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Abstract. As interactive Web programs become ubiquitous, developers
face a serious design constraint. When a script interacts with a user, it
must produce a single Web page and terminate. When the user submits a
response, then the script is rerun from scratch. Worse, a user can switch
back and forth between pages, clone windows, and submit responses
repeatedly or simultaneously. To cope with this inversion of control, the
Web developer must structure its programs in a most unnatural manner.
We overcome this problem by automatically transforming direct style
programs into Web programs, by using well-known program transforma-
tion techniques from the functional world. Developers can keep using the
languages and tools they know.

1 Introduction

1.1 The Importance of Web Programs

Today, most of the content of the World Wide Web is generated on demand
by the so-called “Web scripts”, which are no more mere scripts, but full-fledged
programs of great complexity and importance, often forming the backbone of
giant companies like Yahoo!, or Amazon.com.

Thus, programmers are once more called to tame the complexity of growing
specifications and implementations, by writing naturally structured, correct, and
maintainable code.

1.2 The Problem

Unfortunately, the widely used Web protocols and technologies, namely Com-
mon Gateway Interface (CGI), Java servlets, Java Server Pages, etc., impose
a serious constraint on the form of Web programs that interact with the user:
after generating a single page, the program must terminate, instead of waiting
for the user response and perfoming with the rest of the computation. Thus, the
programs control information is erased between interactions with the user and
must be ressurected by hand on each invocation of the program. This problem
is addressed by the FastCGI protocol, which allows the connection to be kept
alive between user interactions.



A further complication stems from the backtrack and clone capabilities of
Web browsers, which enable users to answer multiply one and the same ques-
tion, either by pressing the back button and re-filling a form, or by cloning
windows and filling many copies of one and the same form. Thus, the Web client
becomes a co-routine, with interaction points that can be resumed arbitrarily
often. FastCGI cant cope with this complication.

The ad hoc mechanisms to save and restore the program state between in-
teractions are employed by the programmers, resulting in an unnatural program
structure, which fails to match the structure of the interaction, is unnecessary
complicated, error prone, and difficult to maintain.

Consider a small example written in SML-like typeless pseudocode. The pro-
gram asks the user via the function read for two numbers and prints their sum.

fun input msg = print msg; read

fun adder = print (input “1st number?”) + (input “2nd number?”)

The first, direct style version of the program is computation-driven, natural,
and therefore easy to understand.

But once we are no more allowed to wait for the function read to return,
things get weird:

fun produce-html msg hidden-mark env = . . .

fun adder =
hidden-mark = extract-hidden-mark
env = extract-env
ans = extract-answer
if hidden-mark = undefined then
produce-html “1st number?” “step 1” []

else if hidden-mark = “step 1” then
produce-html “2nd number?” “step 2” [ans]

else if hidden-mark = “step 2” then
produce-html ((hd env) +ans) “done” []

In the second version, which is written for the Web, the function for turning
a message into HTML-code produce-html, also hides a mark and an enviroment
in the generated page, encoding the current state of the computation. Now the
main function adder also acts as a dispatcher, searching in the headers of the
HTTP-request for the mark and enviroment, and resuming the process from the
corresponding point.

What a mess for such a simple task! Neither the purpose, nor the correctness
of the program are clear. How would a script for adding 5, or, generally, n
numbers look like?



1.3 Employing Continuations

The way to solve the problem is by storing the current continuation and retriev-
ing it when the data the process waited for become available. A continuation can
be thought as the rest of the computation that waits for the user to enter some
data. The continuations can be stored either on the server, or on the client.

Server-sided storing In the approach developed by Christian Queinnec [2000],
the continuations are grabbed by special control mechanisms (function call/cc)
found in a few languages, and stored in a hash table on the server. A URL corre-
sponding to the current continuation is embedded in the generated HTML-page,
and the continuation is reinvoked upon request of the corresponding URL.

Disadvantages But as most languages can’t directly manipulate continu-
ations, all existing infrastructure becomes useless, as everything has to be re-
written in another language.

Furthermore there is no way to cope with a most serious distributed garbage
collection problem. The server has no way to know whether a continuation might
still be invoked. Even browser support, that could report to the server whether
the page was bookmarked or not, wouldn’t be enough, because the user can still
write down the URL on a piece of paper or remember it by heart! The obvious
solution of timeouts is far from perfect. Moreover, accidental power outages or
server upgrades would delete the continuations for ever.

2 Client store

In a second approach, which is the contribution of the paper, the continuation
is stored on the client, by encoding it as a character string and embedding
it in the HTML-page sent to the client. The solution does not make use of
call/cc constructs, thus is suitable for every programming language. In this
way legacy programs may be reused, and programmers can keep using the old
good languages, tools, and programming techniques they know best.

But how can we grab continuations, when the language doesn’t expose them
as first-class objects? By employing three well-understood, meaning-preserving
program transformations, which were initially developed to compile functional
languages.

2.1 Continuation Passing Style

The first transformation rewrites the program in Continuation Passing Style
(CPS):

fun input msg f = print msg; f read



fun adder =
input “1st number?”

λn0 => input “2nd number?”
λn1 => print n0 + n1

Now the function input is passed an additional argument f, the continuation.
Instead of returning the result of the call to read, it calls f with the result of
read.

2.2 Lambda lifting

Although already a progress, CPS is not enough, because the continuation can
be an anonymous lambda nested inside another function. In the example this is
the case with both continuations. But then how can we call a function, if it has
no name?

The second transformation, called lambda lifting, flattens the program struc-
ture by making all functions global and endowing them with unique names, so
that they can be addressed individually.

fun input msg f env = print msg; f env read
fun adder = input “1st number?” f0 []
fun f0[]n0 = input “2nd number?” f1[n0]
fun f1[n0]n1 = print n0 + n1

Creating closures Unfortunately, tearing a function out of its context may
leave some variables unbound. To cope with this problem, we bind such variables
by passing the context as an additional argument list. Thus the functions become
closures.

2.3 Defunctionalization

Now the function input is passed uniquely named functions. One last difficulty
is that these functions, unlike numbers or strings, are no representable objects,
so that they can’t be marshalled in an HTML-page. We circumvent this problem
by storing the functions in a vector, which can be indexed, and passing not the
function itself, but the index to the function, i.e. an integer number. The special
function apply looks up a function in the vector and executes it. This step of
practically eliminating high-order functions is called defunctionalization.

fun input msg idx env = print msg; apply idx env read
vector funs = {f0, f1}
fun apply idx env = funs.idx env
fun adder = input “1st number?” 0 []
funf0[]n0 = input “2nd number?” 1[n0]
funf1[n0]n1 = print n0 + n1



2.4 Freezing the continuations

Till now all transformations preserved the semantics of the program. As a last
step, the function input which is the only one that interacts with the user, no
more throws the user input to the continuation, but instead of waiting for user
input, stores the continuation in an HTML-page, which is now an easy task,
as the continuation is represented by a number and a list of values, and termi-
nates. The main function adder acts as a dispatcher, extracting the continuation
together with the user response, and applying the continuation to the response.

fun input msg idx env = produce-html msg idx env

vector funs...
fun apply...
fun f0...
fun f1...

fun adder =
idx = extract-idx
env = extract-env
ans = extract-answer
apply idx env ans
handle NoCont =>
input “1st number?” 0 []

2.5 Miscellaneous

Store in cookies; race conditions The store, i.e. the mutable variables,
shouldn’t be stored in the continuations, because it is shared between all con-
tinuations. A natural place to store it is a cookie on the client side. This simple
solution suffers from race conditions that arise when the client sends a request
with the cookie attached, and then a second one, before the updated cookie from
the first request reaches the client. Thus, the changes made to the cookie after
the first request are lost.

A simple solution is to introduce sequence numbers, that are stored both on
the server and in the cookie. If a cookie is outdated, then the server can detect it,
because the sequence numbers don’t match. The server side storage management
problem comes from the window, but this time it is no more a severe problem,
because only one integer number per client has to be stored on the server.

Security and efficiency A malicious user could forge the continuation or
the cookie, in order to execute arbitrary code with arbitrary arguments. Curi-
ous users could inspect the continuation to gather sensitive information. Both
problems are easily addressed by encrypting and signing the continuation and
the cookie.



The continuations and the store can grow inconvieniently big, in which case
we can compress them in order to spare bandwidth.

Debugging The transformed code, which is the one actually executed, bears
only a passing structural resemblance to the code written by the programmer,
thus making debugging difficult and tiring.

No general solution has been found to this problem. For languages that can
directly manipulate continuations, the ad hoc solution is to not transform the
original code and to reimplement the function input to grab the current con-
tinuation and store it on the server instead of embedding it in the HTML-page,
i.e. Queinnec’s approach is followed.

3 Criticism

This elegant solution seems to solve in a most unexpected way the most serious
problem of Web programming.

Storing the continuation and the mutable variables on the client side seems
like abandoning sensitive information at the mercy of the user. Although thus
the garbage collection problem is solved, possibly a serious security hole is in-
troduced.

Developers in all high-level languages use debuggers to test the original pro-
gram, although in reality the translated one is executed. Would it be difficult to
adapt this solution to the world of the Web?
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Abstract. As traditional programming languages are designed for closed,
sequential architectures, concurrent and distributed programming is ei-
ther hard to achieve or error-prone. JoCaml as a high-level language
was designed with dedicated support for concurrency, synchronization
as well as the support for distributed execution of programs. JoCaml
itself is based on the Join Calculus and extends the OCaml language,
keeping all of it’s features. This written presentation will show how Jo-
Caml can be used to achieve concurrent and distributed programming,
with the main focus on concurrency.

1 Introduction

Distributed, as well as concurrent programs, are usually hard to write and under-
stand - even harder to debug or proved to be correct due to asynchrony and non-
determinism. JoCaml is an attempt to provide a functional high-level language
with support for distributed and concurrent programming. Traditional high-level
distributed programming languages rely heavily on scripting languages, which
are often specialized and lack elements of structure like modules, classes or user-
defined types, crucial for flexible programming of large projects.

JoCaml is based on the OCaml programming language and thus inherits all
of it’s features, which make it a feasible setting for distributed programming.

– Static typing: Important for distributed programming, since debugging run-
time errors is very hard to cope with.

– Byte-code compilers: Providing separate compilation and flexible linking as
the key part for JoCaml’s implementation of code mobility at runtime.

– Low-level support: Good support for low-level system programming.

JoCaml extends OCaml in such way, that OCaml programs and libraries are
just a special kind of JoCaml programs and libraries ( OCaml ⊆ JoCaml).

2 Extending OCaml with support for Concurrent
Programming

OCaml is a sequential programming language, so every expression is executed
in a deterministic way in call-by-value. Since concurrency is desired, the first
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extension of JoCaml to OCaml is the support for lightweight concurrency, mes-
sage passing and a mechanism for message-based synchronization. JoCaml at
this point introduces a new expression called spawn with the syntax:

spawn process; expression

executing process and evaluating expression in parallel. This means, that the
operations in process and expression run independently (concurrent) in a non-
deterministic way.

Since OCaml only has support for expressions, JoCaml introduces a new
syntactic class process which is recursively defined with expressions, handing the
real mapping of the processes to system threads over to the JoCaml compiler
and runtime.

There is another thing, special to processes: they are not meant to return
a result; their only means of interaction is sending asynchronous messages on
channels. Such an asynchronous message is a process itself. In order to do so,
JoCaml introduces channels and local channel definitions for processes: they
are first-class values with a communication type used to form expressions and
send messages. Channel definitions bind names with a static scope and attach
guarded processes with these names. By passing a message over these names, a
copy of the guarded processes is executed.

In order to provide synchronization facilities, JoCaml holds on to the ML
paradigm: definition by pattern-matching, to provide a declarative way of spec-
ifying inter-process synchronization. This in fact does not export state: it leaves
the state inside the process. This is done by allowing the joint definition of a
number of channels by matching concurrent message patterns on these channels.
This way of synchronization via patterns was first introduced in the join calculus
1 in 1996 [1] and has several advantages for compilation efficiency and efficient
implementation of routing.

3 Extending OCaml with support for Distributed
Programming

We have previously seen how concurrency was introduced to OCaml. This sec-
tion will show how this can be used across several machines on an asynchronous
network with distributed message passing and even process mobility. The pro-
gramming model proposed is based on the Join Calculus as stated earlier before
and is characterized by an explicit notion of locality: since there is the need
to represent a set of runtimes with their local processes on a network, the join
calculus defines a basic unit of locality - called location.

– Locations have a nested structure (so they can contain sub locations); in
fact, a whole JoCaml program itself is a location called the root location.

1 The Join calculus itself is based on the π-calculus [2] which was originally proposed
by R. Milner as a progress to the original λ-calculus
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A configuration of machines, distributed over the network and executing
JoCaml programs can thus be seen as a location tree; each location having
it’s own definitions and processes.

– Locations are transparent ; channels have a global lexical scope, so any pro-
cess that has received a channel name can used it independently of the
location that defined the channel name.

– Locations form units of mobility ; At any time, a location (together with
it’s content) can be migrated from one machine to another. Location names
can be passed in messages and the be used as target addresses for such
migrations.

– Locations represent atomic units of failure; They can be used to detect
failure, halt the execution of all the location’s content or implement failure
recovery mechanisms.

4 Concurrent programming in JoCaml

As addressed in section 2, JoCaml extends the OCaml language with some new
language features, which enable concurrent programming. We will now take a
closer look on these extensions.

4.1 Channels in JoCaml

Channels (also called port names) are the main new primitive values in JoCaml.
There are two kinds of channels: synchronous and asynchronous, depending on
their usage for communications. In either flavor, a new channel is introduced
by a new let def binding; the right hand side of the channel definition is the
process fired for every message sent via the channel name.

Asynchronous channels are defined by

# let def channelname! varname = process
val channelname: <<type>>

Syntactically, the presence of a ! in the definition of a channel’s name indicates
it’s asynchrony. The channel has type <<x>>, where x is the type of the values
the channel carries. Since it is an asynchronous channel, the execution of process
is concurrent.

Synchronous channels are defined by

# let def channelname varname = process; reply
val channelname: a -> b

Syntactically, the absence of a ! in the definition of a channel’s name indicates
it’s synchrony. The channel has type a -> b which reminds of a function. The
difference is, that a synchronous channel must explicitly send back some values
as results using reply - a function implicitly returns the value of their main body.



4

Message sending on asynchronous channels appears in processes, message
sending on synchronous channels appears in expressions (as if they were func-
tions). This partition of channel usage is one possible explanation for the design
decision to have two different types for asynchronous and synchronous channels
(since the type checker should flag an error whenever a channel is used in the
wrong context).

Since channels are first-class values in JoCaml, they can also be sent and
received in messages (often referred to as name mobility [2]) which adds to the
expressiveness of JoCaml. One can write higher-order functions and ports (for
example turning a function into an asynchronous channel) or have polymorphic
types for channels.

The channels introduced to JoCaml are uni-directional channels. However -
using a concept called join-patterns, one can also define bi-directional channels
in JoCaml.

4.2 Expressions in JoCaml

Expressions are the same as they were in OCaml: they are executed in a syn-
chronous, deterministic call-by-value manner and produce a value when they
finish. The most basic expression sends a message on a synchronous channel and
waits for the result (blocks). For example, the expression

# let x=1 in print(x); print (x+1);
=> 12

sends two times on a synchronous channel called print and always evaluates to
the empty result (since the print channel has type int->unit in this case) while
outputting 12.

4.3 Processes in JoCaml

Processes are the main new syntactic class in JoCaml. Since only declarations
and expressions are allowed at top-level of a JoCaml program, JoCaml provides
the spawn keyword to turn a process into an expression. The most basic process
sends a message on an asynchronous channel.

spawn { ... }

Processes can be group by using braces “{}” and composited for concurrent
execution via “|”, for example

spawn { ... {... | ...} | ...}

Process composition also includes conditionals (if then else), functional matching
(match with) and local binding (let in, let def in). Sequences may also appear
inside processes, with the general form expression; process. This form is due
to the fact, that processes do not return values - so the value generated by
expression must be discarded. As Processes are executed concurrently, unlike
expressions, the code
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# spawn {echo 1 | echo 2}

produces two possible outputs: either 12 or 21 depending on which of the pro-
cesses ( {echo 1} or {echo 2} ) was executed first.

4.4 Synchronization Patterns

Join patterns, as introduced with the join calculus[1] extend channel name def-
initions with synchronization. Such a pattern defines a set of channels at once
and specifies a synchronization condition to receive messages on these channels.
For example, in

#let def channelnameX! var1 | channelnameY! var2 = process

there must be messages on channelnameX and channelnameY to trigger the
execution of the guarded process on the right-hand side. When multiple message
matches are available, which message will be consumed is non-deterministic.
Once again, the composition operator “|” is used to form the join patterns.

– Join patterns are the programming paradigm for concurrency in JoCaml.
They allow the encoding of many concurrent data-structures.

– Join patterns can mix up synchronous and asynchronous channel definitions.
– If multiple synchronous channels are defined in a join pattern, each reply

construct must specify the name to which it replies via reply to name.

# let def channelX var1 | channelY var2
= reply to channelX | reply to channelY

– Several join patterns can be co-defined with the keyword or.

# let def channelX! var1 | channelY! var2 = process1
or channelX! var1 | channelZ! var3 = process2

With join patters, many common programming styles, either sequential or
concurrent, can be expressed. For example explicit synchronization points in the
parallel execution of tasks, a so-called synchronization barrier can be expressed
with the usage of two synchronous channels in a join pattern:

#let def synch1 () | synch2 () = reply to synch1 | reply to synch2
val synch1: unit->unit
val synch2: unit->unit

This pattern can now be used for example for process interleaving, by spawning
to processes that alternately send an empty message on synch1 and synch2.

The generalization of synchronization barriers is the Join/Fork Parallelism,
which defines a variant, that performs to computations in parallel and then joins
the results.
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5 Join-Calculus and other programming languages

The concepts of explicit locality and join patterns are not restricted to JoCaml,
or the functional world at all. They can even be transferred to an imperative
setting like C# [3]: Processes are here so-called asynchronous methods:

async myMethod(...) {
// Method Body

}

The execution of the method body is scheduled in a different thread. Again,
asynchronous methods (like processes) do not produce a result value, so the
void keyword is substituted by the async keyword.

Join Patterns are here so-called chords:

class myClass {
string Get() & async Put(string s) {

return s;
}

}

In this chord, execution of method Get() blocks until a string is provided via
put (if not before). Detailed information on Polyphonic C# can be found in [3].

6 Conclusion

We have seen that the Join Calculus is a nice base for a new type of programming
model for concurrent and distributed programming. It is not restricted to the
functional world, however, OCaml as the base language with JoCaml as it’s
extension simplifies concurrent programming (in regard of traditional lock-based
approaches). As a difference to another approach to concurrent programming,
we have seen in the Seminar: Transactional Memory, the programmer in JoCaml
has to keep concurrency in mind while writing the program, where as with
the transactional memory approach, he could later on make already existing
code safe for concurrency by using atomic. Nonetheless, JoCaml also has some
draw-backs, which are actually based on the way locations are handled: the
programmer has to define suitable portions of code (locations) - suitable in a
regard to error handling. Asynchronous processes just print an exception to std-
out, synchronous processes terminate with the exception instead of the reply,
but the complete failure recovery mechanism is left to the programmer.
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Abstract. Dynamic typing can be useful in statically typed languages.
We extend the simply typed λ-calculus with dynamic typing and elabo-
rate additional features like polymorphism and subtyping.

1 Introduction

There are situations, when even statically typed languages need to perform dy-
namic type checks. Examples are the handling of persistent storage or inter-
process communication. If a process receives some data from another process, it
cannot rely on this data to be of some expected type. The type has to be checked
dynamically.

Another example are heterogeneous data structures. For instance if a lan-
guage supports lists which can contain values of different types at the same
time, then prior to the usage of an element of such a list, its type must be
checked. This can only be done dynamically.

The function eval takes an expression as argument and evaluates it. The
type of the result can only be determined dynamically. This is a further example
were a statically typed language needs dynamic type checking.

Most of the work we present here is based on the papers [1] and [2], which
propose to use a type called Dynamic to allow dynamic type checking. Values
of this type are constructed by pairing a value with its type. Since such values
contain a type, we can check this type dynamically. This inspection is done by
a typecase construct.

Dynamic values are of type Dynamic and they can contain values of any type.
Therefore it is easy to construct heterogeneous data structures in a language
which supports Dynamic. For example a list, which can contain values of different
types, is simply a list of dynamic values.

2 λ-Calculus with dynamic and typecase

We give now a formal definition of an extension of the simply typed λ-calculus,
which knows the type Dynamic and a typecase construct. The syntax is rather
simple:



τ ∈ Typ ::= X | τ → τ | Dynamic
e ∈ Exp ::= x | λx:τ . e | e e | dynamic(e:τ) | typecase e of x:P . e else e

The differences to the simply typed λ-calculus are the type Dynamic and the
new expressions with dynamic and typecase. Values of type Dynamic (upper
case) are constructed by dynamic (lower case). It is used to pair an expression
with its type.

The typecase construct takes an expression of type Dynamic as argument
and checks whether its contained type matches the pattern P . So far a pattern
is just a type and the check is a simple equality test. If the match succeeds,
the expression following the pattern is evaluated, where the variable x is sub-
stituted with the value contained in the dynamic value. So typecase does not
only dynamic type checking, it also gives us access to the value contained inside
a dynamic value. If the type check does not succeed, the expression of the else

branch is evaluated.
For example, the following function checks whether its argument contains a

number (Assuming, the language supports numbers). If the check succeeds, the
result is the number increased by one, otherwise the result is zero.

λe:Dynamic . typecase e of x:Nat . x + 1 else 0

We now give reduction rules for the two new constructs. The others behave
as in the simply typed λ-calculus. The rule for dynamic is rather simple. It states
that the inner expression should be reduces to a value (Values are λ-expressions
and dynamic-expressions, which contain a value):

e ⇒ v

dynamic(e:τ) ⇒ dynamic(v:τ)

The typecase construct requires two rules, since the pattern matching can
succeed or fail. First, the expression following the typecase must reduce to a
dynamic-value. Its contained type τ is matched with pattern P (This is the side
condition). If the match succeeds (τ = P ), we reduce e2, where the variable x

is substituted with v1, the value inside the dynamic expression. Otherwise we
reduce e3.

e1 ⇒ dynamic(v1:τ) e2[x := v1] ⇒ v2

typecase e1 of x:P . e2 else e3 ⇒ v2

τ = P

e1 ⇒ dynamic(v1:τ) e3 ⇒ v3

typecase e1 of x:P . e2 else e3 ⇒ v3

τ 6= P

Now that we know the behaviour of dynamic and typecase, their typing
rules should be straightforward. For dynamic we require that its inner expression
really has the claimed type:



Γ ` e : τ

Γ ` dynamic(e:τ) : Dynamic

The first expression in the typecase construct must have the type Dynamic.
Furthermore the last two expression must have the same type τ , the type of
the whole construct. Additionally the environment of e2 is extended with the
variable x of type P , since x is substituted with something of this type, if the
match succeeds during the reduction.

Γ ` e1 : Dynamic Γ, x:P ` e2 : τ Γ ` e3 : τ

Γ ` typecase e1 of x:P . e2 else e3 : τ

As an example we now write a function which, given two dynamic values,
tries to apply the first to the second:

λdf :Dynamic . λdx:Dynamic .

typecase df of

f :Nat → Nat .

typecase dx of

x:Nat . f(x)
else 0

else 0

This function checks whether its first argument contains a function mapping
numbers to numbers and whether its second argument contains a number. But
how can we write such a function, which applies functions of arbitrary types to
their arguments? This problem brings us to the subject of the following section.

3 Pattern Variables

The problem mentioned in the last section arises from the fact, that every pattern
only matches a single type. If we allow the patterns to contain pattern variables,
we will obtain a more expressive typecase construct. With pattern variables
we can match parts of types. For example the pattern U → V with pattern
variables U and V matches any functional type. A successful match binds U to
the argument type and V to the result type of the function. We can now write
a function which applies functions of arbitrary types to their arguments:

λdf :Dynamic . λdx:Dynamic .

typecase df of

{U, V } f :U → V .

typecase dx of

{} x:U . dynamic(f(x):V )
else dynamic(...)

else dynamic(...)



In front of every pattern we write its patters variables in braces. This is done
in order to distinguish them from previously bound variables. For example the
first pattern contains the pattern variables U and V . The pattern of the inner
typecase contains no pattern variables. The U is the variable which was bound
in the first pattern. This way we check whether the type of the second argument
is equal to the argument type of the function.

Interestingly the result cannot be just f(x). We need to pack it again with a
dynamic expression. This is because of the requirement, that the else branches
must have the same type as the matching branch and there is no way to construct
something of type V , but we can easily build something of type Dynamic.

4 Polymorphism

In the following sections we will discuss some possible extensions of our calculus.
It is easy to include polymorphism like in System F [3]. Here polymorphism is
modelled by functions which take types as argument. Such functions are written
λX . e. For example the polymorphic identity function is written λX . λx:X . x

and has the type ∀X . X → X. If this function is applied to some type, it reduces
to the identity function of this type: (λX . λx:X . x) [Nat] ⇒ λx:Nat . x

The integration of this scheme into our calculus is straightforward. The fol-
lowing example illustrates the use of a typecase which matches a polymorphic
function f mapping lists to lists and returns a polymorphic function which, given
a type and a list x of values of this type, applies f to the reverse of x:

λdf :Dynamic .

typecase df of

{} f :∀X . List X → List X .

λY . λx:List Y . f [Y ] (reverse [Y ] x)
else λY . λx:List Y . x

5 Higher-Order Pattern Variables

Interestingly our first-order pattern variables are not expressive enough in match-
ing against polymorphic types. There is no pattern which matches any poly-
morphic function in a suitable way. For example the types ∀X . X → X and
∀X . List X → List X are incompatible, i. e. there is no non-trivial pattern
which matches them both. One might think that the pattern ∀X . U → U with
pattern variable U does the job, since a successful match can bind U to X or
to List X. But this causes a scoping problem, since U can be used outside the
scope of type variable X. This introduces a new free type variable at runtime.

A solution to this problem are higher-order pattern variables. When such a
variable is matched, it is not bound to some type, but to a function mapping
types to types. The following pattern matches the two types from above by using
a second-order pattern variable F : ∀X . F X → F X. A successful match binds
F to the identity on types, ΛX . X, or the following function: ΛX . List X.



Now X is passed to F as an argument, making F independent of X. This solves
the scoping problem from above.

6 Subtyping

If we include subtyping in our language, this has some implications on our pat-
tern matching. A type T should match a pattern P , if T ≤ P , i. e. if T is a
subtype of P . For example, since Nat ≤ Int, the following match should suc-
ceed:

typecase dynamic(5:Nat) of
x:Int . ...

else ...

Unfortunately, the binding of pattern variables is not an easy task any more.
In general there is no unique solution for this problem. For example it is clear,
that the type Int → Nat matches the pattern U → U . The types Int → Int

and Nat → Nat are both supertypes of Int → Nat and valid instances of the
pattern. But neither of them is a subtype of the other, so there is no reason to
prefer one solution to the other.

This problem can be avoided by only allowing linear patterns, i. e. patterns
where a pattern variable occurs at most once. But this approach is a bit too
restrictive. Another solution is to add subtyping constraints and to perform
exact matching. Here the matching works as in the previous sections, where we
did not have subtyping, but additionally we check after the matching whether
some specified subtyping constraints are met. So first we do an exact pattern
matching and check the constraints afterwards. To match anything which is a
subtype of Int, we write something like this:

typecase dynamic(5:Nat) of
{U ≤ Int} x:U . ...

else ...

Here the match binds U to Nat and then it is checked that Nat ≤ Int. The
problem from above is avoided, since there is simply no way to exactly match
the type Int → Nat with pattern U → U .

7 Abstract Data Types

Another problem that arises with dynamic types is that the typecase construct
destroys parametricity, i. e. now the reduction is not independent of types any
more. Unfortunately type abstraction relies on parametricity to hide its repre-
sentation. Dynamically, abstract types are just their representation types, hence
typecase can be used to expose them. Solutions to this problem include the
dynamic generation of new type names to restore type abstraction [4, 5].



8 Example Languages

There are programming languages which realise some of the presented ideas.
For example the logic language Mercury knows the type univ, which corre-
sponds to our type Dynamic. It also includes the predicates type to univ and
univ to type to convert any value into something of type univ and back [6].

Haskell also includes dynamic typing. The GHC knows the type Dynamic

which is realised via the type class Typeable of types with a known represen-
tation [7]. This representation is compared with the expected type’s represen-
tation during the dynamic checks. This form of dynamic typing only works for
monomorphic types.

The language Clean has a quite expressive dynamic typing. It includes pat-
tern matching with first-order pattern variables and also deals with polymor-
phism [8].

The language Alice ML provides dynamic typing through the concept of
packages. The constructs dynamic and typecase correspond to the operations
to create and open packages, pack and unpack [9]. Alice ML supports subtyping
which also applies to the type check performed by unpack.
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A Functional Graph Library
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Abstract. Algorithms on graphs are of great importance, both in teach-
ing and in the implementation of specific problems. Martin Erwig pro-
poses an inductive view on graphs to achieve a concise notation, per-
sistence and efficiency. I will show that, though meeting each of these
goals, the proposed solution fails to archive all three at the same time,
especially when extending the term “efficiency” beyond time complexity.

1 Introduction

I will provide an overview and and an evaluation of the inductive view on graphs
and its implementation as presented in [Erw01]. Section 2 covers the inductive
graph model and presents active patterns which are very convenient when dealing
with inductive graphs. In section 3, two possible implementation ideas for the
inductive graph model are briefly discussed and compared. In section 4, I will
give an example of an inductively defined graph algorithm and comment on its
expressiveness, efficiency, and suitability for programming and also for teaching,
which is also one of Erwig’s goals.

2 Inductive Graph definition

Functions defined over inductive data types like trees are usually very expressive
and elegant. By providing an inductive definition for graph data structures, those
benefits can also be applied to functional graph algorithms. Erwig proposes such
an inductive definition a well as an implementation that allows inductive graph
algorithms to be implemented with the same asymptotic complexity as their
imperative counterparts. The paper only deals with directed, node and edge
labeled multi graphs, since other graph types are merely special cases of this
definition. Intuitively, inductive graphs can be seen as an algebraic data type
defined as follows, where & is an infix constructor (grouping right).

type Node = Int
type Adj b = [(b,Node)]
type Context a b = (Adj b, Node, a, Adj b)
data Graph a b = Empty | Context a b & Graph a b

The above definition uses the invariant that upon insertion into the graph,
every node that is mentioned in the context of the newly inserted node must
already be present in the graph. Although this term representation is insufficient



for implementation purposes, due to the invariant and the need to efficiently
retrieve specific nodes, it is a good intuition for writing algorithms. Figure 1
shows a graph and one possible term representation. First the solid then the
dashed and finally the dotted elements are inserted.

Fig. 1. Inductive Graph with term representation
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The above definition also provides two important facts that are important
for implementation purposes and for the definition of a new kind of pattern
matching called active patterns, which provides a very concise notation for graph
algorithms.
Fact 1(Completeness) : Each labeled multi-graph can be represented by a graph
term.
Fact 2 (Choice of Representation):For each graph g and each node v contained
in g there exist p, l, s, and g′ such that (p, v, l, s)&g′ denotes g.

2.1 Active Patterns

Fact 2 states that a long as v is present in g, the graph can be separated into vs
context and the graph that remains if v and all edges adjacent to v are removed
from the graph. We now define the graph primitive &v-match , which concep-
tually performs this transformation and returns (Just c, g ′) or (Nothing, g) if
v was not present in the graph. Using &v-match , we define an extension to
Haskell’s pattern matching feature called active patterns. The pattern (c &v g)
is matched if &v-match v g returns Just(c, g). This allows a very concise no-
tation for graph algorithms. Although being neat, active patterns are merely a
syntactic extension of current Haskell. They can also be expressed using a case
construct or pattern guards as provided by the current ghc implementation. The
function f , which uses our active pattern

f p (c &v g) = e
f p g = e ′

where v is contained in the pattern p could be reformulated
... using the case construct ... or alternatively using pattern guards

f p g ′ = case match v g ′ of

(Just c, g) → e
(Nothing, g) → e ′

f p g ′|(Just c, g) ← match v g ′ =e
|g ← g ′ =e ′



3 Implementation

The implementation of inductive graphs as an algebraic data type forbids itself,
since graph decomposition ( &v-match ) would require the graph to be trans-
formed. Furthermore the & constructor could be used incorrectly violating the
graph invariant. Since the graph data structure is designed for the functional
world, the graph implementations should be fully persistent. Additionally we
want the graph implementation to allow graph algorithms to be implemented
with the same asymptotic complexity as their imperative versions. Erwig pro-
vides two different implementations. One uses binary search trees, the second
implementation uses a rather complex data structure based on array version
trees. I will give a brief overview over both of them. A more detailed description
can be found in the original paper. Both give reasonably efficient implementa-
tions for the graph primitives from the following table:

Construction Decomposition

& (add context) &-match (extract arbitrary content)
Empty (empty graph) &v-match (extract specific content)

Empty-match (test for empty graph)

3.1 Binary Search Tree Representation

In this model, Graphs are implemented as a balanced binary search tree con-
taining all contexts present in the graph in the from
(node, (predecessors , label , successors)) The balancing and search tree invariant
are based on the node integer. For efficiency reasons, the complete predecessor
and successor lists are stored in each node. This leads to a double representation
of edges, but allows contexts to be matched without changes and to directly
report all contexts that need to be modified when a node is deleted from the
graph.

As an optimization of this structure, the predecessor and successor lists are
also stored as binary search trees. Furthermore we pair our tree with a single
integer containing the highest node present in the graph which is used to report
new nodes. Using this representation, Empty and Empty-match are easily imple-
mented. c&g works by first inserting the context into the tree and then inserting
every successor/predecessor into the corresponding nodes predecessor/successor
list. &v-match works the other way around, locating the context to be matched,
deleting v from the adjacency lists of all related nodes and returning the context
alongside the remaining graph.

Considering the time complexity of the operations above we define n as the
number of vertices in the graph, m as the number of edges and cv as the size of vs
context (|pred v|+|suc v|), where pred and suc denote predecessor and successor
functions. Finally c denotes the biggest context relevant to one operation. Using
these definitions node insertion and deletion and the match functions based on
them run in O(cv log n log c)



3.2 Array Version Tree Representation

This implementation builds upon the idea of array version trees, an implemen-
tation for functional arrays. Instead of a in tree the contexts are stored in an
array indexed by the node integer. Any changes to the array are recorded using
an inward directed tree of (index , value) pairs, which has the original array as
its root. This way the different array versions can be represented as pointers to
nodes in the tree, and the nodes along the path to the root mask older versions
of the array. New versions can be added in constant time whereas lookup follows
the tree structure up to the original array and may thus take O(u) time, where
u is the number of previous updates to the array.

Since the goal is to provide a persistent graph implementation that allows all
basic operations except & in O(1) time, the structure needs some optimizations.
To allow for any operation ob be in O(1), we need to ensure O(1) read access to
the graph array, which we do only for single threaded graph usage. To achieve
this, we allocate an imperative cache array which contains a copy of the original
array whenever we derive a new version from the version tree root and associate
it with the new version. This cache array can be used for O(1) access to the
latest version of the graph. When the next version is derived from this version,
the cache array is updated as well and handed on. On single threaded graph
usage, the version tree degenerates to a linear tree where the latest version is
always cached.

As with the tree representation, &v-match and &-match are costly operations
because they require the deletion of v from the context of every adjacent node.
To avoid these costs, we equip every node with a positive integer. This node
stamp is also put into the adjacency lists of all adjacent nodes. When calculating
adjacency of a node only the nodes where the stamp on the edge matches the
stamp on the adjacent node are reported, so all that needs to be done when
deleting a node is to negate its node stamp. Upon insertion the node stamp is
restored and incremented and the new stamp is taken over to adjacent nodes, so
any leftover edges are still not reported. To allow for Empty-match and &-match

to be implemented in O(1) we also store the number of nodes currently present
in the graph and keep an additional array (cached in the same manner) which
carries a partition of nodes currently in the graph and nodes that are deleted.
The node partition can also be used to efficiently report free nodes that can be
inserted into the graph.

3.3 Comparison

We now have two implementations for functional graphs. The first is easy to im-
plement, fully persistent, fully dynamic, and reasonably efficient for small and
medium size graphs, but clearly does not allow algorithms to be implemented
so that they meet imperative time complexity. The second implementation al-
lows graph decomposition and testing in constant time and thus allows graph
algorithms to be implemented with the same asymptotic complexity as their



imperative counterparts. Unfortunately, it is difficult to implement and the al-
location of different cache arrays causes a lot of memory overhead which makes
the implementation unsuitable for use in real world applications. Furthermore
the structure may be “tricked” by first deriving 2 versions linearly and then
continuing with the first version, adding the factor u to the time comlexity for
non cached lookup. So already almost single threaded graph usage crashes time
bounds.

4 Algorithms and Evaluation

Erwig proposes his graph library for both teaching of graph algorithms and for
writing efficient applications. For the purpose of writing practical applications,
the library can be of limited use. The binary search tree implementation can be
useful since the representation is fully persistent, thus allowing a pure functional
stile for working with graphs, while still being fast as log as graphs do not grow to
large. This might also be one of the possible reasons to use inductive graphs for
teaching graph algorithms. Using the inductive graph implementation described
above and the definition for active patterns, depth first search, one of the most
important graph algorithms, can be written as follows:

dfs :: [Node] → Graph a b → [Node]
dfs vs g | null vs || isEmpty g = []
dfs (v : vs) (c &v g) = v : dfs (suc c ++ vs) g
dfs (v : vs) g = dfs vs g

The algorithm works very similar to its imperative counterpart, the biggest
difference being the way the single visit constraint is enforced. Imperative im-
plementations tend to use some node marking strategy, either within the graph
or in a separate data structure. Since we use an inductive model the single visit
constraint is enforced implicitly by decomposing the graph step by step. The
algorithm either stops when there are no more nodes to expand or if the whole
graph has been traversed and the remaining graph is thus empty. The latter is
useful since in dense graphs expanded edges can cause up to Ω(n2) nodes to be
checked, even after the graph has been fully traversed. The pattern (c &v g) is
always matched when v is contained in g. In that case v is expanded. Otherwise,
if v has already been expanded, the node is simply discarded. Notably this algo-
rithm can be instantly transformed into a breadth first search algorithm merely
by exchanging suc c and vs in the second equation, although a queue implemen-
tation is needed to keep the linear time bound. The original paper shows quite
a few standard graph algorithms, which can all be elegantly expressed.

So for the simple teaching of graph algorithms the fgl might be useful, as
long as time complexity is not a concern. If one really wants in-depth teaching
of graph algorithms, one hits the limitations of the library. The current imple-
mentation of the fgl library for Haskell provides only the binary search tree
implementation as described above and monadic graphs which are based upon
IOArrays. They efficiently allow single threaded graph usage. So one has to chose



to either implement algorithms without meeting imperative time bounds or one
is left to work within a monad, which completely destroys the functional flavor.
Additionally, the documentation of the library has not been updated for the last
4 releases. There is an implementation for SML/NJ which includes both imple-
mentations, but it has not been changed since August 1999, and so far I have
not been successful in building the library with the current SML/NJ release.

On the other hand, in an impure functional language such as ML, functional
graph algorithms can be implemented easily and efficiently using imperative style
book keeping. The extra book keeping allows most graph algorithms to be imple-
mented to only read from the graph so a static/functional array representation
is entirely sufficient. Furthermore algorithms written in a “read only” style can
be implemented in a way so that they appear purely functional to the outside.
This approach has been taken in [KL93]. Here, the monad of state transform-
ers is used to efficiently implement the depth first forest algorithm in Haskell.
Although notationally considerably less concise, the state of the log is threaded
through the different function calls roughly in the same manner as one threads
the remaining graph though the recursive function calls when writing inductive
style algorithms. The result of this approach is an efficient dff algorithm for
Haskell that appears completely functional to the outside.

So altogether, the idea to view graphs as inductive data types is a nice idea
that theoretically allows for a very concise and elegant notation of functional
graph algorithms that do have the same time complexity as their imperative
counterparts. Unfortunately one either has to cope with a considerable memory
overhead, with unmet imperative time bounds or with a loss of expressiveness
and persistence if one decides to use monadic graphs thus destroying the func-
tional flavor. For now, there seems to be no way to achieve persistence, efficiency,
and concise and alegant notation all at the same time.

Bibliography

[Erw01] M. Erwig. Inductive graphs and functional graph algorithms.
Journal of Functional Programming, 11(5):467–492, 2001.

[KL93] David J. King and John Launchbury. Lazy Depth-First Search
and Linear Graph Algorithms in Haskell. In John T. O’ Don-
nell and Kevin Hammond, editors, GLA, pages 145–155, Ayr,
Scotland, 93. Springer-Verlag.



Pickler Combinators – Explained

Benedikt Grundmann
benedikt-grundmann@web.de

1 Software Engineering Chair (Prof. Zeller)
Saarland University

2 Programming Systems Lab (Prof. Smolka)
Saarland University

Abstract. This paper summarizes the paper “Pickler Combinators” by
Andrew J. Kennedy. Kennedy presents an purely library based approach
to pickling similar in spirit to the well-known parser combinators. This
approach to pickling is also compared to builtin pickling services as pre-
sented in the paper “Generic Pickling and Minimization” by Guido Tack
et al.

1 Motivation

It is frequently necessary to externalize data in order to store it on disk or trans-
mit it over the network. This process is also known as serialization or pickling.
The reverse process is called deserialization or unpickling.

As long as the data is atomic such as a number or a simple sequence of atomic
values of the same type serializing it is rather easy. But as soon as more complex
heterogeneous data structures have to pickled doing so by hand easily gets very
error prone.

One reason for that is that three different definitions have to be synchronized.
These are the definitions of the datatype to be pickled, the definition of the
pickling function and the definition of the unpickling function. And in most
cases there is more than one datatype involved!

2 A pickler library: Kennedy’s Pickler Combinators

In [3] Kennedy describes an solution to pickling purely based on an combinator
library and therefore embeddable in any programming language which offers
higher order functions.

A combinator library is based on the idea of combining higher order func-
tions of very uniform type. The combinators are carefully designed higher order
functions which act as the glue; they provide a variety of ways of composing
functions together into more powerful functions.

In the case of Kennedy’s Parser Combinators both the pickling and the un-
pickling function are composed at the same time. It is therefore impossible to
create an inconsistent pair of pickling/unpickling functions. In the library such



pairs are provided for the built-in types of the programming language (e.g unit,
booleans, characters, non-negative integers and integers between 0 and some up-
per bound). The pairs are given the type PU α, where α is the type of the value
to be pickled. Kennedy refers to such a type as a “pickler for α”. The definition
of the type

PU a = PU { appP :: (a, [Char]) -> [Char]
, appU :: [Char] -> (a, [Char]) }

is not made accessible outside the implementation of the library further ensuring
that the construction of an inconsistent pickler is not possible.

As you can see in the definition above the type of the pickling and unpickling
functions had to be extended to enable composition. The semantics of appP are
defined like this appP (v, s) prepends a serialized representation of v to an
existing stream of serialized values s. Whereas appU s returns the deserialized
value and the remaining stream. Ignoring sharing and minimization (see section
2.1) the following equation holds for all cycle free values v and byte sequences
s: (v, s) = appU (appP (v, s)).

As set of combinators – functions from and to picklers – are provided to gen-
erate picklers for composite types. Given experience with a combinator library
they have the expected types mirroring the corresponding type constructor:

– The pickler combinators for tuples pair :: PU a -> PU b -> PU (a, b),
triple :: PU a -> PU b -> PU c -> PU (a, b, c), . . .

– The pickler for lists list :: PU a -> PU [a]
– Optional values pMaybe :: PU a -> PU (Maybe a)

All these combinators are defined by means of the two combinators lift and
sequ. Pickling of fixed values is done by the lift :: a -> PU a combinator.
Its implementation is simple as no value has to (de)serialized.

lift x = PU (\ (_, s) -> s) (\ s -> (x, s))

The combinator sequ :: (b->a) -> PU a -> (a -> PU b) -> PU b is more
interesting. It encodes sequential composition of picklers, in particular sequential
dependencies are allowed. Assuming two values A :: a and B :: b, a pickler
pa :: PU a and the two functions f :: (b->a) and k:: a -> PU b the pickler
p = sequ f pa k has the following semantics. The call appP p (B, s) precedes
the encoding of B by the encoding of A = f B. Most notably this encoding can
depend on the value A as the pickler for B is generated by the call k A. The
call appU p s in turn decodes A, generates the pickler for b by calling k A and
decodes and returns B.

This looks quite complicated but as mentioned above it allows for simple
definitions of pickler combinators such as pair

pair pa pb = sequ fst pa (\ a ->
sequ snd pb (\ b ->
lift (a, b) ))



This definition is easy to understand if read in reverse order. In line three the
values a and b are fixed and to pickle a pair of fixed values we can simple use
lift. Now we precede this empty encoding of the fixed pair by the encodings of b
and a.

Another combinator called wrap :: (b->a, b->a) -> PU a -> PU b is also
implemented in terms of sequ and lift to provide mapping on picklers. Given an
implementation of a fixed range cardinal number pickler zeroTo :: Int -> PU Int
all ranged ordinal type picklers can be defined in terms of wrap and zeroTo. For
example the definition of a pickler for boolean values looks like this
bool = wrap (toEnum, fromEnum) (zeroTo 1).

A number of combinators make use of recursion. A good example is the
previously mentioned zeroTo :: Int -> PU Int. zeroTo n creates a pickler
for integers in the range [0, n]. It separates the representation into dlog256 ne
digits. Each digit has 256 possible values thereby making maximum use of the
available storage.

Pickling of custom datatypes is done by combining the combinator alt with
the wrap combinator. The alt combinator is used to combine several distinct
picklers for values of the same type. Each pickler handles a disjunct set of possible
values contained in the type. The user must also specify a tagging function which
is used to determine which pickler to use.

Therefore for each constructor a separate pickler is defined by either lifting
the constructor into a pickler or by wrapping a pickler for the argument of the
constructor. These are then combined using alt, as seen in the example below.

data Tree
= Node (String, Tree, Tree)
| Empty

tree :: PU Tree
tree = alt tag [

wrap (Node, \\(Node d) -> d)
(triple string tree tree)

, lift Empty
]

where tag (Node _) = 0
tag Empty = 1

2.1 Sharing and Minimization

Thanks to persistence programs written a functional programming language usu-
ally make extensive use of sharing. A popular example are binary search trees.
After inserting an element into the tree shown in figure 1 (a) we do not end
up with two separate trees xs and ys = insert (e, xs), but rather two trees
which share a large number of nodes (see figure 1 (b)). Asides from memory con-
sumption this difference is normally not observable from within the programming
language. But there are two points which make sharing so important. One if we



had copied the elements upon insertion the runtime cost of insert would have
been a lot worse. Second and even more important with the increased mem-
ory consumption it would be impossible to keep several versions of the tree in
memory.
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Fig. 1. tree(s) before and after insertion

The library as described so far does not preserve sharing. In the example
mentioned above this would matter as soon as more than one tree were to be
pickled. In order to support sharing Kennedy implements the following idea.
Sharing is detected by memorizing which values have already been pickled. If a
value has not been pickled yet an numerical id is generated and added to the
encoding. If the value is already part of the overall encoding just the id – which
is part of the dictionary – will be included in the encoding.

Users of the combinator library must indicate shared datatypes by using the
share combinator on its pickler. This combinator extends the normal pickler by
the algorithm outlined above. To do so the datatype must support the equality
operation to detect whether it is already part of the dictionary or not. Also the
definition of the pickler datatype has been changed into

PU a s = PU { appP :: (a, (s, [Char])) -> (s, [Char])
, appU :: (s, [Char]) -> (a, (s, [Char])) }

As you can see a pickler now also threads the dictionary. As we can not know
what the type of the dictionary is – it depends on which type the share combi-
nator is applied on – this type is a new type parameter of the pickler. This also



implies that sharing of more than one type of value at the same time requires
rewriting the share combinator.

Still as long as the value pickled is not cyclic (see section 2.2) this library can
be used minimize the heap representation of a value by maximizing sharing with
respect to one component. As an example one could use the share combinator
to either share the nodes of the tree, or the values of the keys but not both at
the same time.

2.2 Cyclic values

Pure functional programming languages such as Haskell[2] normally use a non-
eager evaluation model and can therefore express infinite (cyclic) data structures.
The algorithm outlined above could in principle be used to serialize cyclic values.
But the implementation given in the paper can not do so as the equality test
used would diverge. Some low level pointer based comparison, which does not
diverge on cyclic values has to be used instead.

In a non pure functional programming language such as SML[4] cyclic data
structure are introduced explicitly by using references. Martin Elsman[1] presents
an SML variant of Kennedy’s library which uses an adopted variant of the algo-
rithm outlined above to serialize references.

3 Builtin pickling and the abstract store

A different approach to pickling was defined by Guido Tack et al [5]. They
defined an language independent memory model – the so called abstract store
– and introduced pickling as a runtime system service similar in spirit to the
garbage collector. Which they implemented as part of the virtual machine of the
programming language Alice, a variant of SML. They also defined and included
a generic minimization algorithm based on graph minimization. In particular as
this minimization algorithm works on the representation level, values of different
types can be shared and true minimization is achieved.

4 Comparison and Conclusions

If we compare the two different approaches we have to realize that both have
different strength and weaknesses. One the one hand the combinator based ap-
proach does not require any kind of runtime support and is easily extensible
and adaptable by the programmer. The approach by Guido Tack et al is essen-
tially a runtime service and not extensible by the programmer in any way. But it
supports both arbitrary sharing and full minimization in the presence of cyclic
values. In the standard case it is a even simpler to use than the combinator based
library.

It is also interesting to compare the different ways used to embed a dynam-
ically typed value into a statically typed language. In Alice the types of the



pickled values are included in the pickled representation and the language was
extended by a dynamic typecheck facility, similar to the well known typecase
instruction. Therefore it is not necessary to known exactly what type of value
was pickled. In the pickler combinator library instead one has to specify the
toplevel pickler and there are no checks at all whether the pickled representation
was actually generated using the same pickler.

One advantage of the combinator based library not mentioned by Kennedy
is that it could be extended to support different backends such as binary versus
textual by just changing a small number of the combinators. Still the solution to
sharing presented by Kennedy does not scale as the number and types of shared
values have to be known in advance. Even worse using a standard equality test
used by the sharing/minimization algorithm actually results in an quadratic
runtime behavior. I am therefore not sure whether the library as described is
ready for use in non toy programs.

Still the principles presented are interesting. I do not know any other combi-
nator library which creates more than one function at the same time and found
that idea inspiring.
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Abstract. Ausnahmen geben uns die Möglichkeit, gravierende Fehler,
die normalerweise zum Programmabsturz führen würden, aufzuzeigen,
um dann an einer anderen Stelle im Programm mit einer alternativen
Berechnung fortfahren zu können. Dieses Paper präsentiert ein Modell,
welches Ausnahmen in die pure und lazy Sprache Haskell einbettet, ohne
dabei wichtige Eigenschaften wie referential transparency2 und laziness
zu verletzen.

1 Introduction

Die Idee von Imprecise exceptions kommt aus der Hardware. Moderne super
scalar Microprozessoren führen zur Verbesserung der Performance viele Instruk-
tionen parallel aus. Eine unmittelbare Folge daraus ist eine Ungenauigkeit beim
Werfen von Ausnahmen: Die Ausnahme, die zuerst geworfen wird, muss jetzt
nicht mehr die Ausnahme sein, die in einem sequentiellen Lauf geworfen wird.

In diesem Paper findet dieselbe Idee auf der Programmebene Anwendung.
Auch hier kann die Veränderung der Auswertungsreihenfolge3 eine Verbesserung
der Performance bewirken. Dabei tritt das selbe Problem im Bezug auf Aus-
nahmen wie auf Hardwareebene auf. Das Paper präsentiert eine Lösung, die
Präzision für Performance verkauft: Um die Transformationen weiterhin durch-
führen zu können, bleibt das Modell unpräzise darüber, welche Ausnahme gewor-
fen wird. Das in Haskell präsentierte Modell macht von den Eigenschaften des IO
mondas gebrauch, um somit die Erhaltung von purity und laziness zu gewährleis-
ten. Im letzten Teil des Papers werden kurz die Semantik und einige Erweiterungs-
möglichkeiten des Modells aufgezeigt.

2 Ausnahmen

Viele Programmiersprachen stellen Ausnahmen zur Verfügung. Ausnahmen kön-
nen im Fall des Auftretens eines Fehlers geworfen und an einer anderen Stelle
im Programm wieder gefangen werden. So muss das Auftreten von Fehlern nicht
unmittelbar den Absturz des Programms zur Folge haben.

? Nach ’”Imprecise exceptions’” von S.P.Jones [3]
2 Das Auswerten eines Ausdrucks liefert immer das selbe Ergebnis
3 z.B. durchgeführt vom Compiler bei der Optimierung



2.1 Verwendung von Ausnahmen

Disaster recovery : Hier werden Ausnahmen verwendet, um das Auftreten eines
Fehlers, wie Division durch null, zu signalisieren. Die Ausnahme kann dann an
einer anderen Stelle im Programm wieder gefangen werden, um dort die Berech-
nung fortzusetzen.
Alternative result : Ausnahmen werden auch häufig eingesetzt, um ein alterna-
tives Ergebnis zurückzugeben. Existiert z.B. beim Nachschlagen in einer Map
der gesuchte key nicht, wird eine Ausnahme geworfen, um dies anzuzeigen.
Short circuit control flow : Eine weitere Möglichkeit besteht in der Abkürzung
des Kontrollflusses. Wird beim Durchsuchen einer Liste das gesuchte Element
gefunden, kann anstatt die Liste bis zum Ende zu traversieren eine Ausnahme
geworfen werden.
Asynchronous events: Die vierte Stelle, an der Ausnahmen verwendet werden
können, sind asynchrone Ereignisse. Dies sind Fehler, die nicht direkt im Pro-
gramm auftreten, sondern externe Ereignisse, wie das Drücken von Ctrlˆc oder
ein stack-overflow.

Dabei lassen sich zwei Arten von Ausnahmen unterscheiden: Synchronous
exceptions, Ausnahmen, die synchron zum Programm auftreten, wie disaster
recovery, alternative result und short circuit control flow und Asynchronous ex-
ceptions, Ausnahmen die jederzeit auftreten können, die nicht vorhersehbar oder
reproduzierbar sind. Zu ihnen zählen die asynchronous events.[2, 1]

2.2 Ausnahmen in lazy Sprachen

Aus dem vorherigen Abschnitt ergibt sich unweigerlich die Frage, warum Aus-
nahmen in pure und lazy Sprachen nicht zur Verfügung stehen. Dies hat mehrere
Gründe. Zum einen haben Programme bei lazy evaluation keinen direkt vorher-
sehbaren Kontrollfluss, so dass es nicht möglich ist, zu folgern, wann welche
Ausnahme geworfen wird. Zum anderen wird die purity verletzt, wenn Ausnah-
men auf die übliche Art verwendet werden. Weiterhin gibt es die Möglichkeit,
Ausnahmen als Werte (exceptions as values) zu repräsentieren. Einen ähnlichen
Ansatz gibt es im IEEE floating-point Standard, wo bestimmte bit-patterns ex-
ceptional Werte codieren.

2.3 Exceptions as values

Dieser Abschnitt beschäftigt sich mit dem Ansatz, Ausnahmen als Werte zu mo-
dellieren: data ExVal a = OK a | Bad Exception. Es ist also nicht nötig, die
Sprache zu erweitern. Weiterhin kann anhand des Typs der Funktion erkannt
werden, ob eine Ausnahme geworfen werden kann, wodurch es unmöglich wird,
eine Ausnahme nicht zu fangen. Außerdem lässt sich dieses Modell komfortabel
verwenden, da ExVal einen monad bildet.

Allerdings kann beim Fangen von Ausnahmen leicht die strictness erhöht
werden. Weiterhin muss bei jedem Funktionsaufruf getestet werden, ob es sich
um eine Ausnahme (Bad Exception) oder einen normalen Wert (OK a) handelt.



Damit propagieren die Ausnahmen also auch nicht implizit und der Ansatz ist
ineffizient. Modularität und die Wiederverwendbarkeit von Code gehen verloren.
Und zuletzt sind viele Transformationen nicht mehr möglich.

3 Ein neues Design

In diesem Abschnitt wird ein neues Design präsentiert, welches die Probleme, die
durch die Kombination von pure und lazy Sprachen mit Ausnahmen auftreten,
auf zufrieden stellende Art und Weise löst. Dabei erhält dieses Model lazyness
und referential transparency. Damit bleiben alle sinnvollen Transformationen4

erhalten. Weiterhin ist es möglich, über die Ausnahmen, die in einem Programm
geworfen werden können, zu argumentieren. Außerdem bleiben Semantik und
Laufzeit von Programmen, die keine Ausnahmen beinhalten, unverändert. Das
Design wird in der Programmiersprache Haskell vorgestellt.

3.1 Grundidee des neuen Designs

Da hier lazy evaluation beibehalten werden soll, werden Ausnahmen weiterhin
als Werte und nicht als control flow modelliert. Allerdings wird dieses Modell
um die Idee erweitert, dass Werte eines beliebigen Typs entweder normal oder
exceptional sind. Zu diesem Zweck werden ein Datentyp Exception, der alle
möglichen Ausnahmen beinhaltet, eine raise Funktion, die eine Ausnahme in
einen beliebigen Typ einbettet, und eine Funktion catch, die aus dem Wert eines
beliebigen Typs gegebenenfalls die Ausnahme extrahiert, eingeführt.
data Exception = DivideByZero | Overflow | UserError String | ...
raise :: Exception -> a
catch :: a -> ExVal

3.2 Propagierung

Die Propagierung von Ausnahmen läuft, da es sich um Werte handelt, offen-
sichtlich automatisch. Im Hinblick auf lazy evaluation ist es allerdings nötig,
sich Gedanken über die Bedeutung von Propagierung zu machen. Man betra-
chte die folgende Funktion, die zwei Listen mit der Funktion f zippt:
zipWith f [] [] = []
zipWith f (x:xs) (y:ys) = f x y : zipWith f xs ys
zipWith f xs ys = raise UserError "Uneq lists"
Es gibt hier drei mögliche Verhaltensweisen bei einem Aufruf dieser Funktion:

– Sind beide Listen gleich lang, wird ein normaler Wert zurückgeliefert.
– Ist genau eine der Listen leer, wird unmittelbar eine Ausnahme geworfen.
– Interessant ist der Fall, in dem beide Listen nicht leer aber von unterschiedlich-

er Länge sind: Hier ist die Ausnahme in dem nicht vollständig ausgewerteten
Teil versteckt.

4 z.B. β-Reduktion



Das bedeutet also: Propagierung ist nur dann gewährleistet, wenn eine Auswer-
tung erzwungen wird.

3.3 Fangen von Ausnahmen

Für das Fangen von Ausnahmen haben wir die Funktion catch :: a -> ExVal a
eingeführt. Aber was passiert beim Aufruf catch ((1/0)+(raise Overflow))?
Je nach Auswertungsreihenfolge wird eine andere Ausnahme geworfen. Für dieses
Problem gibt es drei Lösungsansätze:

– Das Festlegen der Auswertungsreihenfolge: Dies verletzt laziness und verbi-
etet außerdem sinnvolle Transformationen.

– Nicht-deterministisches Auswählen einer Ausnahme: Dies verletzt purity und
referential transparency, wodurch Transformationen wie β-reduction nicht
mehr möglich sind.

– Zurückgeben beider Ausnahmen: D.h. ein exceptional Wert beinhaltet jetzt
eine Menge von Ausnahmen. Dieser Ansatz hat zur Folge, dass bei der
Implementierung die gesamte Menge aufrecht erhalten werden muss, was
eine schlechte Performance zur Folge hat. Weiterhin ist die Propagierung
höchstgradig unautomatisiert: Wenn eine Ausnahme gefunden wird, muss
trotzdem der gesamte Code ausgewertet werden. Damit verletzt dieser Ansatz
außerdem lazyness.

Alle drei Ansätze lösen das Problem nicht auf eine zufrieden stellende Art und
Weise. Die tatsächliche Lösung liegt in einem kleinen Trick: Denotational verhält
man sich so, als ob die gesammte Menge von Ausnahmen aufrecht erhalten wird.
Operational sucht man sich eine Ausnahme aus der Menge und gibt nur diese
zurück. Die Lösung des Problems besteht also aus einer Kombination der zweiten
und dritten Alternative.

3.4 Reparieren der catch Funktion

Wählt man sich zufällig eine Ausnahme aus der Menge der möglichen Ausnah-
men, die bei der Auswertung eines Terms auftreten können, aus, ergibt sich
wieder das Problem des Nicht-determinismus. Um diese Problem zu umgehen,
bedient man sich des IO monads5. catch erhält nun den Typ catch :: a ->
IO ExVal a. catch darf also jetzt bei jedem Aufruf ein anderes Ergebnis liefern.
Damit ist das Problem in den impuren Teil der Sprache verschoben. Purity und
referential transparency bleiben erhalten. Durch diesen Trick wurde der Nicht-
determinismus in den Ausnahmen vom Nicht-determinismus in den Werten ge-
trennt.

Die Lösung basiert also auf Unterschieden in der denotationalen und oper-
ationalen Semantik. Die denotationale Semantik beschäftigt sich ausschließlich
5 Im IO monad werden alle Berechnungen ausgeführt, die nach außen hin einen Effekt

haben. IO t ist dabei eine Berechnung, die ohne Seiteneffekte ausgewertet wird, und
erst einen Effekt hat, wenn sie ausgeführt wird.[4]



mit dem reinen Teil der Sprache. Da Ausnahmen aber nun im IO monad behan-
delt werden, dessen Ausführung in der denotationalen Semantik nicht betrachtet
wird, kann der Nicht-determinismus dort nicht beobachtet werden.

4 Semantics

In diesem Abschnitt soll ein kurzer Einblick in die Semantik von imprecise
exceptions gegeben werden. Im Folgenden wird die Semantik der Additions-
operation vorgestellt.
[e1 + e2]ρ =

v1 + v2 if OK v1 = [e1]ρ and OK v2 = [e2]ρ
Bad (S([e1]ρ) ∪ S([e2]ρ)) otherwise

Falls sowohl e1 als auch e2 zu normalen Werten ausweten, wird die Addition
der beiden zurückgegeben. Falls einer der Ausdrücke zu einem exceptional Wert
auswertet, werden die Ausnahmen aus diesem Wert mit denen aus dem anderen
Wert vereinigt. S liefert zu Bad s s und zu OKv die leere Menge.

Aber wie wird der folgende Fall gehandhabt: loop + raise Overflow? Soll
dieser Ausdruck divergieren oder zu Bad {Overflow} auswerten? Dieses Pro-
blem löst man, indem ⊥ als Vereinigung der Menge aller Ausnahmen mit
NonTermination modelliert: ⊥ = E ∪ {NonTermination}.

Die Regeln für Konstanten, Variablen, raise, Abstraktionen, Applikationen,
Konstruktoren und fix sind ähnlich. Die Regel für case ist ein wenig kom-
plizierter, da darauf geachtet werden muss, keine Transformationen zu verletzen.

4.1 Semantics von catch

Da catch auf dem IO monad arbeitet, muss diese Funktion in der operationalen
Semantik betrachtet werden.
catch (OK v) → return (OK v)
catch (Bad s) → return (Bad x) if x ∈ s
catch (Bad s) → catch (Bad s) if NonTermination ∈ s
Wird catch also auf einen normalen Wert angewendet, wird dieser einfach
zurückgegeben. Bei der Anwendung auf einen exceptional Wert wählt catch
eine Ausnahme aus der Menge s aus und gibt diese zurück. Falls sich außer-
dem NonTermination in der Menge befindet, kann catch bei der Auswertung
auch zum selben Term zurückkehren. Damit kann der Aufruf von catch auf
unserem Beispiel loop + raise Overflow sowohl Overflow werfen oder di-
vergieren. Tatsächlich ist es durch die Modellierung von ⊥ nach der Semantik
sogar erlaubt, dass catch eine beliebige Ausnahme wirft.

5 Implementation

Dieser Ansatz lässt sich mit standard exception handling Mechanismen imple-
mentieren. catch forciert die Auswertung seines Arguments zu head-normal



Form. Die Auswertung von raise ex trimmt den Auswertungsstack auf den
nächsten catch Aufruf und gibt Bad ex zurück. Falls kein Fehler auftritt, gibt
catch einfach den Wert zurück. Durch eine solche Implementierung bleibt die
Effizienz von Programmen ohne Ausnahmen unverändert. Exceptional Werte
verhalten sich wie first class Werte.

6 Erweiterungen

Im Folgenden werden noch einige Erweiterungsmöglichkeiten angesprochen.
Asynchronous exception: Das präsentierte Modell kann leicht um asynchrone
Ausnahmen erweitert werden: Jeder Auswertungschritt kann eine Ausnahme zur
Folge haben.
Detectable bottoms: Es gibt Divergenz, die durch das Anwenden Graphalgorith-
men auf Transitionssysteme erkannt werden kann. Anstatt einfach zu divergieren
könnte an solchen Stellen eine Ausnahme geworfen werden.
Pure Funktionen auf exceptional Werten: Es ist möglich, auf exceptional Werten
zu rechnen. Funktionen wie mapException :: (Exception -> Exception) ->
a -> a sind implementierbar wenngleich auch nicht unbedingt sinnvoll. Ein
Zurückkehren in normale Werte ist allerdings nicht möglich. Schon eine Imple-
mentierung der Funktion isException :: a -> Bool stellt uns vor unlösbare
Probleme: Es ist nicht möglich den Aufruf isException ((1/0) + loop) zufrie-
den stellend zu modellieren, da hier der Nicht-determinismus in Bezug auf Di-
vergenz und Werfen einer Ausnahme auftritt.

7 Zusammenfassung

Im Vergleich zu anderen Sprachen ist das präsentierte Design weniger aus-
drucksstark. In ML können Ausnahmen lokal deklariert, geworfen und gefangen
werden, ohne dass dies nach außen hin sichbar ist. Ein weiterer Nachteil ist, dass
sich der IO monad wie eine Falltür verhält. Allerdings gehen in diesem Modell
keine sinnvollen Transformationen verloren! Des weiteren lässt sich dieses Mod-
ell problemlos mit Dingen wie Nebenläufigkeit erweitern. Tatsächlich kommt es
bereits im Glasgow Haskell Compiler (4.0 und später) zum Einsatz.
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1 Testen vs. Beweisen
Sicherlich stellt sich für einen Pro-
grammierer stets die Frage, ob die von
ihm geschriebenen Programme korrekt
sind. Eine eindeutige Antwort darauf
wäre zwar schön, ist aber nur durch
einen Beweis möglich. Um zu bewei-
sen, dass eine Funktion korrekt ist,
muss sie vollständig verifiziert wer-
den. Der Beweis, dass eine Funktion
nicht korrekt ist wirkt dagegen deut-
lich leichter, es muss schliesslich nur
ein Gegenbeispiel gefunden werden, al-
so eine Parameterkonfiguration, die zu
einem falschen Ergebnis führt. Eine
Verifikation ist meist entweder auf-
grund fehlender Spezifikationen gar
nicht möglich, oder aber sie zieht einen
Aufwand mit sich, der in keinem sinn-
vollen Verhältnis zum Nutzen steht.
Aus diesem Grund ist es nur verständ-
lich, dass sich ein Programmierer in
den meisten Fällen mit einer Auswahl
an Tests begnügt. Findet er mit ei-
nem der Tests einen Fehler, so kann
er diesen beseitigen, findet er keinen,
so kann er zumindest davon ausgehen,
dass keine größeren Fehler mehr vor-
handen sind, ohne sich dessen aber
sicher sein zu können.

Auch wenn die Möglichkeiten der
Verifikation in den vergangenen Jah-
ren einen großen Vortschritt durchlau-
fen haben, ist das Testen noch immer
gängige Praxis, da es mit vergleichwei-
se geringem Aufwand jederzeit einge-
setzt werden kann. Gerade bei funk-
tionalen Programmiersprachen, deren

Funktionen üblicherweise keine Seiten-
effekte haben lassen sich besonders
gut testen, da man davon ausgehen
kann, dass eine Funktion entweder rich-
tig oder falsch ist, nicht aber ihre
Richtigkeit von ihrer Position im Pro-
gramm oder irgendwelchen Seiteneffek-
ten abhängt. Da es aber trotz die-
ser Einfachheit noch einen nicht zu
vernachlässigenden Aufwand bedeutet
und dieser bei jeder Veränderung der
Funktionen erneut betrieben werden
muss, um ein gewisses Maß der Sicher-
heit zu erlangen, sind teilweise- oder
vollautomatische Tests wünschenswert.

2 Automatisches Testen
mit QuickCheck

Für einen automatischen Test ist es von
Nöten, zu definieren, ob das Ergebnis
der Funktion in Abhängigkeit ihrer Pa-
rameter zufriedenstellend ist. Beispiels-
weise kann man definieren, dass das Er-
gebnis einer Sortierprozedur für Listen
eine sortierte Liste sein sollte, deren
Länge gleich der Einghabeliste ist. Al-
ternativ kann, falls eine schon bekann-
te und als richtig vorrausgesetzte naive
Implementierung der selben Funktion
vorhanden ist, getestet werden, ob das
Ergebnis der neuen Funktion, dem der
womöglich ineffizienteren alten Funkti-
on entpricht.

Um zu definieren, ob eine Funktion
ein zufriedenstellendes Ergebnis gelie-
fert hat, werden sogenannte Propper-
ties verwendet, welche Funktionen vom
Typ α → Bool sind. α ist dabei der
Parametertyp der Funktion.



Ein einfaches Beisiel:

fac naive n
| n < 2 = 1
|otherwise = n ∗ fac naive (n − 1)

fac n = foldr (∗) 1 [0..n]

prop fac :: Int → Bool
prop fac x = fac x == fac naive x

Hierbei ist fac die Funktion, die getestet werden soll und fac naive eine als kor-
rekt vorrausgesetzte Funktion. Ruft man QuickCheck mit der Property prop fac
auf, so ergibt sich:

Main > quickCheck prop fac
Falsifiable, after 1 tests :
1

Die getestete Funktion ist also falsch. QuickCheck hat herausgefunden, dass
bei dem Argument 1 die Bedingung nicht erfüllt ist. Nach Beheben des Fehlers
in der Funktion

facn = foldr (∗) 1 [1..n]

liefert QuickCheck beim erneuten Testen:

Main > quickCheck prop fac
OK , passed 100 tests.

3 Das Generieren von Test
Daten

Es zeigt sich, dass durch das Te-
sten in der Tat Fehler gefunden wer-
den können. Die Effizienz des Testens
hängt allerdings verständlicherweise
hauptsächlich davon ab, welche Wer-
te zum Testen verwendet wurden. Die
Aussage “OK, passed 100 tests.” ist
natürlich nichts wert, wenn 100x mit
der Zahl 1 getestet wurde. Das au-
tomatische Generieren von Testdaten
ist nun nicht ganz trivial. Die Ent-
wickler von QuickCheck haben sich
entschlossen, die einfachste Form der
Generierung, die zufällige Erzeugung
von Werten, zu verwenden. Eine Alter-

native wäre es gewesen, ein spezielles
Schema zu definieren, nach dem die
Testdaten generiert werden. Dies ist
jedoch ebenfalls recht aufwendig, weni-
ger flexibel aber nicht lohnend besser
als das zufällige Testen.

Um Daten von beinahe jedem Typ
generieren zu können wurde Gebrauch
von Typklassen gemacht. Für alle von
der Typklasse Arbitrary abgeleiteten
Typen α muss ein Generator in Form
der überladenen Funktion arbitrary
vom Typ Gen α zur Verfügung gestellt
werden. Werte einfacher Typen wie Int
oder Bool lassen sich denkbar einfach
erzeugen. Im Falle eines Bool Wertes



wird Zufallsgeneriert entweder True
oder False erzeugt, im Falle eines In-
tegers eine zufällige Zahl.

Werte mit komplexeren Typen
können rekursiv definiert werden: Exi-
stieren bereits ein Gen α und ein
Gen β, so kann rekursiv auch ein
Gen (α, β) definiert werden. Ähnlich
kann eine zufällige Liste vom Typ [α]
erzeugt werden, indem zuerst entschie-
den wird, wie lang die Liste sein soll
und dann soviele Werte vom Typ α er-
zeugt werden.
4 Generator Kombinatoren
Während die bislang genannten Ge-
neratoren von QuickCheck mitgelie-
fert werden, ist es auch möglich selbst
neue Generatoren zu erzeugen, oder
bestehende Generatoren zu kombinie-
ren. Hierzu werden einige Kombinator-
Funktionen zur Verfügung gestellt: Die
einfachste davon ist

return :: α → Gen α,

die einen Generator erzeugt, welcher
“zufällig” immer den als Parameter
übergebenen Wert liefert.

elements :: [α] → Gen α

gibt ein zufällig ausgewähltes Elemen
der Eingabeliste aus.

choose :: (Int, Int) → Gen Int

erzeugt eine Zufallszahl im Angegebe-
nen Zahlenbereich

oneof :: [Gen α] → Gen α

wählt zufällig einen Generator aus der
Liste und lässt ihn einen Wert erzeugen

frequency :: [(Int, Gen α)] → Gen α

funktioniert sehr ähnlich wie oneof ,
lässt jedoch eine Gewichtung der Ge-
neratoren untereinander zu.

sized :: (Int → Gen α) → Gen α

letztendlich benötigt eine Funktion, die
eine Größenbeschränkung für Werte
realisiert, indem für kleinere Integers
stärkere Schranken gesetzt werden als
für größere Integers. Ein Beispiel im
folgenden Kapitel wird ein wenig Licht
in die Funktionsweise werfen.

5 Das Generieren von benutzerdefinierten Daten

Benutzerdefinierte Datentypen müssen, wenn auch Funktionen, die diese Typen
als Parameter haben getestet werden sollen, natürlich ebenfalls von Arbitrary
abgeleitet werden. Mit Hilfe der Kombinatoren kann eine passende arbitrary
Funktion, und damit ein Generator für den Typ erzeugt werden.

Betrachtet man beispielsweise den Datentyp data Colour = Red|Blue|Green,
so lässt sich eine passende arbitrary Funktion beispielsweise wie folgt erzeugen:

instance Arbitrary Colour where
arbitrary = oneof [return Red , return Blue, return Green]

Alternativ hätte man hier natürlich auch elements verwenden können, um sich
die drei einzelnen return-Generatoren zu sparen.



Auch rekursiv definierte Datentypen können erzeugt werden:

data Tree a = L a | T (Tree a) (Tree a)

instance Arbitrary a => instance Arbitrary Tree a where
arbitrary = oneof [liftM L arbitrary , liftM 2 T arbitrary arbitrary ]

Ein solcher Baum, bei dem nur die Blätter markiert sind, wird hier erzeugt,
indem zufällig entweder ein Blatt erzeugt wird, dessen Markierung von der
arbitrary-Funktion für den Typ a erzeugt und mit Hilfe der Monad-Funktion
liftM an den Konstuktor des Blattes weitergegeben wird, oder ein innerer Kno-
ten, dessen beide Kinder auf die gleiche Weise mit Hilfe der arbitrary-Funktion
des Baumes und, da es sich um zwei Werte handelt, unter Verwendung von
liftM2 erzeugt werden.

Es wird schnell ersichtlich, dass die Hälfte der auf diese Weise erzeugten
Bäume nur aus einem Blatt besteht. Um dies zu verhindern ist man womöglich
versucht, oneof durch frequency zu ersetzen:

instance Arbitrary a => instance Arbitrary Tree a where
arbitrary = frequency [(1, liftM L arbitrary),

(2, liftM 2 T arbitrary arbitrary)]

Nun werden doppelt so häufig innere Knoten, wie Blätter gewählt und damit
nicht mehr so viele zu einfache Testdaten. Es stellt sich jedoch heraus, dass eine
gewisse, nicht allzu geringe Wahrscheinlichkeit besteht, dass der Generator beim
Erzeugen eines Testwertes divergiert. Für jeden inneren Knoten wird abermals
entschieden welche Kinder er haben soll, und mit 2

3 Wahrscheinlichkeit werden es
wiederum innere Knoten sein. Strenggenommen existierte dieses Problem bereits
in der Variante mit oneof . Um es zu lösen, kann der ohne Beispiel nicht ganz
intuitive Kombinator sized verwendet werden:

instance Arbitrary a => instance Arbitrary Tree a where
arbitrary = sized arbTree

Die Magie liegt in der Funktion arbTree, welche eine (zufällig ausgewürfelte)
Maximalgröße erhalten und abhängig davon einen Baum generieren soll:



arbTree :: Int → Gen a
arbTree 0 = liftM L arbitrary
arbTree n = frequency [(1, liftM L arbitrary),

(2, liftM 2 T (arbTree (n ‘div ‘ 2)) (arbTree (n ‘div ‘ 2)) ) ]

Für Bäume der Größe 0 wird einfach ein Blatt generiert, Bäume der Größe n
hingegen können ebenfalls Blätter sein, oder aber weitere innere Knoten, deren
Kinder jedoch nur noch die halbe Größe haben dürfen. Hierdurch wird eine
Divergenz verhindert. Die Möglichkeit, auf bei einem erlaubten größeren Baum
ein Blatt zu erzeugen ist nötig, um die zufälligkeit der Bäume nicht zu stören.
Ohne diese Möglichkeit würden nur balancierte Bäume erzeugt werden.

6 Generierung zufälliger Funktionen

Es können mittlerweile also Werte sowohl von Standard-Typen, alsauch von Li-
sten, Paaren und benutzerdefinierten Datentypen erzeugt werden. Wie sieht es
jedoch mit Funktionen aus?

Der Gedanke, zufällige Funktionen zu erzeugen erscheint auf den ersten Blick
abwegig, wenn nicht gar unmöglich. Schrittweise kann man sich jedoch an den
möglichen Weg herantasten. Der erste Schritt ist die nähere Betrachtung der
Generatoren. Wenn man einen Generator nicht mehr als Black Box ansieht,
sondern als die Funktion, die er ist, so ist insbesondere der Typ von Bedeutung:

newtype Gen α = Int → Rand → α

Der Integerwert wird hierbei nur für die Erzeugung von größenabhängigen Ge-
neratoren benötigt. Vernachlässigt man ihn an dieser Stelle, so sieht man, dass
ein Generator nichts anderes ist, als eine Funktion, die eine Zufallszahl in einen
Wert vom Typ α umwandelt. Ein Funktionsgenerator für eine Funktion vom
Typ α → β hat damit den Typ:

Gen (α → β) = Int → Rand → α → β

Eine Umordnung der Parameter dieser Funktion ergibt eine andere Funktion
vom Typ

α → Int → Rand → α = α → Gen β

Dieses Umordnen kann mit Hilfe der Funktion

promote :: (α → Gen β) → (Gen (α → β))

bewerkstelligt werden. Nun mag dies noch immer wenig verständlich und seh
abstrakt wirken, jedoch ist der wichtigste Schritt bereits getan. Die Erkenntnis,
dass wir zum erzeugen eines Generators für zufällige Funktionen (α → β) nur
eine Funktion benötigen, die abhängig von ihrem Eingabewert vom Typ α einen
Generator für Werte vom Typ β erzeugt ist hierbei der Schlüssel.



Um eine solche Funktion zu erhalten, muss man sich zuerst mit der Verände-
rung der Zufallszahlenfolge beschäftigen. Hier ermöglicht die variant :: Int →
Gen β → Gen β Funktion, eine Zufallszahlenfolge in Abhängigkeit eines Inte-
gerswertes zu verändern:

Ein weiterer Schritt ist die Typklasse Coarbitrary deren abgeleitete Typen α
eine Instanz der Funktion coarbitrary :: α → Gen β → Gen β, die im Grunde
nichts anderes tut, als den Wert des Types α auf einen zugehörigen Integerwert
abzubilden und damit Variant aufzurufen.

Gegeben ein Typ α, abgeleitet von Coarbitrary und ein Typ β abgeleitet
von Arbitrary existiert sowohl ein coarbitrary :: α → Gen γ → Gen γ alsauch
ein arbitrary :: Gen β. Die Funktion \x → coarbitrary x arbitrary vom Typ
α → Gen β erzeugt damit in Abhängigkeit eines Wertes vom Typ α einen Gen β
indem der Standard-Generator für β verändert wird. Übergibt man nun diese
Funktion der promote Funktion, so erzeugt diese daraus einen Funktionsgenera-
tor.

instance (Coarbitrary a, Arbitrary b) => Arbitrary (a − > b) where
arbitrary = promote (\ x − > coarbitrary x arbitrary)

7 Fazit

Das Tool stellt sicherlch keine perfekte
Lösung für alle Probleme dar. Bei man-
gelnder Aufmerksamkeit können Feh-
ler, wie divergente Generatoren, oder
Testdurchläufe, die nur Trivialfälle te-
sten auftreten. Auf der anderen Seite
darf man jedoch nicht vergessen, dass
es sich lediglich um ein Hilfsmittel zum
Testen handelt, das niemals eine voll-
kommene Korrektheit beweisen kann.

Es ist jedoch QuickCheck möglich,
ohne großen Aufwand eine vielzahl um-
fassender Tests durchzuführen. Für die

genauen Beobachtungs- und Ausga-
bemöglichkeiten, sowie weitere Konfi-
gurationsoptionen verweise ich auf das
Originalpaper.

Sogar alleine die im Quellcode be-
findlichen Properties führen schon da-
zu, dass dieser etwas besser dokumen-
tiert ist und auch besser verstanden
werden kann. So treten in der Pra-
xis durchaus Missverständnisse über
die Erfüllung bestimmter Eigenschaf-
ten auf, die trotz fehlerfreiem Pro-
gramm nicht erfüllt werden können
und den Programmierer zum Überden-
ken seiner Spezifikationen bewegen.
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Abstract. Interactions between web servers and clients are still not
well-understood, since no formal descriptions exist for them. A paper by
Krishnamurti et al. [1], which gives a first attempt at a formal model for
these interactions, is presented and discussed.

1 Introduction

”Programming for the Web is essentially a solved problem.”

Well, is it? It is true that we have come a long way since the conception of
the web. Scripting languages used to construct dynamic web sites have seen a
great surge in interest, large stores like Amazon or eBay have been successfully
erected, and most users surf these sites without ever encountering problems.
Now, why should the last item be treated like an achievement? Could it be the
case that somehow, users are expected to run into problems in a way they never
would in a regular store, and that preventing them from doing so is a cause for
celebration and admiration of this technical (or sociological) feat? As a matter
of fact, it is, and the rest of this paper will deal with an attempt to clarify
and remedy this situation – that is, explain what bugs the user is supposed to
encounter, why these bugs exist at all, and how to fix them. Let’s begin with a
typical problem a user might run into!

2 The Orbitz Bug

Suppose our hypothetical user – let’s call him Hans – wants to book a flight
online. Hans opens orbitz.com, a popular site offering flights from multiple air-
lines, and chooses his flight destination. Since Hans is well-versed in the use of
browsing techniques, he employs tabs (or multiple windows) to compare several
flights at once, each offering different benefits for different prices. After care-
fully choosing the one that suits his needs best, Hans closes all windows but
this one, concentrating on his selected flight. However, when he goes on to book
this flight, he discovers to his surprise and dismay that the confirmation page
doesn’t display his chosen flight at all! Instead, it tries to sell him another flight
– invariably the one from the most recently opened details window, even though
it was subsequently closed. Hans discovers that ”going back” from a choice is
impossible: whenever he opens a window to look at a flight’s details, this flight is
set as the one to be booked later on, regardless whether the booking process was
initiated from this or any other flight’s details page. Disgruntled, Hans leaves
the site and books his flight at a competitor’s web page.



3 Modelling the Web

Fixing any bug necessitates its complete understanding. The Orbitz Bug was
first identified by Krishnamurti et al. (see [1], terminology also from that paper)
in 2003, but still persists as of this writing, three years later. One could argue
that this signifies a lack of proper understanding of the issues involved in building
such an application, so in order to gain this understanding, Krishnamurti et al.
developed a formal model describing web interactions.
Some reservations have to be made: The model does not deal with multiple
clients accessing a single server, nor with any ”concurrency” issues (deadlocks
on shared resources, etc.). It also neglects static web pages, instead focusing on
the (more interesting) case of dynamic sites. However, each of these concerns
can be addressed: Multiple clients can be distinguished via sessions, effectively
allowing to model them as single entities (which are covered by the model).
Concurrency, while a valid research interest in its own right, is orthogonal to
the problem at hand and so can be ignored for the moment. As for static pages,
they can easily be modelled as special cases of dynamic pages, so this is really
not an issue. Starting from a very abstract view and going into details later on
(waterfall-style), a web configuration W is just a pair consisting of a single web
server and a single client: W = S ×C. We shall now look at each component of
the pair in detail.

3.1 The Server

Obviously, the web server needs some kind of internal storage to hold user data
and the like. It will be modelled by a function σ ∈ Σ, where Σ is the set of all
functions with the type Id → Vb. Id and Vb in turn designate identifiers and
values, Vb = Int | String. The σ in use can be thought of as the current server
state, since it captures all mutable entities accessible by the server.
The other necessary server component is required by what we ”normally” think
of as the web server: A dispatcher that deals with the process of looking up
the pages and delivering them. In particular, since the web pages are dynamic,
the dispatcher has to evaluate a looked-up program with respect to a yet to be
defined language, and return the results of this computation. So, aside from a
lookup table that assigns programs to URLs, some evaluation function is needed.
Formally: The lookup table P = Url → M◦ is a function from URLs to valid
programs in some language, denoted by M◦. A server is a tuple that consists
of storage state and lookup table (S = Σ × P ), and has an associated dispatch
operator dp that will be properly defined later on in terms of the reductions it
allows, which define program evaluation.

3.2 The Client

Taking a formal definition for web pages F for granted (it is given in the very
next section), the client can be modelled quite easily as a tuple consisting of the
currently shown page (as in, displayed on the screen in the browser window) and



a collection of all pages formerly visited during this session: C = (F ×−→
F ). The

latter can be thought of as the browser cache, although strictly speaking this is
not the exact truth (as shall be seen later on).

3.3 Web Pages/Forms

Since the only opportunity for true client/server interaction arises when the
client sends information to the server (as the other way round is deterministic,
if state-dependent), it is sufficient to only consider pages where the client has
the opportunity to do so. This is the case with HTML forms, and nothing else.1

Hence, for our purposes, we identify web pages with HTML forms, and model
only the elements needed to describe a form. To this end, we employ a constructor
form that takes some URL and a collection of key/value pairs, and constructs
their respective HTML representation: F = (form Url

−−−−→
(Id Vb)). The URL de-

notes the location where the information from the key/value pairs is sent and is
called submit URL. The key/value pairs model text fields where user input can
occur (in HTML, <input type="text">), and their respective content. So, for
any pair (k0, v0), an HTML tag <input type="text" name="k0" value="v0">
will be generated and inserted into the according HTML form construct <form
action="Url">. . . </form> at evaluation time. Typically, all values will start out
empty and be filled in by the user later on.

4 Web Interactions

Now that we have the necessary definitions down, let’s consider all possible ac-
tions a user could perform in such a setting. Surprisingly, three distinct rewriting
rules suffice to model the whole range of these possibilities. Entering data into
a form input field is the first one. The other two options concern changing the
page shown in the current browser window: The user may use the browser’s back
button or switch between tabs to display any previously visited page at any time,
or he may load a new page by submitting the form data on the currently active
one. We’ll discuss each of these options in detail:

4.1 Filling Out Forms

The first rule is called fill-form. It is stated as follows:

fill-form: W → W
〈s, 〈(form u

−−−→
(k v0)),

−→
f 〉〉 ↪→ 〈s, 〈(form u

−−−→
(k v1)), {(form u

−−−→
(k v1))} ∪

−→
f 〉〉

In essence, form values can be modified as desired. Since the form is added

1 With modern web programming techniques such as AJAX, where other interaction
paradigms are introduced, this no longer holds true. The discussed paper completely
fails to address this issue.



to the ”cache” at once after the modification (even before a submit), it is in
fact not technically accurate to call it a cache (at least not in the sense used
in today’s browsers, where only submits indicate cache updates). This doesn’t
impair the model’s functionality for the use cases we are interested in, however,
so we’ll ignore the issue from now on.

4.2 Switching to Cached Pages

If at first it’s not obvious why the model includes the browser cache at all, a look
at the side condition to the second rule should clarify this concern: Switching to
any page without loading it can only be done if it was previously seen by the
client, so naturally the client has to keep track of its visited pages. This is done
in the cache. The rule is quite easy to grasp:

switch: W → W
〈s, 〈f0,

−→
f 〉〉 ↪→ 〈s, 〈f1,

−→
f 〉〉, where f1 ∈

−→
f .

It merely states that users may switch to any previously visited page, including
the one that is currently shown.2

4.3 Submitting Forms

The third and most involved rule captures the notion of submitting form data,
including the server’s reaction to this.

submit: W → W
〈〈σ0, p〉, 〈f0,

−→
f 〉〉 ↪→ 〈〈σ1, p〉, 〈f1, {f1} ∪

−→
f 〉〉, where 〈σ1, f1〉 = dp〈σ0, f0〉

The already mentioned lookup function dp is used to compute a new server
state and the next form that will be sent to the browser, depending on the old
state and current client form. The server is assigned this new state, and the new
form is delivered to the client. On the client side, the currently active page is
updated to the new form, which is simultaneously added to the cache. Note that
the previous form is already in the cache, because it was either modified (and
automatically cached) by fill-form, or left unchanged, in which case it was
added to the cache during submit.

4.4 The Scripting Language

A formal definition of the scripting language is omitted at this point, since it is
not particularly enlightening with respect to the problem at hand. Basically, it
behaves like the λ-calculus extended with records – see [1] if you’re interested in
details. However, we will cover its capabilities in a short summary: Besides the
2 This means that the reduction relation is not terminating. Also note that in
fill-form, v0 and v1 are not required to be distinct.



basics (function application, abstractions, constants, variables), it can handle
forms by creating them (with the form constructor seen before) and by taking
them apart (i.e., getting the value designated by some key). Besides β-reduction,
this is the only semantic action defined for the basic language.
The dispatcher dp works as follows: when a form is submitted, its ”successor”
is fetched from the form’s submit URL. This successor is an abstraction (the
only valid program type, Mo) that takes as input the data from the old form,
and returns the new one, so all that’s left to do for the dispatcher is to apply it
accordingly. The new form is then delivered to the client.
The basic language can be extended with the notion of server storage. This is
done by adding read and write directives, which modify the state accordingly,
for instance 〈σ, E[(write Id vb)]〉 −→ 〈σ[Id\vb], E[vb]〉, where E is a reduction
context, Id ∈ dom(σ), vb ∈ Vb. Note that the storage is server-global.

5 Dissecting the Bug

A careful look at the three rewriting rules should already reveal an interesting
fact: only one of them actually modifies the server state, and of the changes that
the other two perform, only one can be noticed by the server at some later point
in time (i.e., when submitting user data). The problem at the heart of the matter
is that the server cannot know if the user has multiple windows opened, since
the HTTP protocol is inherently stateless. It doesn’t support the ”Observer”
design pattern [3] (as there is no way to implement a push method to get a
notification from client to server on a page switch), so Krishnamurti et al. call
this the observer problem. Basically, modern browsers afford the users previously
unknown degrees of freedom, while at the same time making web programmers
despair of the complexity introduced by not knowing what the user did, or more
to the point: where he came from. Certain invariants that programmers implic-
itly assume while developing the application (”The user will only look at one
given flight at a time”, ”The user only has the opportunity to click on ’Cash
cheque’ once”) no longer have to hold true. A regular store can always rely on
the fact that the customer will not buy his products on multiple lanes at once;
in an online store, you can’t be so sure.
The Orbitz Bug is introduced by a violated assumption, namely that the cus-
tomer only ever will book the flight he was last interested in (which holds in a
sequential model, but not in this setting). It is fixed easily enough by making
explicit the distinction between local and global storage (where local refers to
the environment defined by a form), and placing the information about which
flight should be booked in the environment, that is, the form. The key/value
pairs already supported by forms are all that’s needed to model local storage: it
suffices to make the relevant input fields constant, e.g. by changing the HTML
type to hidden.



6 Preventing Further Bugs

Now that we have gained a thorough understanding of the issues involved, we
have found that fixing the bug isn’t really all that hard. Maybe it can even be
done automatically?
Using a slightly extended model, the answer is a reasonably qualified yes – while
true bug fixes are beyond the scope of any automated computational process, at
least warnings can be given when something’s gone wrong (in this case, when
client and server have run out of sync because of outdated information on the
client side). For this to work, first of all the server needs a notion of time. The
total number of submits during one session suits this need well. Next, the server
needs to know which information can become outdated, so a registry is added to
record all fields accessed (i.e., read or written) during the evaluation of every
program. The registry is called that program’s carrier set. Making use of these
facilities, every form is timestamped during its creation, and its carrier set added
to its internal storage.
Now, all that’s left to do is to keep track of changes to the server state (which
only occur during writes to some Id). Whenever these changes affect items
from any carrier set of an opened form, the form associated with that set is
considered outdated, and a warning can be emitted at its submission. Keeping
track of writes works by modifying the definition of Σ to describe functions
of the type Id → Time × Vb, so every Id now has an associated ”last write”
timestamp as well as its familiar stored value. Checking works by comparing
this timestamp with a submitted form’s timestamp for every item of the form’s
carrier set. If in any of these comparisons the timestamp from the server storage
is larger, the submit is potentially outdated and should be treated accordingly.

7 Conclusion

A formal model for a particular kind of web interactions has been presented and
discussed, the Orbitz Bug has been explained and fixed, and it has been shown
how the type of bugs represented by it can be detected automatically using an
updated version of the basic model.
By this, the usefulness of the model as well as the need for further work in this
area have been demonstrated. Let’s hope that these efforts will enable customers
one day to browse any online shop with the same ease as a normal store!
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1 Introduction

According to the Moore’s law, hardware complexity grows exponentially, dou-
bling every 18-24 months. While the 1993’s Intel Pentium processor had only
3.1 million transistors, the 2004’s Intel Itanium 2 has over 592 million, and the
number is already getting into billions.

It does not mean that Itanium 2 is 190 times more complex than Pentium,
as bigger caches and wider data paths are responsible for most of the transistor
count increase, however without doubt the complexity of the ICs is growing very
quickly and the hardware designers are trying to find some ways of managing
that complexity.

Moore’s law is not the only reason why the hardware design is so difficult.
Unlike the software, the hardware must be completely correct on the release
date, as it is not possible to fix the bugs by publishing a patch later. The highly
competitive environment does not permit any delays, or the hardware would be
obsolete before even hitting the market. The problem is not limited to the few
big firms producing CPUs, memories and other general-purpose chips. Hardware
is also designed by a lot of smaller manufacturers, often in ASIC or FPGA
technology.

Hardware design usually proceeds in a few well defined stages. The early
stages are informal and performed with little computer assistance. The design
begins as an idea, which is captured into a vague specification. Such specification
is then converted to an abstract algorithm, that precisely defines the designed
hardware’s functionality, but is not too specific about the implementation details.
This algorithm is then refined to the word level, and then to the bit level.

The bit level algorithm usually requires little further human assistance, as
the computer software is able to find a good layout of the chip, convert the bit
operations to logical gates and connections between them, the gates to individual
transistors, and then create the fabrication masks corresponding to those tran-
sistors and wires between them. The most time consuming part of the process
are the stages where the design is precisely specified, and then refined to word
and bit level.

The design serves more functions than being an input to the fabrication
process. It is simulated, to explore and debug, it serves as a specification, it is also
increasingly often used as an input to a theorem prover, for formal verification.



2 The mainstream of hardware design

The current mainstream of the hardware design are hardware description lan-
guages Verilog and VHDL. They are similar in expressive power, with the main
difference being the syntax, with Verilog being based on C, and VHDL being
based on Ada and slightly more verbose.

The languages were originally meant for precise specification and simulation
of computer hardware. Because of that focus, they support various levels of
abstraction, from very low level that deals with signal strengths and time bounds
on gate delay, to a significantly higher level that treats word level operation like
addition and multiplication as primitive. They also provide some support for
analog and mixed-signal circuits.

Limited subsets of Verilog and VHDL are considered ”synthesizable”. If the
design uses only synthesizable elements, it can be compiled to a form that is
accepted by the hardware manufacturing process. Different technologies consider
different constructs ”synthesizable”.

Verilog and VHDL are lacking in two aspects – they provide limited support
for designing at a level higher than word transfer, and they have very complex
semantics that makes formal verification difficult.

Many more powerful systems have been recently developed and some are
presented here. Most of them operate on a higher level, describing only purely
digital systems with a single clock, and for synthesis support compilation to
either Verilog or VHDL.

3 Examples of functional hardware design

3.1 Lava

Lava is a Haskell library that exists in a few versions that significantly differ in
their architecture, the 1998 version being based on monads, and the 2000 version
on explicit circuit representation. There also exists a special version for Xilinx
FPGA synthesis.

The 1998 version of Lava [1] is based on monads and type classes. The circuit
is a function a -> m b, where a are the input signals, b are the output signals,
and m is an appropriate monad belonging to Circuit type class or one of its sub-
classes (Arithmetic, Sequential etc.). The circuits are composed from monadic
operations and basic logic gates. Many convenient functions for composing cir-
cuits are provided and it is easy to write new ones. However, the Bit datatype
is abstract, and while it is possible to set the circuit layout using any Haskell
code, it is not possible to make arbitrary code operate inside the circuit.

The 2000 version [2] has completely different design. Instead of monads,
Signal t family of types is used, which provides no way of inserting arbitrary
types into it. Values of Signal t types can only be constructed using functions
provided by the library. Internally, the signals are represented by abstract gates
and references to other signals. This ”impurity” is necessary to avoid recom-
puting the signal that is used multiple times, avoiding exponential or in case of



circular definitions even non-terminating behaviour (it is the so called ”observ-
able sharing” issue). Specifying the circuits is more convenient than in the 1998
version, as normal function composition can be used instead of monads.
For comparison, here is a half adder circuit in Lava 1998 and Lava 2000.

-- Half adder in Lava 1998
halfAdd :: Circuit m => (Bit,Bit) -> m (Bit,Bit)
halfAdd (a,b)=
do carry <- and2 (a,b)

sum <- xor2 (a,b)
return (carry,sum)

-- Half adder in Lava 2000
halfAdd :: (Signal Bool,Signal Bool) -> (Signal Bool,Signal Bool)
halfAdd(a,b)=(sum,carry)
where sum = xor2 (a,b)

carry = and2 (a,b)

3.2 Hawk

Hawk [3] is attempting to solve a problem of high-level design of a modern
superscalar microprocessor. Conceptually, a processor is executing instructions
one at a time. Physically, it has not been the case for a very long time, and
at any given moment of time different parts of the processor execute different
instructions. The instructions can be executed in parallel, reordered, and even
executed speculatively (the processor does not know yet whether their results
will be committed or rejected). Many instructions can raise exceptions that break
normal execution stream, invalidating not only further instructions but also those
that are currently being executed or even those that have already finished and
are just waiting for the commit. Instructions that interact with the external
world (the memory, the bus, various devices) may also interfere with each other.

These effects cannot be dealt with separately, and it is the interaction between
them what causes microprocessor design to take so much time and effort. Even
the biggest CPU manufacturers make serious mistakes here. Both the Pentium
f00f bug [4] and the Cyrix coma bug [5] were result of mishandled corner cases
that allowed unprivileged code to hang the CPU or make it enter an infinite
loop.

Hawk is a library built on top of Haskell that provides facilities for dealing
with superscalar CPU design. The most important concept is a ”transaction”
that encapsulates all aspects of an instruction being executed.

The signals in Hawk are values of type Signal t. Unlike with both versions
of Lava, in Hawk it is possible to apply any function to a signal by using lift
:: (a -> b) -> (Signal a) -> (Signal b) function.

This design makes it possible to pass arbitrarily complex through the wires,
including the aforementioned transactions. Of course, it is not possible to syn-
thesize or automatically prove such circuits.



3.3 HDCaml

Haskell is not the only functional language used in hardware design. An OCaml
library HDCaml [6] provides hardware design facilities roughly comparable to
Lava 2000.

The architecture of HDCaml is very straightforward – all signals have type
signal, and there are no type classes, monads, lazy lists or other features. Like
in Lava 2000, signal is represented internally by abstract gates and references
to other signals. This representation is then used for simulation, generation of
Verilog code and verification. Type safety is reduced, as signals of all types have
the same type.

4 Common issues

4.1 Deep vs. shallow embedding

The approaches fall into two categories. Hawk and to smaller extend Lava 1998
represent the so called ”shallow embedding”, where the objects of the embedded
language are represented as analogous objects of the host language. For example
an adder circuit in Hawk is just a lifted Haskell addition function. This approach
allows for easily extending and easier cooperation withe the rest of the host
language and other libraries.

The other approach of so called ”deep embedding”, taken by Lava 2000 and
HDCaml, represents the objects of the embedded language explicitly. It makes
it more difficult to extend the circuits by new constructs, especially to use other
libraries, but on the other hand it makes it much easier to code new circuit trans-
formations (optimization, compilation to Verilog/VHDL) and analyzes (proving,
timing computations etc.).

4.2 Observable sharing

A common theme in circuit libraries coded in Haskell is the ”observable sharing”
problem. The circuit is a small finite graph. It is natural to represent such graph
as a set of nodes, each of them linked to others. Such graph contains a lot of
sharing, and fully expanded form of it would be exponentially bigger or even
infinite. Unfortunately Haskell does not provide us with means of taking advan-
tage of the sharing. Computations on such graphs are as slow as computation of
fully expanded graph, that is exponentially slow or even non-terminating.

The solution used by Lava 2000 is to make sharing observable by using some
”unsafe” operations. If we can observe the sharing, it is possible to do compu-
tations on the circuit graphs much more efficiently.

This problem affects only libraries written in ”deep embedding” style. In
”shallow embedding” we can represent the signals as infinite streams, and Haskell
will take full advantage of any sharing present, not computing the signals more
than once.
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Programs’ by Jerzy Karczmarczuk
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Abstract. In the paper of Karczmarczuk, we are introduced to the usage of
the functional programming paradigms lazy evaluation, overloading, type classes

and co-recursive data structures to realize algebraic manipulations in Haskell

programs. The main contribution lies in the implicit truncation of the used
data structures by lazy evaluation.
One striking example is the functional differentiation of computer programs,
yielding point-wise derivatives of any order and of any function definable in
Haskell, with machine precision and without symbolic computations, relying
purely on numerics.

1 Introduction

’Why do we want to compute derivatives?’ The answer is relatively easy. Derivatives
are useful for solving optimization problems, in image processing for object recogni-
tion (optic flow computations, segmentation of images) and feature extraction (edges,
corners). The field of 3-D-Modelling uses them for describing geometric properties of
curves and surfaces and in many fields of scientific computing like physics, engineer-
ing, biology,. . . , they are indispensable, and therefore we want to have an automatic
differentiation, which is fast and accurate.
There are a few basic ideas behind our functional differentiation approach: One heav-
ily used feature of functional programming languages is lazy evaluation. Recall that
this strategy postpones the evaluation of function arguments until they are actually
needed during the evaluation of the function body, allowing to use co-recursive data
structures R α = C α | T α (R α) for coding recursive, infinite data structures or, to
be more exact, of a priori unknown, unbounded length. One important aspect is that
co-recursion actually creates data, whereas strict recursion just traverses or transforms
existing data. These two features plus the possibility to overload operators acting on
these data structures (which is also possible in other languages) offer a powerful team
for efficient implementation of algebraic manipulations. The implementation becomes
even more elegant if we use Haskell’s type classes, which allow to build an algebraic style
library, defining type classes for algebraic structures like groups, rings and fields. The
overloaded operators are then implemented as methods of instances of the appropriate
type class (e.g. the method multiplication (*) should be a method of an instance of
the ring class, the one offering division (/) an instance of the field class,. . . ).
A huge benefit comes from the implicit truncation done by the lazy evaluation strategy.
One can define complex co-recursive functions (equations) and the unhappy truncation
due to limited memory in a computer is done by the lazy evaluation of the underlying
programming language. The presented idea yields a very elegant, clear and semanti-
cally powerful coding tool for algebra packages.



In [1] and [2] certain applications of co-recursive, lazy data structures are given. Ex-
amples are the manipulation (integration and differentiation) of power series U(x) =
u0 + u1x + u2x

2 + . . . Furthermore one can iteratively approximate roots by finding
zero crossings of functions like x2 − 5, leading to xn ≈

√
5, using the Newton method

xn+1 = xn − f(xn)

f
′(xn)

, with initial guess x0. But we can also to leave the field of pure

mathematics and can –for example– implement methods for generating ’infinite’ graph
structures.
One further, big field of application is the computation of derivatives, using the func-
tional differentiation method, which is the main topic of paper [1] and described in
more detail next.

2 Functional Differentiation

The presented approach shows a purely functional (Haskell) implementation of the
method, whereas existing packages use low-level languages like C or C++ (see [3]). It
uses co-recursive data structures with lazy evaluation and is only based on numerics.
Also overloading of arithmetic operators in combination with type classes is used. The
result are (point-wise) derivatives f ′(ξ), ∀ξ ∈ dom(f) of any order (using co-recursive
data structures) and any mathematical function definable in Haskell code.
Basically we have three different ways to compute derivatives with a computer system:

First, finite differences approximation: f ′(x) ≈ f(x+∆x)−f(x)

∆x

The problem hereby is that the method is either inaccurate if ∆x is too big, or can-
cellation errors occur, if ∆x is too small (we get too much undesirable 0 values of our
derivatives).
A second approach is symbolic differentiation. This is the equivalent to the manual,
formal method (paper & pencil). It yields symbolic results, is exact, but quite costly
because control structures, like branching, loops, etc. have to be ’unfolded’, which leads
to a symbolic interpretation of the whole program.
Last, but not least, there is the idea of computational differentiation - CD, which is the
approach of the paper! It purely relies on numeric algorithms, is based on standard
arithmetic operations, where we (from school) know the differential properties and
is as exact as numerical evaluation of symbolic derivatives. One basic concept is the
overloading of arithmetic operators, and therefore there already exist (more efficient)
implementations in C++, but here we have to confine ourselves to computing an a
priori known number of derivatives. This leads us to our first approach.

2.1 First approach without laziness

This first approach does not make use of laziness, by actually only computing first
derivatives. In this way we re-gain a bit of efficiency. We use an extended numerical
structure Dx, that groups the numerical value (the main value) of an expression e with
its first derivative at the same point e′, so Dx consists of pairs (e, e′):

type Dx = (Double, Double)

We note that the type used in Dx should be a ring (R, +,×), or a field (F, +,×, /) if
division is needed.
What we get is (c, 0.0) for constants c and (x, 1.0) for variables x. It is important



to notice that we perform no symbolic calculations, so our variables don’t need to have
explicit (symbolic) names, like x. What we obtain are results like (3.141, 0.0) for a
constant (here: a coarse approximation of π) or (2.523, 1.0) for a variable at point
2.523.
The next step is to define overloaded arithmetic operators for the type Dx (e.g.: (+) :: Dx -> Dx -> Dx),
implementing the basic derivation laws, like sum-, product-, quotient-rule, . . . .

(x,a)+(y,b) = (x+y, a+b)

(x,a)*(y,b) = (x*y, x*b+a*y)

recip (x,a) = (w,(negate a)*w*w) where w=recip x

{- ... -}

We left out the concrete implementation of the operators (-), (/) and negate, for
details see [1].
We also use auxiliary functions to construct constants and variables, and a conversion
function dCst :: Double -> Dx and dVar :: Double -> Dx:

dCst z = (z, 0.0) {;} dVar z = (z, 1.0) {;} fromDouble z = dCst z

But haven’t we forgot a rule?
Yes, we have, the infamous chain rule d

dx
(f(g(x))) = f ′(g(x)) · d

dx
(g(x)). It is impor-

tant for computing derivatives of elementary functions like exp, sin, cos, log,
√

x. These
functions f are lifted to the Dx domain, given we know their derivative form f’ (e.g.
sin′(x) = cos(x)):

dlift f f’ (x,a) = (f x , a * f’ x)

exp = dlift exp exp

sin = dlift sin cos

{- ... -}

Note that this leads for example to exp :: Dx -> Dx, as expected.
This is all we need and now we can define arbitrary complex functions. An example
may be the function f(x) = x2 ·cos(x) coded as f x = x*x * cos(x). Here we obtain:
f 6.5 ; (41.260827, 3.606820) ≡ (f(6.5), f ′(6.5)), where lifting of f :: Dx -> Dx

yields f 6.5 ; f (dVar 6.5) ; f (6.5, 1.0).
You should have noticed that we omitted the definition of the algebraic style library,
using Haskell’s type classes concept. We will need it for the upcoming, final approach
and therefore we define, according to the mathematical hierarchy:
The type class AddGroup for addition and subtraction, Monoid for multiplication and
Group for division. We use Ring for structures supporting addition and multiplication
and Field adding division to a ring. Module abstracts over a multiplication of a complex
object by elements of basic domain (e.g.: λ ·v) and Number uses fromInt, fromDouble

to convert standard numbers in our Dx domain.

2.2 Final approach

Finally, we want to compute all (= a priori unknown number) derivatives of a function.
We use a co-recursive structure, representing an expression e of an infinite domain:
e = [e0, e1, e2, ..], where e0 is the main value of e, and ei, the i-th derivative e(i).
For this purpose, we need a little background in Differential Algebra: Consider a field



(F, +,×, /) with derivation operator a 7→ a′. The case F = IR is trivial, as we get
a 7→ 0, ∀a ∈ F . So, we extend the field to F (x) by adjoining an algebraic indeterminate
x. But, as the mathematical structure of our expressions is known, we can discard the
x, e.g. represent polynomial as (lazy) list of its coefficients.
A last assumption is the independence of e and e′, yielding the assignment of all
derivatives of e by (repeated) derivation en 7→ en+1.
So, we can define the mentioned, co-recursive, parameterized, list-like structure as

data Dif a = C a | D a (Dif a)

with constants C a and D x (D a (D b ...)) coding the numerical value of the ex-
pression (x), combined with the tower of derivatives (a = x′, b = x′′, . . .). We note that
expressions of type Dif a are actually created by the co-recursion and they are not
explicitly truncated. This is done by lazy evaluation! Another point is that we actually
do not need C a, this is just used for efficiency reasons as the tower of derivatives would
be anyway [0, 0, . . .] for any constant.
The implementation is similar to the first approach, we also use conversion and auxil-
iary functions, like
dCst x = C x and dVar x = D x 1.0, where Haskell’s lifting yields D x 1.0; D x (C 1.0).
The class Diff a encompasses the derivation operator
df :: a -> a with df (C _) = C 0.0 and df (D _ p) = p, where the latter just
selects the tower of derivatives, acting like the tail function on the list-like structure
Dif. The basic derivation laws are then implemented more or less straight-forwardly
but a bit lengthy, as we have to distinguish between the two constructors C a and
D a (Dif a) of our type Dif a.
One example is the sum-rule:

C x + C y = C (x+y)

C x + D y y’ = D (x+y) y’ {- and symmetrically D x x’ + C y -}

D x x’ + D y y’ = D (x+y) (x’+y’)

The product-rule encompasses the rule for unaltered constants and uses
x*>s = fmap (x*) s, where fmap is a generic map for the list-like structure Dif

C x * C y = C (x*y) {;} C x * p = x*>p

p@(D x x’)*q@(D y y’) = D (x*y)(x’*q+p*y’)

Note that for D (x +1 y) (x′ +2 y′) holds (+1) :: α → α → α,
whereas (+2) :: Dif α → Dif α → Dif α

The reciprocal ( 1

u(x)
)′ = −u

′
(x)

(u(x))2
heavily uses lazy evaluation (see use of ip):

recip (C x) = C (recip x)

recip (D x x’) = ip where ip = D (recip x) (neg x’*ip*ip)

Division may be a problem if we face 0/0. Here, the paper uses the L’Hopital rule:

p@(D x x’) / q@(D y y’)

| x==0.0 \&\& y==0.0 = x’/y’

| otherwise = D (x/y) (x’*q - p*y’/(q*q))



This will work out, but may be not the totally mathematical correct solution. For e/0
with e 6= 0 we cannot do anything and have to throw an exception.
But we also must not forget the chain rule. Functions f, like exp, sin, cos, log,

√
x need

lifting to the Dif domain. Here, we got to code their lists of formal derivatives fq:

dlift (f:fq) p@(D x x’) = D (f x) (x’ * dlift fq p)

exp (D x x’) = r where r = D (exp x) (x’*r)

sin = dlift (cycle[sin,cos,(neg . sin),(neg . cos)])

{- ... -}

Basically, this is all we need. What we obtain is for example: df (df (df (f 6.5)))

; -30.288818 ≡ f ′′′(6.5), for f :: Dif a -> Dif a and lifting yields f 6.5 ;

f (D 6.5 (C 1.0)). Now, we can have a look at concrete applications.

2.3 Applications

The field of CD encompasses a wide spread, huge application domain, ’ranging from
reactor diagnostic, meteorology, oceanography, up to biostatistics’ ([1]) and quantum
theory. Our approach can be used to compute formal solutions of differential equations
via iterated differentiation or for the Stirling approximation of the factorial, using
asymptotic expansion.
One nice example is the elegant coding of differential recurrences, like the Hermite
function Hn(x):

H0(x) = exp(
−x2

2
) , Hn(x) =

1
√

2n
(x · Hn−1(x) −

d

dx
(Hn−1(x)))

The almost literal, straight-forward implementation is given by:

herm n x = cc where

D cc _ = hr n (dVar x)

hr 0 x = exp(neg x * x / fromDouble 2.0)

hr n x = (x*z - df z)/(sqrt(fromInteger (2*n))) where z=hr (n-1) x

We should note the very clear and elegant coding compared with other computer alge-
bra packages, which partially use a quite intricate syntax.

3 Evaluation and Summary

Drawbacks of this method are, that thunks of lazy evaluation may screw up the mem-
ory, and therefore the efficiency of the approach is not the best, at least a good memory
management is crucial! A possible remedy comes from using a strict method, like the
first approach, if we a priori know the number of derivatives to compute. Nonethe-
less, our approach is still useable and really a nice coding tool, because of its clearness
and compactness. Another unpleasant result is that discontinuous or non-differentiable
functions, e.g. abs x, also yield a result for their derivatives.
As a future outlook, one could think of using an exact type for rational numbers [4]
instead of types with built-in numerics, like double. The question hereby may be if the
tradeoff between the (totally) exact computations and the loss of efficiency will pay off.
To get a more efficient implementation, we could use a non-lazy language like ML,



where we pay the price of explicit truncating the infinite towers of derivatives, which
may be quite error-prone. But we could win some efficiency and maintain the men-
tioned elegance of the coding style using the package.
In conclusion, one can say that the paper shows a rewarding application of modern
functional programming paradigms to scientific computing, which is usually the do-
main of low-level languages. The main contribution lies in the usage of lazy evaluation,
in connection with co-recursive data structures to code recurrent equations elegantly
and compact, without having to worry about explicit truncation! An example is the
derivation operator, which is applicable an a priori unknown number of times. Type
inference and overloading are used for constructing the overloaded arithmetic operators
and declare differentiation variables. Type classes and lifting can be used to extended
the arithmetics to any basic domain, e.g. complex numbers, polynomials,. . . . Even a
generalization to vector or tensor objects may be possible.
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