs the user is supposed to
encounter, why these bugs exist at all, and how to fix them. Let’s begin with a
typical problem a user might run into!

2 The Orbitz Bug

Suppose our hypothetical user – let’s call him Hans – wants to book a flight
online. Hans opens orbitz.com, a popular site offering flights from multiple air-
lines, and chooses his flight destination. Since Hans is well-versed in the use of
browsing techniques, he employs tabs (or multiple windows) to compare several
flights at once, each offering different benefits for different prices. After care-
fully choosing the one that suits his needs best, Hans closes all windows but
this one, concentrating on his selected flight. However, when he goes on to book
this flight, he discovers to his surprise and dismay that the confirmation page
doesn’t display his chosen flight at all! Instead, it tries to sell him another flight
– invariably the one from the most recently opened details window, even though
it was subsequently closed. Hans discovers that ”going back” from a choice is
impossible: whenever he opens a window to look at a flight’s details, this flight is
set as the one to be booked later on, regardless whether the booking process was
initiated from this or any other flight’s details page. Disgruntled, Hans leaves
the site and books his flight at a competitor’s web page.



3 Modelling the Web

Fixing any bug necessitates its complete understanding. The Orbitz Bug was
first identified by Krishnamurti et al. (see [1], terminology also from that paper)
in 2003, but still persists as of this writing, three years later. One could argue
that this signifies a lack of proper understanding of the issues involved in building
such an application, so in order to gain this understanding, Krishnamurti et al.
developed a formal model describing web interactions.
Some reservations have to be made: The model does not deal with multiple
clients accessing a single server, nor with any ”concurrency” issues (deadlocks
on shared resources, etc.). It also neglects static web pages, instead focusing on
the (more interesting) case of dynamic sites. However, each of these concerns
can be addressed: Multiple clients can be distinguished via sessions, effectively
allowing to model them as single entities (which are covered by the model).
Concurrency, while a valid research interest in its own right, is orthogonal to
the problem at hand and so can be ignored for the moment. As for static pages,
they can easily be modelled as special cases of dynamic pages, so this is really
not an issue. Starting from a very abstract view and going into details later on
(waterfall-style), a web configuration W is just a pair consisting of a single web
server and a single client: W = S ×C. We shall now look at each component of
the pair in detail.

3.1 The Server

Obviously, the web server needs some kind of internal storage to hold user data
and the like. It will be modelled by a function σ ∈ Σ, where Σ is the set of all
functions with the type Id → Vb. Id and Vb in turn designate identifiers and
values, Vb = Int | String. The σ in use can be thought of as the current server
state, since it captures all mutable entities accessible by the server.
The other necessary server component is required by what we ”normally” think
of as the web server: A dispatcher that deals with the process of looking up
the pages and delivering them. In particular, since the web pages are dynamic,
the dispatcher has to evaluate a looked-up program with respect to a yet to be
defined language, and return the results of this computation. So, aside from a
lookup table that assigns programs to URLs, some evaluation function is needed.
Formally: The lookup table P = Url → M◦ is a function from URLs to valid
programs in some language, denoted by M◦. A server is a tuple that consists
of storage state and lookup table (S = Σ × P ), and has an associated dispatch
operator dp that will be properly defined later on in terms of the reductions it
allows, which define program evaluation.

3.2 The Client

Taking a formal definition for web pages F for granted (it is given in the very
next section), the client can be modelled quite easily as a tuple consisting of the
currently shown page (as in, displayed on the screen in the browser window) and



a collection of all pages formerly visited during this session: C = (F ×−→
F ). The

latter can be thought of as the browser cache, although strictly speaking this is
not the exact truth (as shall be seen later on).

3.3 Web Pages/Forms

Since the only opportunity for true client/server interaction arises when the
client sends information to the server (as the other way round is deterministic,
if state-dependent), it is sufficient to only consider pages where the client has
the opportunity to do so. This is the case with HTML forms, and nothing else.1

Hence, for our purposes, we identify web pages with HTML forms, and model
only the elements needed to describe a form. To this end, we employ a constructor
form that takes some URL and a collection of key/value pairs, and constructs
their respective HTML representation: F = (form Url

−−−−→
(Id Vb)). The URL de-

notes the location where the information from the key/value pairs is sent and is
called submit URL. The key/value pairs model text fields where user input can
occur (in HTML, <input type="text">), and their respective content. So, for
any pair (k0, v0), an HTML tag <input type="text" name="k0" value="v0">
will be generated and inserted into the according HTML form construct <form
action="Url">. . . </form> at evaluation time. Typically, all values will start out
empty and be filled in by the user later on.

4 Web Interactions

Now that we have the necessary definitions down, let’s consider all possible ac-
tions a user could perform in such a setting. Surprisingly, three distinct rewriting
rules suffice to model the whole range of these possibilities. Entering data into
a form input field is the first one. The other two options concern changing the
page shown in the current browser window: The user may use the browser’s back
button or switch between tabs to display any previously visited page at any time,
or he may load a new page by submitting the form data on the currently active
one. We’ll discuss each of these options in detail:

4.1 Filling Out Forms

The first rule is called fill-form. It is stated as follows:

fill-form: W → W
〈s, 〈(form u

−−−→
(k v0)),

−→
f 〉〉 ↪→ 〈s, 〈(form u

−−−→
(k v1)), {(form u

−−−→
(k v1))} ∪

−→
f 〉〉

In essence, form values can be modified as desired. Since the form is added

1 With modern web programming techniques such as AJAX, where other interaction
paradigms are introduced, this no longer holds true. The discussed paper completely
fails to address this issue.



to the ”cache” at once after the modification (even before a submit), it is in
fact not technically accurate to call it a cache (at least not in the sense used
in today’s browsers, where only submits indicate cache updates). This doesn’t
impair the model’s functionality for the use cases we are interested in, however,
so we’ll ignore the issue from now on.

4.2 Switching to Cached Pages

If at first it’s not obvious why the model includes the browser cache at all, a look
at the side condition to the second rule should clarify this concern: Switching to
any page without loading it can only be done if it was previously seen by the
client, so naturally the client has to keep track of its visited pages. This is done
in the cache. The rule is quite easy to grasp:

switch: W → W
〈s, 〈f0,

−→
f 〉〉 ↪→ 〈s, 〈f1,

−→
f 〉〉, where f1 ∈

−→
f .

It merely states that users may switch to any previously visited page, including
the one that is currently shown.2

4.3 Submitting Forms

The third and most involved rule captures the notion of submitting form data,
including the server’s reaction to this.

submit: W → W
〈〈σ0, p〉, 〈f0,

−→
f 〉〉 ↪→ 〈〈σ1, p〉, 〈f1, {f1} ∪

−→
f 〉〉, where 〈σ1, f1〉 = dp〈σ0, f0〉

The already mentioned lookup function dp is used to compute a new server
state and the next form that will be sent to the browser, depending on the old
state and current client form. The server is assigned this new state, and the new
form is delivered to the client. On the client side, the currently active page is
updated to the new form, which is simultaneously added to the cache. Note that
the previous form is already in the cache, because it was either modified (and
automatically cached) by fill-form, or left unchanged, in which case it was
added to the cache during submit.

4.4 The Scripting Language

A formal definition of the scripting language is omitted at this point, since it is
not particularly enlightening with respect to the problem at hand. Basically, it
behaves like the λ-calculus extended with records – see [1] if you’re interested in
details. However, we will cover its capabilities in a short summary: Besides the
2 This means that the reduction relation is not terminating. Also note that in
fill-form, v0 and v1 are not required to be distinct.



basics (function application, abstractions, constants, variables), it can handle
forms by creating them (with the form constructor seen before) and by taking
them apart (i.e., getting the value designated by some key). Besides β-reduction,
this is the only semantic action defined for the basic language.
The dispatcher dp works as follows: when a form is submitted, its ”successor”
is fetched from the form’s submit URL. This successor is an abstraction (the
only valid program type, Mo) that takes as input the data from the old form,
and returns the new one, so all that’s left to do for the dispatcher is to apply it
accordingly. The new form is then delivered to the client.
The basic language can be extended with the notion of server storage. This is
done by adding read and write directives, which modify the state accordingly,
for instance 〈σ, E[(write Id vb)]〉 −→ 〈σ[Id\vb], E[vb]〉, where E is a reduction
context, Id ∈ dom(σ), vb ∈ Vb. Note that the storage is server-global.

5 Dissecting the Bug

A careful look at the three rewriting rules should already reveal an interesting
fact: only one of them actually modifies the server state, and of the changes that
the other two perform, only one can be noticed by the server at some later point
in time (i.e., when submitting user data). The problem at the heart of the matter
is that the server cannot know if the user has multiple windows opened, since
the HTTP protocol is inherently stateless. It doesn’t support the ”Observer”
design pattern [3] (as there is no way to implement a push method to get a
notification from client to server on a page switch), so Krishnamurti et al. call
this the observer problem. Basically, modern browsers afford the users previously
unknown degrees of freedom, while at the same time making web programmers
despair of the complexity introduced by not knowing what the user did, or more
to the point: where he came from. Certain invariants that programmers implic-
itly assume while developing the application (”The user will only look at one
given flight at a time”, ”The user only has the opportunity to click on ’Cash
cheque’ once”) no longer have to hold true. A regular store can always rely on
the fact that the customer will not buy his products on multiple lanes at once;
in an online store, you can’t be so sure.
The Orbitz Bug is introduced by a violated assumption, namely that the cus-
tomer only ever will book the flight he was last interested in (which holds in a
sequential model, but not in this setting). It is fixed easily enough by making
explicit the distinction between local and global storage (where local refers to
the environment defined by a form), and placing the information about which
flight should be booked in the environment, that is, the form. The key/value
pairs already supported by forms are all that’s needed to model local storage: it
suffices to make the relevant input fields constant, e.g. by changing the HTML
type to hidden.



6 Preventing Further Bugs

Now that we have gained a thorough understanding of the issues involved, we
have found that fixing the bug isn’t really all that hard. Maybe it can even be
done automatically?
Using a slightly extended model, the answer is a reasonably qualified yes – while
true bug fixes are beyond the scope of any automated computational process, at
least warnings can be given when something’s gone wrong (in this case, when
client and server have run out of sync because of outdated information on the
client side). For this to work, first of all the server needs a notion of time. The
total number of submits during one session suits this need well. Next, the server
needs to know which information can become outdated, so a registry is added to
record all fields accessed (i.e., read or written) during the evaluation of every
program. The registry is called that program’s carrier set. Making use of these
facilities, every form is timestamped during its creation, and its carrier set added
to its internal storage.
Now, all that’s left to do is to keep track of changes to the server state (which
only occur during writes to some Id). Whenever these changes affect items
from any carrier set of an opened form, the form associated with that set is
considered outdated, and a warning can be emitted at its submission. Keeping
track of writes works by modifying the definition of Σ to describe functions
of the type Id → Time × Vb, so every Id now has an associated ”last write”
timestamp as well as its familiar stored value. Checking works by comparing
this timestamp with a submitted form’s timestamp for every item of the form’s
carrier set. If in any of these comparisons the timestamp from the server storage
is larger, the submit is potentially outdated and should be treated accordingly.

7 Conclusion

A formal model for a particular kind of web interactions has been presented and
discussed, the Orbitz Bug has been explained and fixed, and it has been shown
how the type of bugs represented by it can be detected automatically using an
updated version of the basic model.
By this, the usefulness of the model as well as the need for further work in this
area have been demonstrated. Let’s hope that these efforts will enable customers
one day to browse any online shop with the same ease as a normal store!

References

1. Krishnamurti, S., Findler, R.B., Graunke, P., Felleisen, M.: Modeling Web Inter-
actions and Errors. Proc. of 12th European Symp. on Programming, LNCS 2618
(2003) 238–252

2. Licata, D., Krishnamurti, S.: Verifying Interactive Web Programs. IEEE Interna-
tional Symposium on Automated Software Engineering (2004)

3. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns, Elements of
Reusable Object-Oriented Software. Addison-Wesley (1994)


