
The essence of functional programming

(Invited talk)

Philip Wadler, University of Glasgow*

Abstract

This paper explores the use monads to structure func-

tional programs. No prior knowledge of monads or

category theory is required.

Monads increase the ease with which programs may

be modified. They can mimic the effect of impure

features such as exceptions, state, and continuations;

and also provide effects not easily achieved with such

features. The types of a program reflect which effects

occur.

The first section is an extended example of the use

of monads. A simple interpreter is modified to support

various extra features: error messages, state, output,

and non-deterministic choice. The second section de-

scribes the relation bet ween monads and cent inuation-

passing style. The third section sketches how monads

are used in a compiler for Haskell that is written in

Haskell.

1 Introduction

Shall I be pure or impure?

Pure functional languages, such as Haskell or Mi-

randa, offer the power of lazy evaluation and the sim-

plicity of equational reasoning. Impure functional lan-

guages, such as Standard ML or Scheme, offer a tempt-

ing spread of features such as state, exception han-

dling, or continuations.

One factor that should influence my choice is the

ease with which a program can be modified. Pure

languages ease change by making manifest the data

upon which each operation depends. But, sometimes,

a seemingly small change may require a program in a

pure language to be extensively restructured, when ju-

dicious use of an impure feature may obtain the same

*Author’s address: Department of Computing Science, UN-
versity of Glasgow, Glasgow G 12 8QQ, Scotland Email:
wadlerfldcs .glasgow .ac .uk.

Permission to copy without fee all or part of this material is granted

provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery, To wpy other-
wise, or to republisb, requires a fee and/or specific permission.

effect by altering a mere handful of lines.

Say I write an interpreter in a pure functional lan-

guage.

To add error handling to it, I need to modify the re-

sult type to include error values, and at each recursive

call to check for and handle errors appropriately. Had

I used an impure language with exceptions, no such

restructuring would be needed.

To add an execution count to it, I need to mod-

ify the the result type to include such a count, and

modify each recursive call to pass around such counts

appropriately. Had I used an impure language with

a global variable that could be incremented, no such

restructuring would be needed.

To add an output instruction to it, I need to modify

the result type to include an output list, and to modify

each recursive call to pass around this list appropri-

ately. Had I used an impure language that performed

output as a side effect, no such restructuring would <e

needed.

Or I could use a monad.

This paper shows how to use monads to structure an

interpreter so that the changes mentioned above are

simple to make. In each case, all that is required is to

redefine the monad and to make a few local changes.

This programming style regains some of the flexibility

provided by various features of impure languages. It

also may apply when there is no corresponding impure

feature.

The technique applies not just to interpreters, but

to a wide range of functional programs. The GRASP

team at Glasgow is constructing a compiler for the

functional language Haskell. The compiler is itself

written in Haskell, and uses monads to good effect.

Though this paper concentrates on the use of monads

in a program tens of lines long, it also sketches our

experience using them in a program three orders of

magnitude larger.

Programming with monads strongly reminiscent of

continuation-passing style (CPS), and this paper ex-

plores the relationship between the two. In a sense

they are equivalent: CPS arises as a special case of a
monad, and any monad may be embedded in CIY3 by

changing the answer type. But the monadic approach

provides additionall insight and allows a finer degree

of control.

@ 1992 ACM 089791453-8/92/0001/0001 $1.50

1

The concept of a monad comes from category the-

ory, but this paper assumes no prior knowledge of such

arcana. Rather, it is intended as a gentle introduction,

with an emphasis on why abstruse theory may be of

interest to computing scientists.

The examples will be given in Haskell, but no knowl-

edge of that is needed either. What the reader will

require is a passing familiarity with the basics of pure

and impure functional programming; for general back-

ground see [BW87, Pau91]. The languages refered to

are Haskell [HPW91], Mirandal [Tur90], Standard ML

[MTH90], and Scheme [RC86].

Some readers will recognise that the title of this pa-

per is a homage to Reynolds [Rey81] and that the use

of monads was inspired by Moggi [Mog89a, Mog89b].

Of these matters more will be said in the conclusion.

For now, please note that the word “essence” is used

in a technical sense: I wish to argue that the tech-

nique described in this paper is helpful, not that it is

necessary.

The remainder of this paper is organised as follows.

Section 2 illustrates the use of monads to structure

programs by considering several variations of an inter-

preter. Section 3 explores the relation between mon-

ads and continuation-passing style. Section 4 sketches

how these ideas have been applied in a compiler for

Haskell that is itself written in Haskell. Section 5 con-

cludes.

2 Interpreting monads

This section demonstrates the thesis that monads

enhance modularity, by presenting several variations

of a simple interpreter for lambda calculus.

The interpreter is shown in Figure 1. It is written

in Haskell. The notation (\name -> expr) stands for

a lambda expression, and ‘name’ is an infix operator.

The type constructor H and functions unitM, bindM,

and showfl have to do with monads, and are explained

below.

The interpreter deals with values and terms. A

value is either Wrong, a number, or a function. The

value Wrong indicates an error, such as an unbound

variable, an attempt to add non-numbers, or an at-

tempt to apply a non-function.

A term is either a variable, a constant, a sum, a

lambda expression, or an application. The following

will serve as test data.

t ermO

= (App (Lam “X”

(Add (Var “x”) (Var “x’’)))

(Add (con 10) (con 11)))

1Miranda is a trademark of Research Software Limited.

In more conventional notation this would be written

((Az. z + z) (10 + 11)). For the standard interpreter,

evaluating test t ermO yields the string “42”.

The interpreter has been kept small for ease of il-

lustration. It can easily been extended to deal with

additional values, such as booleans, pairs, and lists;

and additional term forms, such as conditional and

fixpoint.

2.1 What is a monad?

For our purposes, a monad is a triple (M, unitM,

bindM) consisting of a type constructor M and a pair

of polymorphic functions.

unitM ::a ->Ma

bindM :: Ma-> (a-> Mb)->Mb

These two functions satisfy three laws, which are dis-

cussed in Section 2,10.

The basic idea in converting a program to monadic

form is this: a function of type a -> b is converted

to a function of type a -> M b. Thus, in the defini-

tion of Value, functions have type Value -> M Value

rather than Value -> value, and interp has type

Term -> Environment -> M Value rather than type

Term -> Environment -> Value. Similarly for the
auxiliary functions lookup, add, and apply,

The identity function has type a -> a. The cor-

responding function in monadic form is unitM, which

has type a -> M a. It t,akes a value into its corre-

sponding represent ation in the monad.

Consider the case for constants.

interp (Con i) e = unitM (Num i)

The expression (Num i) has type Value, so applying

unitM to it yields the corresponding M Value, as re-

quired to match the type of interp.

Two functions k :: a -> b and h :: b -> c may

be composed by writing

\a-> let b=ka inhb

which has type a -> c. (Here \name -> expr is

a lambda expression. By convention, a will double

as a type variable and a value variable.) Similarly,

two functions in monadic form k :: a -> M b and

h :: b -> M c are composed by writing

(\a -> k a ‘bindM’ (\b -> h b))

which haa type a –> M c. (Here ‘name’ is Haskell

not at ion for an infix function. The expression

a ‘name’ b is equivalent to name a b.) Thus bindM

serves a role similar to a let expression. The three

monad laws alluded to above simply insure that this

form of composition is associative, and has unitM as

a left and right identity.

Consider the case for sums.

2

type Name

data Term

data Value

type Environment

showval

showval Wrong

showval (Num i)

showval (Fun f)

int erp

interp (Var x) e

interp (Con i) e

interp (Add u v) e

interp (Lam x v) e

interp (App t u) e

lookup

lookup X [1

lookup x ((y,b):e)

add

add (Num i) (Num j)

add a b

apply

apply (Fun k) a

apply f a

test

test t

String

Var Name

Con Int

Add Term Term

Lam Name Term

App Term Term

Wrong

Num Int

Fun (Value -> M Value)

[(Name, Value)]

Value -> String

“<wrong>”

showint i

“<function>”

Term -> Environment -> M Value

lookup x e

unitM (Num i)

interp u e ‘bindM’ (\a ->

interp v e ‘bindM1 (\b ->

add a b))

unitM (Fun (\a -> interp v ((x,a):e)))

interp t e ‘bindM’ (\f ->

interp u e ‘bindM’ (\a ->

apply f a))

Name -> Environment -> M Value

unitM Wrong

if x==y then unitM b else lookup x e

Value -> Value -> M Value

uni.tM (Num (i+j))

unitM Wrong

Value -> Value -> M Value

ka

unitM Wrong

Term -> String

showM (interp t [1)

Figurel: Interpretation inamonad (call-by-value)

int erp :: Term -> Environment -> Value

interp (Var x) e = lookup x e

interp (Con i) e =Numi

interp (Add u v) e = add (interp u e) (interp v e)

interp (Lam x v) e = Fun (\a -> interp v ((x,a):e))

interp (App t u) e = apply (interp t e) (interp u e)

Figure 2: Standard interpreter

interp (Add u v) e

= interp u e ‘bindMC (\a ->

interp v e cbindMC (\b ->

add a b))

This can be read as follows: evaluate u; bind atothe

result; evaluate v; bind b to the result; add a to b.

The types workout: the calls to interpand addyield

results of type M Value, and variables a and b have

type Value.

Application is handled similarly; in particular, both

the function and its argument are evaluated, so this

interpreter is using a call-by-value strategy. An in-

terpreter with acall-by-name strategy is discussed in

Section 3.

Just as the type Value represents avalue, the type

M Value can be thought of as representing a compu-

tation. The purpose of unitM is to coerce a value into

a computation; the purpose of bindM is to evaluate a

computation, yielding a value.

Informally, unitM gets us into a monad, and bindM

gets us around the monad. How do we get out of the

monad? In general, such operations require a more ad

hoc design. For our purposes, it will suffice to provide

the following.

showM :: H Value -> String

This is used in test.

By changing the definitions of M, unltM, bindM, and

showM, and making other small changes, the inter-

preter can be made to exhibit a wide variety of be-

haviors, as will now be demonstrated.

2.2 Variation zero:

Standard interpreter

To begin, define the trivial monad.

type I a = a

unit I a = a

a ‘bindI (k =ka

showI a — showval a

This is called the identity monad: I is the iden-

tity function on types, unitI is the identity function,

bindI is postfix application, and showI is equivalent

to showval.
Substitute monad I for monad M in the interpreter

(that is, substitute I, unitI, bindI, showI for each

occurrence of M, unitM, bindM, showM). Simplify-

ing yields the standard meta-circular interpreter for

lambda calculus shown in Figure 2. The other func-

tions in the interpreter simplify similarly.

For this variant of the interpreter, evaluating

test termO

returns the string “42”, as we would expect.

2.3 Variation one:

Error messages

To add error messages to the interpreter, define the

following monad.

data E a = Suc a I Err String

nnitE a = Suc a

errorE s = Err s

(Sue a) ‘bi.ndE’ k = k a

(Err s) ‘bindE’ k = Err s

showE (Sue a) = “Success: “ ++ showval a

showE (Err s) = “Error: “ ++ s

Each function in the interpreter either returns nor-

mally by yielding a value of the form Suc a, or

indicates an error by yielding a value of the form

Err s where s is an error message. If m :: E a and

k :: a -> E b then m ‘bindE f k acts as strict post-

fix application: if m succeeds then k is applied to the

successful result; if m fails then so does the application.

The show function displays either the successful result

or the error message.

To modify the interpreter, substitute monad E for

monad M, and replace each occurrence of unitE Wrong

by a suitable call to errorE. The only occurrences are

in lookup, add, and apply.

lookup X [1

= errorE (“unbound variable: “ ++ x)

add a b

= errorE (“should be numbers: “

++ showval a ++ “, 1’

++ showval b)

apply f a
= errorE (“should be function: “

++ showval f)

No other changes are required.

Evaluating

test termO

now returns “Success: 42”; and evaluating

test (App (Con 1) (Con 2))

returns “Error: should be function: l“.

In an impure language, this modification could be

made using exceptions or continuations to signal an

error,

2.4 Variation two:

Error messages with positions

Let Position be a type that indicates a place in the

source text (say, a line number). Extend the Term

datatype with a constructor that indicates a location:

4

data Term = . . . I At Position Term with reference values and operations that side-effect a

The parser will produce such terms as suitable. For

instance,

(At p (Appt (At qu)))

indicates that p is the position of the term (App t u)

and that q is the position of the subterm u.

Based on E, define a new monad P that accepts a

position to use in reporting errors.

type P a = Position -> E a

unitP a = \p -> unitE a

errorP s = \p -> errorE (showpos p ++
II . ,, ++ s.)

m CbindPC k = \p -> m p ‘bindE’ (\x ->

kxp)

showP m = showE (m posO)

Here unitp discards the current position, errorp adds

it to the error message, bindP passes the position to

the argument and function, and showP passes in an

initial position poso. In addition, there is a function

to change position.

resetP :: Position -> P x –> P x

resetP q m = \p->rnq

This discards the position p that is passed in, replacing

it with the given position q,

To modify the interpreter of the previous section,

substitute monad P for monad E and add a case to

deal with At terms.

interp (At p t) e

= resetP p (interp t e)

This resets the position as indicated. No other change

is required.

Without monads, or a similar technique, this mod-

ification would be far more tedious. Each clause of

the interpreter would need to be rewritten to accept

the current position as an additional parameter, and

to pass it on as appropriate at each recursive call.

In an impure language, this modification is not quite

so easy. One method is to use a state variable that

cent ains a stack of positions. Care must be taken to

maintain the state properly: push a position onto the

stack on entering the At construct and pop a position

off the stack when leaving it.

2.5 Variation three: State

To illustrate the manipulation of state, the interpreter

is modified to keep count of the number of reductions

that occur in computing the answer. The same tech-

nique could be used to deal with other state-dependent

constructs, such as extending the interpreted language

heap.

The monad of state transformers is defined as fol-

lows.

type S a = State -> (a, State)

unitS a = \sO -> (a, sO)

m ‘bindS’ k = \sO -> let (a, si) = m sO

(b, s2) = k a SI

in (b, s2)

A state transformer takes an initial state and returns

a value paired with the new state. The unit function

returns the given va,lue and propagates the state un-

changed. The bind function takes a state transformer

m :: S a and a function k :: a -> S b, It passes

the initial state to the transformer m; this yields a

value paired with an intermediate state; function k

is applied to the value, yielding a state transformer

(ka :: S b), which is passed the intermediate state;

this yields the result paired with the final state.

To model execution counts, take the state to be an

integer.

type State = Int

The show function is passed the initial state O and

prints the final state as a count.

showS m = let (a, sl) = m O

in “Value: “ ++ showval a ++

“ ; count: “ ++ showint si

The current count is incremented by the following.

t ickS ::so
tickS = \s -> ((), S+l)

The value returned is the empty tuple () whose type is

also written (). The typing oft ickS makes clear that

the value returned is not of interest. It is analogous to

the use in an impure language of a function with result

type (), indicating that the purpose of the function

lies in a side effect.

The interpreter is modified by substituting monad

S for monad M, and changing the first lines of apply

and add.

apply (Fun k) a

= tickS ‘bindS’ (\() ‘~

k a)

add (Num i) (Nnm j)

= tickS ‘bindS’ (\() ->

unitS (Num (i+j)))

This counts one tick for each application and addition.

No other changes are required.

Evaluating

test termO

5

now returns “Value: 42; Count: 3“,

A further modification extends the language to al-

low access to the current execution count. First, add

a further operation to the monad.

fetchS :: S State

fetchS = \s -> (s, s)

This returns the current count.

term data type, and add a new

preter.

Second, extend the

clause to the inter-

data Term = . . . I count

interp Count e

= fetchS ‘bindS’ (\i -> Num i)

Evaluating Count fetches the number of execution

steps performed so far, and returns it as the value

of the term.

For example, applying test to

(Add (Add (Con 1) (Con 2)) Count)

returns “Value: 4; Count: 2“, since one addition

occurs before Count is evaluated.

In an impure language, these modifications could be

made using state to contain the count.

2.6 Variation four: Output

Next we modify the interpreter to perform output.

The state monad seems a natural choice, but it’s a

poor one: accumulating the output into the final state

means no output will be printed until the comput a-

tion finishes. The following design displays output as

it occurs; it depends on lazy evaluation.

The output monad is defined as follows.

type O a = (String, a)

unitO a = (,, !,, ~)

m ‘bindO’ k = let (r, a) = m

(sjb) = k a

in (r++s, b)

showO (s, a) = “ output: “ ++ s ++

“ Value: “ ++ showval a

Each value k paired with the output produced while

computing that value. The unit O function returns

the given value and produces no output. The bindO

function performs an application and concatenates the

output produced by the argument to the output pro-

duced by the application. The showO function prints

the output followed by the value.

The above functions propagate output but do not

generate it; that is the job of the following.

Outo :: Value -> Out ()

outO a = (showval a ++ “; “, a)

This outputs the given value followed by a semicolo~.

The language is extended with an output operation.

Substitute monad O for monad M, and add an a new

term and corresponding clause.

data Term = . . . I Out Term

interp (Out u) e

= lnterp u e ‘bindO’ (\a ->

out O a ‘bindO((\() –>

unitO a))

Evaluating (Out u) causes the value of u to be sent

to the output, and returned as the value of the term.

For example, applying test to

(Add (Out (Con 41)) (Out (Con i)))

returns “Output: 41; 1; Value: 42”.

In an impure language, this modification could be

made using output as a side effect.

2.’7 Variation five:

Non-deterministic choice

We now modify the interpreter to deal with a non-

deterministic language that returns a list of possible

answers.

The monad of lists is defined as follows.

type L a = [a]

unitL a = [a]

m ‘bindL’ k = [bla<-m, b<-ka]

zeroL = [1

1 ‘plusL’ m = 1 ++ m

showL m = showlist [showval a I a <- m]

This is expressed with the usual list comprehension

notation. The function showllst takes a list of strings

into a string, with appropriate punctuation.

The interpreted language is extended with two new

constructs. Substitute monad L for monad M, and add

two new terms and appropriate e clauses.

data Term = . . . I Fail I Amb Term Term

int erp Fail e

= zeroL

interp (Amb u v) e

= int erp u e ‘plusL ~ int erp v e

Evaluating Fail returns no value, and evaluating

(Amb u v) returns all values returned by u or V.

For example, applying test to

(App (Lam “x” (Add (Var “x”) (Var “x’’)))

(Amb (Con i) (Con 2)))

returns “ [2,4]”.

It is more difficult to see how to make this change in

an impure language. Perhaps one might create some

form of coroutine facility.

6

2.8 Variation six:

Propagating state backwards

Return now to the state example of Section 2.5. Lazy

evaluation makes possible a strange variation: the

state may be propagated backward.

All that is required is to change the definition of

bindS.

unitS a = \sO -> (a, sO)

m ‘bindS’ k = \s2 -> let (a, sO) = m SI

(b, sl) = k a S2

in (b,sO)

This takes the final state as input, and returns the

initial state as output. As before, the value a is gen-

erated bym and passed tok. But now the initial state

is passed tok, theintermediate state goes from ktom,

and the final state is returned by m. The two clauses

in the let expression are mutually recursive, so this

works only in a lazy language.

The Count term defined in Section 2.5 now returns

the number of steps to be performed between its eval-

uation and the end of execution. As before, applying

test to

(Add (Add (Con 1) (Con 2)) Count)

returns “value: 4; Count: 2“, but for a different

reason: one addition occurs after the point at which

count is evaluated. An unresolvable mutual depen-

dence, known as a black hole, would arise in the un-

fortunate situation where the number of steps yet to

be performed depends on the value returned by Count.

In such a case the interpreter would fail to terminate

or terminate abnormally.

This example may seem contrived, but this monad

arises in practice. John Hughes and I discovered it

by analysing a text processing algorithm that passes

information both from left to right and right to left.

To make this change in an impure language is left

as an exercise for masochistic readers.

2.9 Call-by-name interpreter

The interpreter of Figure 1 is call-by-value, This

can be seen immediately from the types. Functions

are represented by the type Value -> M Value, so the

argument to a function is a value, though the result of

applying a function is a computation.

The corresponding call-by-name interpreter is

shown in Figure 3. Only the types and functions that

differ from Figure 1 are shown. The type used to repre-

sent functions is now M Value -> M Value, so the ar-

gument to a function is now a computation. Similarly,

the environment is changed to contain computations

rather than values. The code for interpreting con-

stants and addition is unchanged. The code for vari-

ables and lambda abstraction looks the same but has

changed subtly: previously variables were bound to

values, now they are bound to computations. (Hence

a small change in lookup: a call to unit M has van-

ished.) The code for application does change: now

the function is evaluated but not the argument.

The new interpreter can be modified in the same

way as the old one.

If modified for execution counts as in Section 2.5,

the cost of an argument is counted each time it is

evaluated. Hence evaluating test t ermo now returns

the string “Value: 42; Count: 4“, because the cost

of adding 10 to II is counted twice. (Compare this

with a count of 3 for the call-by-value version.)

If modified for a non-deterministic language as in

Section 2.7, then a term may return a different value

each time it is evaluated. For example, applying test

to

(App (Lsm “x” (Add (Var “x”) (Var “x’’)))

(Amb (Con ~.) (Con 2)))

now returns “ [2,3,3,41”; compare this with “ [2,41”

for the call-by-value version.

An advantage of the monadic style is that the types

make clear where effects occur. Thus, one can distin-

guish call-by-value from call-by-name simply by exam-

ining the types. If one uses impure features in place

of monads, the clues to behaviour are more obscure.

2.10 Monad laws

For (M, unitM, bindM) to qualify as a monad, the

following laws must be satisfied.

Left unit:

(nnitM a) ‘bindM’ k = k a

Right unit:

m CblndM’ unitM = m

Associative:

m ‘bindM’ (\a -> (k a) cbindM’ h)

= (m ‘bindM’ (\a -> (k a)) ‘bindM’ h)

These laws guarantee that monadic composition, as

discussed in Section 2.1, is associative and has a left

and right unit. It is easy to verify that the monads

described in this paper do satisfy these laws.

To demonstrate the utility of these laws, let us prove

that

(Add t (Add U V))

and

(Add (Add t U) V)

always return the same value.

Simplify the left term:

7

data Value

type Environment

int erp

interp (Var x) e

interp (Con i) e

i.nterp (Add u v) e

interp (Lam x v) e

interp (App t u) e

lookup

lookup X []

lookup x ((y,n):e)

apply

apply (Fun h) m

apply f m

::
=
=
——

Wrong

Num Int

Fun (M Value -> M Value)

[(Name, M Value)]

Term -> Environment -> M Value

lookup x e

unitM (Num i)

interp u e ‘bindM’ (\a ->

interp v e ‘bindM((\b ->

add a b))

unitM (Fun (\m -> interp v ((x,m):e)))

lnterp t e cbindM’ (\f ->

apply f (interp u e))

Name -> Environment -> M Value

unitM Wrong

if x==y then n else lookup x e

Value -> M Value –> M Value

hm

unitM Wrong

Figure3: Interpretation in amonad (call-by-name)

interp (Add t (Add u v)) e

= interp t e ‘bindM’ (\a ->

interp (Add u v) e ‘bindM’ (\y ->

add a y))

= interp t e ‘bindM’ (\a ->

(interp u e ‘blndM’ (\b ->

interp v e ‘bindMC (\c ->

addb c))) ‘bindM’ (\y ->

add a y))

= interp t e ‘bindM’ (\a ->

interp u e ‘bindM’ (\b ->

interp v e ‘bindM’ (\c ->

add b c ‘bindM’ (\y ->

add a y)))).

Thefirst twosteps are simple unfolding; the third step

is justified by the associative law, Similarly, simplify

the right term:

interp (Add (Add t u) v) e

= interp t e ‘bindM’ (\a ->

interp u e ‘bindM’ (\b ->

interp v e ‘bindM’ (\c ->

add a b ‘bindM’ (\x ->

add x c)))).

Again, this is two unfold steps andause of the asso-

ciative law. It remains to prove that

add a b ‘bindMc (\x -> add x c)

= add b c ‘bindM’ (\y -> add y a).

This is done by

the forms Num i,

case anal ysis. If a, b, c have

Num j, Num k then the result is

unitM (i+j+k), as follows from two uses of the left

unit law and the associativit y of addition; otherwise

the result isvrong, also by the left unit law.

The aboveproofis trivial. Without themonadlaws,

it would be impossible.

As another example, note that foreach monadwe

can define the following operations,

mapM :: (a->b)->(Ma->Mb)

mapM f m = m ‘bindM’ (\a -> unitM (f a))

j o inM :: M(Ma)->Ma

joimM z = z ‘bindM’ (\m -> m)

For the list monad, mapMis the familiar malfunction,

and.joinM concatenates a list of lists. Using (.) for

function composition ((f.g) x = f (g

then formulate anumber oflaws.

mapM id = id

mapM (f.g) = mapM f . mapM g

mapM f . unitM = unitM . f

mapM f . joinM = joinM . mapM

joinM . unitM = id

joinM . mapM unitM = id

x)), one can

(rnapM f)

joinM . mapM joinM = joi.nM . joinM

m ‘bindM(k = joinM (mapM k m)

Theproofofeach is a simple consequence ofthe three

monad laws.

Often, monads are definednotinterms ofunitMand

bindM, but rather intermsofunitM, jointM, andmapM

8

[Mac71, LS86, Mog89a, Wad90]. The three monad

laws are replaced by the first seven of the eight laws

above. If one defines bindM by the eighth law, then

the three monad laws follow. Hence the two definitions

are equivalent.

As described in [Wad90], the list comprehension no-

tation generalises to an arbitrary monad. That paper

gives the following translations:

[t]

= nnitM t

[tlx <-u]

= mapM (\x -> t) u

[tlx<-u, y<-vl

= joinM (mapM (\x -> mapM (\y -> t) v) u)

For the list monad, this yields the usual notion of

list comprehension. In the notation of this

translation may be expressed as follows.

[t]

= unitM t

[tlx<-ul

= u CbindMC (\x ->

unitM t)

[tlx<-u, y<-vl
= u ‘bindM’ (\x ->

v ‘bindMC (\y ->

unitM t))

paper, the

Here the translated terms, if not comprehensions, are

at least comprehensible. The equivalence of the two

translations follows from the monad laws.

3 Continuing monads

The purpose of this section is to compare the monadic

style advocated in Section 2 with continuation-passing

style (CPS).

Continuation-passing style was first developed for

use with denotational semantics [Rey72, P1075]. It

provides fine control over the execution order of a pro-

gram, and has become popular as an intermediate lan-

guage for compilers [SS76, AJ89]. This paper stresses

the modularity afforded by CPS, and in this sense has

similar goals to the work of Danvy and Filinski [DF90],

3.1 CPS interpreter

The monad of continuations is defined as follows.

type K a = ~a -> Answer) -> Answer

unitK a =\c->ca

m ‘bindK’ k = \c->m(\a->kac)

In GPS, a value a (of type a) is represented by a func-

tion that takes a continuation c (of type a -> Answer)

and applies the continuation to the value, yielding

the final result c a (of type Answer). Thus, unitK a

yields the CPS representation of a. If m :: K a and

k ::a -> K b, then m ‘ bhlK { k acts as follows:

bind c to the current continuation, evaluate m, bind

the result to a, and apply k to a with continuation c.

Substituting monad K for monad M in the interpreter

and simplifying yields an interpreter written in CPS,

as shown in Figure 4. The functions lookup, add, and

apply now also take continuations. The line defining

Add can be read: Let c be the current continuation,

evaluate u, bind a to the result, evaluate v, bind b to

the result, and add a to b with continuation c.

This reading is closely related to the monadic read-

ing given in Section 2.1, and indeed the CPS and

monadic versions are quite similar: the CPS version

can be derived from the monadic one by simply elid-

ing each occurrence of ‘bindM’, and adding bits to the

front and end to capture and pass on the continuation

c. The second argument to ‘ bindM’ has type

a -> (b -> Answer) -> Answer

and this is what k ranges over. A continuation has

type

b -> Answer

and this is what c ranges over. Both k and c serve

similar roles, acting as continuations at different levels.

The Answer type may be any type rich enough to

represent the final result of a computation. One choice

is to take an answer to be a value.

type Answer = Value

This determines the definition of showK.

showK m = showval (m id)

Here m :: K Value is passed id :: Value -> Value

as a continuation, and the resulting Value is converted

tp a string. Evaluating test t ermO returns “42”, as

before.

Other choices for the Answer type will be considered

in Section 3.3

3.2 Call with current continuation

Having converted our interpreter to CPS, it is now

straightforward to add the call with current continu-

ation (callcc) operation, found in Scheme [RC86] and

Standard ML of New Jersey [DHM91].

The following operation captures the current con-

t inuation and passes it into the current expression.

callccK ::((a-> Kb)->Ka)->Ka

callccK h = ic-> let ka=\d->ca

in hkc

9

interp :: Term -> Environment -> (Value -> Answer) -> Answer

interp (Var x) e = \~ ->

interp (Con i) e = \c ->

interp (Add u v) e = \~ ->

interp (Lam x v) e = \c ->

interp (App t u) e = \c ->

Figure 4:

lookup x e c

ci

interp u e (\a ->

i.nterp v e (\b –>

add a b c))

c (Fun (\a -> interp v ((x,a):e)))

interp t e (\f ->

interp u e (\a ->

apply f a c))

Interpreter in continuation-passing style

The argument to callccK is a function h, which is

passed afunctionk oftype (a -> K b). Ifk is called

with argument a, it ignores its continuation d and

passes atothe captured continuation instead.

Toaddcallcc to the interpreted language, add an

appropriate term and anew case to the interpreter.

data Term = . . . ! Callcc Name Term

interp (Callcc x v) e

= callccK

(\k-> interpv ((x, Funk) :e))

This uses callc cKto capture the current continuation

k, and evaluates vwithxbound to afunction that acts

as k.

For example, applying testto

(Add (Con 1)

(Callcc “k”

(Add (Con2)

(App (Var “k”) (Con 4)))))

returns “5”.

3.3 Monads and CPS

Wehave seen that by choosing asuitable monad, the

monad interpreter becomes a CPS interpreter. A con-

verse property is also true: by choosing a suitable

space of answers, a(lPS interpreter can act as a monad

interpreter.

Thegeneral trick isasfollows. Toachieve the effects

of a monad M in CPS, redefine the answer type to

include an application of M.

type Answer = M Value

The definition of showK is modified accordingly.

showK m = showM (m unitM)

Here m of type K Value is passed unitM of type

Value -> M Value as a continuation, and the result-

ing M Value is converted to a string by showM.

Just as unitM converts a value of type a into type

M a, values of type M a can be converted into type K a

as follows.

promot eK :: Ma->Ka

promoteK m = \c -> m ‘bindM’ c

Sincere :: Maandc :: a –> M Value, the type of

m cbindM’ c is M Value, as required.

For example, to incorporate error messages, take M

to be the monad E defined in Section 2.3. We then

calculate as follows:

errorK :: String -> K Value

errorK s = promot eK (errorE s)

= \c -> (errorE s) ‘bindE’ c

= \c -> Error s ‘bindE’ c

= \c -> Error s

The equalities follow by applying the definitions of

promot eK, errorE, and bindE, respectively, We can

take the last line as the definition of errorK. As we

would expect, this simply ignores the continuation and

returns the error as the final result,

The last section stressed that monads support mod-

ularity. For example, modifying the monadic inter-

preter to handle errors requires few changes: one only

has to substitute monad E for monad M and introduce

calls to errorE at appropriate places. CPS supports

modularity in a similar way. For example, modifying

the CPS interpreter to handle errors is equally simple:

one only has to change the definitions of Answer and

test, and introduce calls to errorK at appropriate

places.

Execution counts (as in Section 2.5) and output (as

in Section 2.6) may be incorporated into continuation-

passing style similarly. For execution counts, take

Answer = S Value and calculate a continuation ver-

sion of tickS,

t ickK ::K()

t ickK = promoteK tickS

= \c -> tickS ‘bindS’ c

10

= \C ‘> (\S ->((),s+1)) ‘bindS’ C

= \c .->\s -> c () (s+1)

Thecase ofoutput is similar. In both cases, the mod-

ifications to the CPS version of the interpreter are as

simple as those to the monadic version.

3.4 Monads vs. CPS

Given the results of the previous section, one may

wonder whether there is any real difference between

monads and CPS. With monads, one writes

III ‘bindM’ (\a .-> k a)

and with CPS one writes

(\c -> m (\a -> k a c))

and the choice between these seems little more than a

matter of taste.

There is a difference. Each of the monad types we

have described may be turned into an abstract data

type, and that provides somewhat finer control than

CPS. For instance, we have seen that the CPS ana-

logue of the monad type S a is the type

(a -> S Value) -> S Value.

This latter type contains values such as

\c -> \s -> (Wrong, c).

This provides an error escape: it ignores the current

continuation and always returns wrong. The state

monad S provides no such escape facility. With mon-

ads, one can choose whether or not to provide an es-

cape facility; CPS provides no such choice.

We can recover this facility for CPS by turning con-

tinuations into an abstract data type, and providing

unltK and bindK as operations, but not providing

callccK. So CPS can provide the same fine control

as monads – if CPS is expressed as a monad!

Perhaps a more significant difference between mon-

ads and CPS is the change of viewpoint. Monads focus

attention on the question of exactly what abstract op-

erations are required, what laws they satisfy,

one can combine the features represented by

monads.

A Experiencing monads

and how

different

Each phase of the Haskell compiler is associated with

a monad.

The type inference phase uses a monad with an er-

ror component (similar to E in Section 2.3), a posi-

tion component (similar to P in Section 2.4), and two

state components (similar to S in Section 2.5). The

state components are a name supply, used to generate

unique new variable names, and a current substitu-

tion, used for unification.

The simplification phase uses a monad with a single

single state component, which is again a name supply.

The code generator phase uses a monad with three

state components: a list of the code generated so

far, a table associating variable names with addressing

modes, and a second table that caches what is known

about the state of the stack at execution time.

In each case, the use of a monad greatly simplifies

bookkeeping, The type inference would be extremely

cluttered if it was necessary to mention explicitly at

each step how the current substitution, name supply,

and error information are propagated; for a hint of the

problems, see [Han87]. The monads used have been

altered several times without difficulty. The change to

the interpreter described in Section 2.4 was based on

a similar change made to the compiler.

The compiler has just begun to generate code, and a

full assesment lies in the future. Our early experience

supports the claim that monads enhance modularity.

5 Conclusion

5.1 The future

This work raises a number of questions for the future.

What are the limits of this technique? It would be

desirable to characterise what sort of language fea-

tures can be captured by monads, and what sort can-

not. Call-by-value and call-by-name translations of

lambda calculus into a monad are well known; it re-

mains an open question whether there might be a call-

by-need translation that evaluates each argument at

most once.

Is syntactic support desirable? The technique given

here, while workable, has a certain syntactic clumsi-

ness. It may be better to provide an alternative syn-

tax. One possibility is to provide

letMa<-rn inka

as alternative syntax for m ‘bindM’ (\a -> k a).

Another possibility arises from monad comprehensions

[Wad90].

What about eflciency? The style advocated here

makes heavy use of data abstraction and higher-order

functions. It remains to be seen what impact this has

on efficiency, and tlhe GRASP team looks forward to

examining the performance of our completed Haskell

compiler. We are hopeful, since we have placed high

priority on making the relevant features inexpensive.

How does one combine monads? The monads used

in the Haskell compiler involve a combination of fea-

tures; for instance, the type inference combines state

and exceptions. There is no general technique for

11

combining two arbitrary monads. However, Sec-

tion 3.3 shows how to combine continuations with

any other monad; and similar techniques are avail-

able for the state, exception, and output monads

[Mog89a, Mog89b]. One might forma library of stan-

dard monads with standard ways of combining them.

This would be aided by parameterised modules, which

are present in Miranda and Standard ML, but absent

in Haakell.

Should certain monads be provided as primitive?

Monads may encapsulate impure effects in a pure way.

For example, when the state is an array, the state

monad can safely update the array by overwriting, as

described in [Wad90]. Kevin Hammond and I have

built an interface that allows Haskell programs to call

C routines, using monads to sequence the calls and

preserve referential transparency. The effect is simi-

lar to the “abstract continuations” used in Hope+C

[Per87].

How do monads compare to other approaches to

state ? Several new approaches to state in pure func-

tional languages have emerged recently, based on var-

ious type disciplines [GH90, SR191, Wad91]. These

need to be compared with each other and with the

monad approach.

Can type inference help ? By examining where mon-

ads appear in the types of a program, one determines

in effect where impure features are used. In this

sense, the use of monads is similar to the use of ef-

fect systems as advocated by Gifford, Jouvelot, and

others, in which a type system infers where effects oc-

cur [GL86, JG91]. An intriguing question is whether

a similar form of type inference could apply to a lan-

guage based on monads.

5.2 The past

Finally, something should be said about the origin of

these ideas.

The notion of monad comes from category theory

[Mac71, LS86]. It first arose in the area of homological

algebra, but later was recognised (due to the work

of Kleisli and of Eilenberg and Moore) to have much

wider applications. Its importance emerged slowly: in

early days, it was not even given a proper name, but

called simply a “standard construction” or a “triple”.

The formulation used here is due to Kleisli.

Eugenio Moggi proposed that monads provide a

useful structuring tool for denotational semantics

[Mog89a, Mog89b]. He showed how lambda calculus

could be given call-by-value and call-by-name seman-

tics in an arbitrary monad, and how monads could

encapsulate a wide variety of programming language

features such as state, exception handling, and contin-

uations.

Independent of Moggi, but at about the same time,

Michael Spivey proposed that monads provide a useful

structuring tool for exception handling in pure func-

tional languages, and demonstrated this thesis with an

elegant program for term rewriting [Spi90]. He showed

how monads could treat exceptions (as in Section 2.3)

and non-deterministic choice (as in Section 2.7) in a

common framework, thus capturing precisely a notion

that I had groped towards years earlier [Wad85].

Inspired by Moggi and Spivey, I proposed monads

as a general technique for structuring functional pro-

grams. My early proposals were based on a special

syntax for monads, that generalised list comprehen-

sions [Wad90]. This was unfortunate, in that it led

many to think a special syntax was needed. This new

presentation is designed to convey that monads can be

profitably applied to structure programs today with

exist ing languages.

A key observation of Moggi’s was that values and

computations should be assigned different types: the

value type a is distinct from the computation type M a.

In a call-by-value language, functions take values into

computations (as in a -> M b); in a call-by-name lan-

guage, functions take computations into computations

(asin Ma-> Mb).

John Reynolds made exactly the same point a

decade ago [Rey81]. The essence of Algol, according

to Reynolds, is a programming language that distin-

guishes data types from phrase types. In his work

data types (such as int) play the roles of values, and

phrase types (such as int exp) play the role of com-

putations, and the same distinction between call-by-

value and call-by-name appears. These ideas form the

basis for the design of Forsythe [Rey89a]. But the

vital unitM and bi.ndM operations do not appear in

Reynolds’ work.

This is not the only time that John Reynolds has

been a decade ahead of the rest of us. Among other

things, he was an early promoter of continuation-

passing style [Rey72] and the first to apply category

theory to language design [Rey80, Rey8 1]. One in-

triguing aspect of his recent work is the use of inter-

section types [Rey89a, Rey89b, Rey9 1], so perhaps we

should expect an upsurge of interest in that topic early

in the next millenium.

This paper demonstrates that monads provide a

helpful structuring technique for functional programs,

and that the essence of impure features can be cap-

tured by the use of monads in a pure functional lan-

guage.

In Reynolds’ sense of the word, the essence of Stan-

dard ML is Haskell.

Acknowledgements. The work on the HaskelI com-

piler reported here is a joint effort of the GRASP team,

whose other members are Cordy Hall, Kevin Ham-

mond, Will Partain, and Simon Peyton Jones. For

helpful comments on this work, I’m grateful to Don-

1.Z

ald Brady, Geoffrey Burn, John Hughes, David King,

John Launchbury, Muffy Thomas, and David Watt.

References

[AJ89]

[BW87]

[DF90]

[DHM91]

[GH90]

[GL86]

[Han87]

[HPW91]

[JG91]

[LS86]

[Mac71]

A. Appel and T. Jim, Continuation-passing,

closure-passing style. In 16 ‘th Symposium

on Principles of Programming Languages,

Austin, Texas; ACM, January 1989.

R. Bird and P. Wadler, Introduction to

Functional Programming. Prentice Hall,

1987.

0. Danvy and A. Filinski, Abstracting con-

trol. In Conference on Lisp and Functional

Programming, Nice, France; ACM, June

1990.

B. Duba, R. Harper, and D. MacQueen,

Typing first-class continuations in ML. In

18 ‘th Symposium on Principles of Program-

ming Languages, Orlando, Florida; ACM,

January 1991.

J. Guzm&n and P. Hudak, Single-threaded

polymorphic lambda calculus. In Sym-

posium on Logic in Computer Science,

Philadelphia, Pennsylvania; IEEE, June

1990.

D. K. Gifford and J. M. Lucassen, Inte-

grating functional and imperative program-

ming. In Conference on Lisp and Func-

tional Programming, 28–39, Cambridge,

Massachusetts; ACM, August 1986.

P. Hancock, A type checker. Chapter 9

of Simon Peyton Jones, The Implementa-

tion of Functional Programming Languages,

Prentice Hall, 1987.

P. Hudak, S. Peyton Jones and P. Wadler,

editors, Report on the Programming Lan-

guage Haskell: Version 1.1. Technical re-

port, Yale University and Glasgow Univer-

sity, August 1991.

P. Jouvelot and D. Gifford, Algebraic re-

construction of types and effects. In 18 ‘th

ACM Symposium on Principles of Program-

ming Languages, Orlando, Florida, January

1991.

J. Lambek and P. Scott, Introduction to

Higher Order Categorical Logic, Cambridge

University Press, 1986.

S. Mac Lane, Categories for the Working

Mathematician, Springer-Verlag, 1971.

[Mog89a]

[Mog89b]

[MTH90]

[Pau91]

[Per87]

[P1075]

[RC86]

[Rey72]

[Rey80]

[Rey81]

[Rey89a]

[Rey89b]

[Rey91]

E. Moggi, Computational lambda-calculus

and monads. In Symposium on Logic in

Computer Science, Asilomar, California;

IEEE, June 1989. (A longer version is avail-

able as a technical report from the Univer-

sit y of Edinburgh.)

E. Moggi, An abstract view of programming

languges. Course notes, University of Edin-

burgh.

R. Milner, M. Tofte, and R. Harper, The

definition of Standard ML. MIT Press,

1990.

L. C. Paulson, ML for the Working

Programmer. Cambridge University Press,

1991.

N. Perry, Hope+C, a continuation ex-

tension for Hope+. Imperial College, De-

partment of Computing, Technical report

IC/FPR/LANG/2.5 .l/21, November 1987.

G. Plotkin, Call-by-name, call-by-value,

and the .&calculus. Theoretical Computer

Science, 1:125-159, 1975.

J. Rees and W. Clinger (eds.), The revised3

report on the algorithmic language Scheme.

ACM SIGPLAN Notices, 21(12) :37–79,

1986.

J. Reynolds, Definitional interpreters for

higher-order programming languages. In

25’th ACM National Conference, 717-740,

1972.

J. Reynolds, Using category theory to de-

sign implicit conversion and generic op-

erators. In N. Jones, editor, Semantics-

Directed Compiler Generation, 211–258,

Berlin; LNCS 94, Springer-Verlag, 1980.

J. Reynolds, The essence of Algol. In de

Bakker and van Vliet, editors, Algorithmic

Languages, 345-372, North Holland, 1981.

J. Reynolds, Preliminary design of the

programming language Forsythe. Carnegie

Mellon University technical report CMU-

CS-88-159, June 1988.

J. C. Reynolds, Syntactic control of in-

terference, part II. In International Collo-

quium on Automata, Languages, and Pro-

gramming, 1989.

J. Reynolds, The

with intersection

coherence of languages

types. In International

13

Conference on Theoretical Aspects of Com-

puter Sofiware, Sendai, Japan, LNCS,

Springer Verlag, September 1991.

[Spi90] M. Spivey, A functional theory of excep-

tions. Science of Computer Programming,

14(1):25-42, June 1990.

[SR191] V. Swarup, U. S. Reddy, and E. Ire-

land, Assignments for applicative lan-

guages. In Conference on Functional Pro-

gramming Languages and Computer Archi-

tecture, Cambridge, Massachusetts; LNCS

523, Springer Verlag, August 1991.

[SS76] G. L. Steele, Jr. and G. Sussman, Lambda,

the ultimate imperative. MIT, AI Memo

353, March 1976.

[Tur90] D. A. Turner, An overview of Miranda. In

D. A. Turner, editor, Research Topics in

Functional Programming. Addison Wesley,

1990.

[Wad85] P. Wadler, How to replace failure by

a list of successes. Conference on Func-

tional Programming Languages and Com-

puter Architecture, Nancy, France; LNCS

201, Springer-Verlag, September 1985.

[Wad90] P. Wadler, Comprehending monads. In

Conference on Lisp and Functional Pro-

gramming, Nice, France; ACM, June 1990.

[Wad91] Is there a use for linear logic? Confer-

ence on Partial Evaluation and Semantics-

Based Program Manipulation (PEPM),

New Haven, Connecticut; ACM, June 1991.

14

