The Influence of Browsers on Evaluators or,
Continuations to Program Web Servers

Christian Queinnec
Université Paris 6 — Pierre et Marie Curie
LIP6, 4 place Jussieu, 75252 Paris Cedex — France

Christian.Queinnec@lip6.fr

http://my.scheme/ |

What to

| tp://my.schemefeval 2exp=(*+2+(read)) |

wao @R

What to

I

I

(* 2 (read))I

tick-a-tick-a-tick...

_tick-a-tick-a-tick... click!

/ J

Ve
| http://my.scheme/resume?continuation=k87& exp=3 |

But then our hero hits the Back button

What to % Resultis Of the
31 6 : i" browser
Back
\ tick! click! A Y
e N B

| http://my.scheme/resume?continuation=k87& exp=4 |

What to
4I 8

Result is

tick! tick! click! Y,

ABSTRACT

While developing the software of a browser-operated educa-
tional CD-ROM, we had to face a number of problems. This
paper presents these problems and the solutions we found.
Amusingly, most of our solutions rely on continuations. Are
browsers and multimedia the future of continuations ?

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICFP ' 00, Montréal, Canada.

Copyright 2000 ACM 1-58113-202-6/00/0009 ..$5.00

23

Proposition 1.
A browser is a device that can invoke
continuations multiply.

Through their “Back” button or “Clone window” menu
item, browsers have powerful abilities that force servers to
take care of multiply and simultaneously answered ques-
tions. A comprehensive tool to apprehend these problems as
well as to solve them is to view these abilities as operators
acting on the continuations of the computation performed
by servers.

Thematical trails are provided to walk through the CD-
ROM but do not prevent students to wander elsewhere. A
trail may contain choices or quizzes so the rest of the trail
should adapt to the walked part. We consider the trail as a
computation and the position of the student as a continua-
tion within that computation.

Moreover this paper advocates a computation-centric view
of servers (in opposition to the usual page-centric view)
where interactions with users suspend the computation into

> tick! tick! click! Y,
http://my.scheme/resume?continuation=k87& exp=5 |

simultaneously

Our tireless hero hits the Back button again
then clones the window (or opens a new one
and pastes theright URL.)

then

What to @%
o]

___ tick! tick! click!)
Vs AN
| http://my.scheme/resume?continuation=k87& exp=6 |

Resultis Resultis
10 .- 12
Proposition 2:
A browser is a device that can invoke
continuations simultaneously.
- J - J

continuations that may be later resumed. This approach is
superior because the continuation reifies, automatically and
without errors, the whole state of the computation.

Keywords

Scheme, continuations, hypertext, WWW

1. MOTIVATION

Browsers are ubiquitous. They tend to replace traditional
window systems because, like them, they offer menus, but-
tons and text rendering but, unlike them, they are every-
where and (nearly) the same throughout the world. Conse-
quently more and more computations are driven by browsers
be it to set parameters, to monitor progress or to display re-
sults.

However browsers have two important capabilities. First,
they maintain a set of bookmarks as well as an history
of visited URLSs or, more precisely, a history of HT'TP re-
quests and their associated resulting page. Via the “Back”
and “Forward” buttons, the user may come back and forth
through this history and browse the past visited pages. This
leads to a “backtracking” style of surfing when the user goes
back to some old page and tries another path through the
web maze.

Second, browsers allow users to follow a link while opening
a new window making easier to explore more than one trail
concurrently. This may be considered as the creation of
a new thread in user’s brain. This thread ends when the
window is closed.

These two familiar capabilities interact weirdly with web
computations i.e., computations involving the user through
more than one page to achieve some goal. With the “Back”
button, a user may come back to a page (containing a ques-

24

tion from the server to the browser) and submit another
answer to an already answered question, see first strip. Of
course, the new answer is probably different from the past
answer and this is a perfectly understandable behavior since
(i) a user may fix a previous typo that was only perceptible
a few pages later, or (%) a gamer may withdraw the last
turn, or (%i) a user may be interested in a kind of “what-if”
computation i.e., setting a parameter, looking for its effect
and coming back to tune it more finely.

The “Back” button is a local amenity of the browser but
servers have no clue about its use. The HTTP protocol is
state-less and a server just sees incoming requests. Thanks
to cookies, hidden fields or URL-rewriting, servers may dis-
criminate browsers but still cannot perceive the use of the
“Back” or “Forward” buttons, nor distinguish between dif-
ferent windows within a same browser.

Xmosaic from NCSA used to provide a menu item to clone
the current window (as well as its history). Although this
facility seems to have disappeared in Communicator and
Explorer, one can roughly approximate it by opening a new
window and pasting the current URL within it or, by book-
marking the current URL, opening a new window and ask-
ing it to fetch the freshly bookmarked URL. Suppose that
a single page is displayed in two different windows, suppose
that that page contains a question then, the user may sub-
mit two different answers concurrently to the same question
(see second strip): this only requires the user to have some
mouse-moving and mouse-clicking proficiency.

In most servers, incoming requests are handled by differ-
ent threads. Therefore the two previous, concurrently sent,
requests most naturally lead to two concurrent threads in
the server. These threads start in the same state: the one
that corresponds to the original question. Servers are often
puzzled by requests answering an already answered question

[18], they sink into a lot of troubles when two answers come
concurrently for the same question!

This paper argues that continuations are the appropriate
tool to apprehend these problems. When a server produces
a page to be displayed in a browser, it suspends its com-
putation while allowing its resumption later. The server
reifies the “continuation of the page” and associates it to
some URL (probably appearing as a link somewhere in the
HTML page itself). When a request is sent to that very
URL, the continuation is resumed (possibly with some fresh
values to influence the rest of the computation).

The continuation of the page is the continuation of the
web computation that page is involved in. No matter how
complex the computation is, continuations are well defined
everywhere. Continuations deliver the coder of the web
computation from designing only small, simple, page-centric
automata which are characterized by a simple state and a
small matrix of transitions triggered by requests. Continua-
tions automatically capture the computation state and this
greatly frees the coder.

Actually all these ideas sprung from the design of an edu-
cational CD-ROM for which we realized a persistent server
of pages implementing some thematical trails. A trail is a
way to traverse a subset of the pages of the CD-ROM. The
trail should be reactive so it may adapt to the student, it
should be persistent since it may be followed for months, it
should be independent of the traversed pages. It took time
for us to discover that these trails were in fact programs and,
a student’s position within the trail: a continuation!

To sum up, the use of a browser to compute over the
web naturally requires the language, in which computations
are expressed, to support continuations and concurrency.
The rest of the paper explores this domain at the cross of
continuation, hypertext and web [1]. For ease of exposition,
we will use the Scheme programming language [8].

In Section 2, we will analyze the linguistic features asso-
ciated to the browser- and the server-sides and their rela-
tionship. We will give an example of a web computation
illustrating continuations. This example is similar to one
we used in lecture to motivate students to grasp what are
continuations.

However continuations and concurrency introduce new pro-
blems as shown in Section 3: computations may yield no
result or more than one result. We will expose our solutions
and introduce a new kind of scope: the thread-+offspring
scope.

Finally, we will present two applications putting these
ideas to work in Section 4 — a multi-user, multi-thread,
browser-operated Scheme interpreter and — some fine points
of the CD-ROM itself and its trails.

Related works and conclusions end the paper.

2. FEATURES

We present in this Section the linguistic aspects related
to the browser-side and the server-side. A first example of
a web computation is discussed.

2.1 Browser-side
There are three actions a user may perform on a browser:
1. A user may submit information to a server via a GET

or POST request (the main types of request of the
HTTP protocol). The request opens a connection to

25

the server through which the browser will receive back
a page to display.

2. A user may asynchronously stop a request to signify
that the page is not desired any longer. This may be
expressed by hitting the “Stop” button or by closing
the window from where the request was submitted.
Stopping the request closes definitely the connection.

3. A user may clone a window and initiate a new inde-
pendent and concurrent activity in the new window.

Note that these actions may also be performed from a
command line interpreter from which a user may submit
requests by hand (telnet, wget, etc.) or by script, sequen-
tially or concurrently. There, the user also has the power
to interrupt submissions but is lacking the HTML rendering
ability.

Observe that there are three entities: windows, connec-
tions and requests with different lifetime. A window may
host, one at a time, a number of pages. At any moment,
a window is associated to at most one open connection®.
A connection is closed when stopped or when the resulting
page is served; once closed, it remains definitely closed. A
connection carries a request from the browser to the server
and will convey the resulting page from the server to the
browser. Requests are memorized by the browser and may
be submitted again (with the “Reload” button) thus forcing
the creation of a new connection.

2.2 Server-side

We assume that whenever a connection is accepted, a re-
quest is extracted from it and a thread is created to ser-
vice that request. Some HTML is output to the connection
while the connection is open. When the request finishes, the
thread flushes the output, closes the connection and termi-
nates. The browser has no knowledge of user’s windows and
only sees connections and requests.

Our model of concurrency is very simple.

The (fork 7 7') special form simply creates two concur-
rent threads to evaluate the expression 7, resp. 7’ within the
current lexical environment and the current continuation.
For instance, while evaluating (display (fork 1 2)), two
threads are created that return independently and concur-
rently 1 and 2 as argument of the display function. The
two threads will then print these numbers and continue what
remains to be done.

The (suicide) function simply kills the current thread.

Our model of concurrency does not offer any “join” oper-
ator but a tree of threads where nodes are created by fork
and final leaves are terminated with suicide.

Threads communicate and synchronize through memory.
An atomic swap instruction is provided by the special form
set! which, atomically, stores a value in a variable and
returns its former content. See [15] or [10] for additional
semantical details and examples of higher-level primitives
built on top of these features such as pcall or future.

A web computation is represented by a program evalu-
ated by the server. In this program, we express that a page
should be served to a browser with the show function. The
show function takes a page as argument, captures its contin-
uation, registers that continuation under a fresh and public
URL and, finally, asks the page to produce some HTML,

!We neglect frames or images pre-fetching.

closes the connection and kills the current thread. The page
is represented by a function that expects a single argument:
the URL of the continuation. The following definition em-
bodies that behavior:

(define (show page)
(call/cc
(lambda (resume)
(let ((url (register-continuation! resume))
(connection (current-connection)))

(display (page url) connection)
(close-output-port connection)
(suicide)))))

When a browser resumes a web continuation, it submits
a regular request with some information. This information
corresponds to the filled text fields and/or selected choices
of the forms within the currently displayed page. The re-
quested URL may look like the ones used in the strips, for
instance:

http://my.scheme/resume?continuation=k87&exp=4

Given a resumption URL (i.e., an URL named resume),
the server creates a thread, finds the registered continuation
(whose name here is k87) and resumes that continuation
with the request object. The server looks like the next func-
tion though it does not need to be written in Scheme:

(define (server request)
(let* ((c (get-parameter request "continuation"))
(k (get-registered-continuation ¢)))
(if k
(k request)
o))

The request object may be seen as the union of the http-
Request and httpResponse objects in Servlets parlance [5].
It contains parameters i.e., name-value pairs such as exp and
4 (in the URL, they start with a ? and are separated with
&). We will use the get-parameter function to access the
value of the parameters.

From the web computation point of view, it looks as if the
show function ships out a page, blocks until a request for its
continuation arrives and returns as result such a request ob-
ject. We emphasize that no thread is blocked (since the mere
existence of such a thread would not allow the web contin-
uation to be resumed more than once), the continuation of
the page is only reified and recorded. When an appropriate
request arrives, the server creates a new thread to resume
that named continuation. This thread will die at the next
call to show (or, more directly, by suicide of course).

2.3 Web computation

Let us give a very simple, but complete, example of a web
computation. The next file holds a complete web computa-
tion and includes three pages as well as the transition logic
between these pages.

When started, this computation asks for a conversion rate
between French Francs (FRF) and another currency, then
asks for an amount of Francs to convert and, finally, displays
the result of the conversion, see Figure 1. The two pages
asking for numbers have a “Continue” button to resume the
conversion process i.e., the continuation.

(define (conversion)
(let* ((reql (show (mk-read-rate-page)))
(rate (string->number

26

(get-parameter reql "rate")))
(currency (get-parameter
reql "currency")))
(if (and rate (> rate 0.0))
(let* ((req2 (show (mk-read-francs-page
currency)))
(francs (string->number
(get-parameter
req2 "francs"))))
(show (mk-result-page rate
francs
currency)))
;5 incorrect rate
(conversion))))
(define (mk-read-rate-page)
(lambda (kurl)
(html (head (title "Conversion"))
(body (form method: ’post action: kurl

(P "rate "
(input type: ’text size: 10
name: ’rate))
(p "currency "
(input type: ’text size: 10

name: ’currency))
(input type: ’submit
value: "Continue"))))))
(define (mk-read-francs-page currency)
(lambda (kurl)
(html (head (title "How many Francs?"))
(body (form method: ’post action: kurl
(p "Converting into " currency)
(p "Francs "
(input type: ’text size: 10

name: ’francs)
(input type: ’submit
value: "Continue")))))))

(define (mk-result-page rate francs currency)
(lambda (ignored-continuation-url)
(html (head (title "Conversion result"))
(body (p "If 1 FRF corresponds to " rate

" " currency " then " francs
" FRF correspond to "
(* rate francs) " " currency
")))))

(conversion)

The conversion function clearly and totally expresses the
dependences between the three pages of the web computa-
tion. These pages are created with the three functions whose
name is prefixed by mk.. As before, pages are unary func-
tions expecting the URL of their continuation and returning
the HTML of the page. We borrowed the very elegant solu-
tion proposed by Ngrmark, which he named LAML standing
for Lisp Abstracted Markup Language [11]>. With his tech-
nique, HTML tags (html, p, input ...) are emitted via a
library of functions; tags attributes (type:, method:) are
specified via keywords to these functions.

Observe in this program that we verify that the rate ob-
tained by the first page read-rate-page is indeed a valid
number. If this is not the case then the conversion func-
tion is called again with the same continuation. We do not

2Additional details about LAML may be found on
Ngrmark’s site at http://www.cs.auc.dk/ normark/.

resume?continuation=k87&
rate=0.16& otherCurrency=$

e []
currency I:]

Converting into $

read. rate. page

resume?continuation=k91& If 1 FRF corresponds
francs=2
Francs I:] > | t00.16 $ then 2 FRF
corresponds to
7 0.32%.
QSU,?@?CO/?['
r, {
Qk3§§”€y'

read. francs. page

7
0/7\\/(91cﬁ

If 1 FRF corresponds

Convertinginto $

Francs | |

t00.16 $ then 3 FRF
corresponds to
re, 0.48 $.
ﬁé?q%b

read. francs. page

If 1 FRF corresponds
t0 0.14 $ then 3 FRF
corresponds to
0.42$.

Figure 1: The “conversion” web computation

check other things to leave the definition of conversion un-
encumbered.

When the second page read-francs-page is displayed,
the continuation already embeds the rate to apply as well
as the name of the other currency. Thanks to continua-
tions, after obtaining the final page, the user may go back
to the previous read-francs-page page and ask to convert
another amount of Francs, see Figure 1. The user may also
go back and back to the read-rate-page page and alter it
to compare, see Figure 1 again. The user may also clone
the second resulting page, go back, change the rate and, fi-
nally, have two windows converting Francs with two different
rates. Note that while these two pages look the same and
are based on the same read-francs-page template, they are
different because their continuations are different, because
they embed different rates and their “Continue” button re-
sume different computations.

Since pages are generated via function calls, they take
their arguments by regular invocation rather than by global
mutable shared variables. To be independent of side-effect
strengthens this code in presence of concurrency.

All these operations can be done since all displayed pages
have a well defined web continuation encapsulating what
remains to be done according to the web program. Continu-
ations allow the coder to shift from a page-centric view to a
computation-centric view and use regular linguistic features
such as scope to manage intermediate data.

2.4 Analogies

It is necessary that the language of web computations
offers the fork special form since the clone facility on the
browser-side allows to simulate it.

The HTTP protocol offers a number of features among

27

which is redirection. With redirection, a server may answer
a browser to suggest it to re-send its original request towards
another URL. This is mainly used to cope with pages or sites
that changed their location.

With redirection and JavaScript-ing ability, it is a simple
matter to simulate fork even if absent. A form such as
(fork 7 7') may be implemented as:

(if (equal? (get-parameter (show fork-page) "exp")
Ht“)
™
)
The fork-page is defined with a small snippet of JavaScript.

(define fork-page

(lambda (kUrl)

(html (script language: "JavaScript" "

var kurl = \"http://my.scheme/resume\"

+ \"?continuation=\" + \"" kUrl "\";
window.open(\"" kurl "\" + \"&exp=t\",
\"UselessWindow\",
\"copyhistory\");
window.location.href = \"" kurl
"\" + \H&eXP=f\H; n))))

This snippet opens another browser window® that imme-
diately requests the continuation to be resumed with the
"t" value!. Meanwhile, the current window also requests
the same continuation to be resumed with the "f" value.
We therefore obtain two threads evaluating 7= and 7’ con-

3The "copyhistory" option is useless here but shows how
a window may be programmatically cloned as in Xmosaic.
“We do not use the regular true value of Scheme (expressed
as #t) since the hash sign has another interpretation in
URLs!

currently so we simulate the fork intention at the price of
a new window in the browser®.

There exists a weaker analogy between suicide and stop.
They are less tightly coupled since suicide immediately kills
the current thread (on the server-side) while stop immedi-
ately closes the connection (on the browser-side) and thus
allows the thread, within the server, to linger until it starts
to produce some output and be notified of an IO error on
the closed connection.

2.5 Pedagogy

Students are very used to surf the web. This year, we
introduced continuations through the example of the first
strip and found that our students had no reluctance to con-
sider and use continuations provided they were named by
URLs. After some examples of web computations akin to
the previous one, they grasped the concept of continuations
and it was time to deliver more classical lectures on CPS
(Continuation Passing Style) i tutti quanti.

That continuations and web are entangled is rather excit-
ing for students especially when they realize that they may
suspend quite complex computations and resume them with
help of continuations without having to code a state stuffed
with all the data needed to resume it. Continuations au-
tomatically capture what is needed to resume computation.
We recommend this pedagogical approach!

3. PROBLEMS

The “Back” and “Forward” buttons are often disconsid-
ered from the user’s point of view since (i) most of the
time these buttons lead to so called “landmark” pages that
are already reachable through flashy icon-highlighted links
within the displayed page; for instance, the home-page, the
site-map, the FAQ page are generally referred to from the
header and/or the footer of every page of a site; (i) caching
strategies at various levels lessen the cost of re-asking for a
page rather than going back locally to see it again.

From the programmer’s point of view, to make use of these
buttons to invoke multiply and even concurrently continua-
tions poses a number of problems to servers [18]. In regular
languages, an expression has at most one value: most of-
ten one and zero in case of exception. In languages with
first-class continuations, an expression may have an unde-
fined number of values since its continuation may be invoked
multiply (take care that we are not speaking of an expres-
sion that returns a single “multiple value” result (as can be
done in Scheme R5RS with values and call-with-values),
we are speaking of an expression that returns a single value
every time it returns). Corollarily, it is difficult to deter-
mine the end of a computation that is, the moment when
an expression is guaranteed to return no more values. For in-
stance, this makes critical section a somewhat inappropriate
concept since if one thread enters it, captures a continuation
and makes it visible, an undefined number of threads may
exit the critical section just using the available continuation.

Continuations have various usages. They may be used as
escape procedures to handle exceptions ¢ la set jmp/longjmp
i.e., they are only used while in their dynamic extent. Con-
tinuations may also be used for couroutines [19] to interleave

50ther snippet of JavaScript may be run in the next answers
to kill this window named "UselessWindow". We may also,
from the beginning, use hidden frames.

28

multiple subcomputations: these continuations are invoked
at most once. Other uses of continuations cover debugging
where one wants to be replaced in the exact erroneous con-
text.

Good examples of a continuation multiply invoked are not
common in a sequential context. This is no longer true when
concurrency is present (as with our fork primitive) or, when
users ask for bookmarked continuations.

3.1 One-shot use

In [18], Touchette presents the problem of a web trans-
action with a final commit on a data-base. It is important
not to commit twice or the user may pay twice for a single
item or two items may be shipped while only one is paid.
To forbid re-invocation of past continuations is a first line
of defense. This policy is very simply expressed with con-
tinuations, we only require the web computation to use the
show-once function instead of the show function:

(define (show-once page)
(let ((already? #f))
(let ((request (show page)))
(if (set! already? #t)
(suicide)
request))))

When a page is displayed, its continuation may be re-
sumed only once with success (this code uses the atomic
swap effect of the assignment to ensure that only one thread
will take the “else” branch of the alternative). Other re-
sumptions will force the current thread to commit suicide.
Since it is more user-friendly to tell the user why it is for-
bidden to re-invoke a past continuation, one may prefer the
following alternate definitions:

(define (cul-de-sac page)
(show page)
(cul-de-sac page))
(define (show-once page)
(let ((already? #f))
(let ((request (show page)))

(if (set! already? #t)
(cul-de-sac (message-page "No!"))
request))))

(define (message-page txt)
(lambda (kUrl)
(html (head (title txt))
(body (strong (p txt))))))

Here, we program an endless loop serving a page again
and again. A local boolean is freshly regenerated every time
show-once is invoked and immediately captured by the con-
tinuation of show where any resumption will find it. Notice
that this definition of show-once is very safe since it clearly
resists to the use of the “Back” button, to window cloning or
URLSs copy/pasting. To unregister the continuation, that is
to suppress its association with its URL, is not as safe since
the continuation still exists and a previous continuation may
still lead to it.

Another more sophisticated manipulation of continuations
will be shown in Section 4.2.

3.2 Child-less

While concurrency seems unavoidable, it also introduces
new problems per se. Consider the following program:

(fork (suicide)
(begin (sleep 5) (suicide)))

This program runs for five seconds or so and shows noth-
ing in result. There are three main options for the server
(i) do nothing, don’t even close the connection but wait un-
til the user is exasperated and closes that connection from
the browser-side. (%) close the connection so the user’s
browser may display a “missing data/empty page” warning
message. (%4) embeds the whole original computation, say
m, within the following wrapper to ensure that at least one
page will be produced. The wrapper checks to see if a page
had been produced (it would have then closed the connec-
tion) and outputs a page if that was not already done.
(begin 7

(if (open? (current-connection))
(cul-de-sac
(message-page "Not much to say!"))
(suicide)))

We will see in Section 4 that all these options are useful
depending on the situation.

3.3 Orphan

While some computations yield no result, other computa-
tions may yield more than one result. This is the case of the
following program:

(fork (show pagel)
(begin (sleep 10) (show page2)))

In this program, the first show expression produces a page
and closes the connection. Ten seconds after or so, a sibling
thread wants to produce a second page as result but the
connection is closed and cannot be used again. The browser
does not know that there is another answer while the server
has yet another reply to an already replied request. This
problem is a kind of dual problem of Section 2 where the
server wants now to reply multiply to a single question of
the user.

The first idea is to wait for the end of the computations
induced by a request that is, the end of the initially created
thread as well as the end of all the threads of its offspring.
This is a bad solution since it prevents a number of useful
tricks: for instance — forking a lurking daemon to release
resources after 10 hours of inactivity or — creating an agent
waiting for some rendez-vous with another user, or — fork-
ing two threads to solve a problem with two different algo-
rithms: a fast heuristical one and a slow but sure one, etc.
Moreover, as we said before, it is difficult to detect the end of
these computations in presence of first-class continuations.

A second solution is to use the connection as soon as a
page gets ready but when pagel is output, the connection
is closed. So we desperately need another open connection
towards the browser in order to fill it with page2. But if
we steal such a connection elsewhere, we just translate the
problem to other threads. The solution is clearly to out-
put more than one page in a connection and this is indeed
possible.

The solution is to use a snippet of JavaScript to force
the browser to open new windows for our supplementary
pages. When a page should be replied to a closed connec-
tion, the server places it into a queue of waiting pages, see
Figure 2. When the server outputs a page on an open unre-
lated connection, it inserts some JavaScript’ing to instruct
the browser to open new windows to host the waiting pages.

29

regquestl request2

show

Figure 2: Waiting pages

Here is the snippet® which looks a lot like the previous snip-
pet:
var pendingUrl;
// Repeat for all pending pages:
pendingUrl = ...;
window.open(pendingUrl,
"PendingWindow_987715794",
" ll) ;

In fact, to avoid delaying pages until a connection is about
to be closed, we prefer the following scheme where, as soon
as a server accepts a request from a browser for which the
server has waiting pages to send, the freshly created thread is
immediately reified into a continuation k and the connection
is immediately used (see Figure 3) to send the waiting pages
accompanied with a redirection resuming k. Of course, when
k outputs a page, waiting pages are also checked and sent if
any. Waiting pages will therefore wait less.

requestl request2 redirect
show z show
fork
show - - - - -
wait..
show - - -
/ walit...
Figure 3: Waiting pages — improved solution

There are some important security points to check for that
solution to work since servers may fundamentally only dis-
tinguish machines or browsers but not users. Servers should
not send old waiting pages to non-vetted users. This may be
ensured by the server with authentication, session tracking
and so forth.

Our solution has two problems. The first is that without
further interaction a user cannot know the other pending
results. A trick might bring some illusion of asynchronism
again with some JavaScript: we can open a small window
with a smart flashy icon that periodically asks the server for
waiting pages.

The second problem is more dramatic since it resides in
the user’s brain. There is no such thing as a user’s continu-
ation so when multiple result windows pop up, it is usually

5The name of the fresh window is generated to be unique to
avoid name conflicts.

difficult for the user to recall what was the original matching
request. It is then a problem of pages design to make these
contexts apparent (see one possible design based on varying
background colors in Section 4.1).

3.4 Scope

The above Scheme definitions used the (get-current-con-
nection) form to obtain the connection to use to output a
page. This Section proposes a new scope mechanism to im-
plement that function.

Though lexical binding is now the rule, while dynamic
binding is still marginally useful [17], [13, p. 167], [9], nei-
ther one may be used to define the (current-connection)
form. When a server accepts a request, be it for an evalu-
ation or the resumption of a continuation, it creates a new
thread ¢ and associates the connection to it. The thread ¢
may fork new threads and/or commit suicide. Therefore the
associated connection should be also available to all the off-
spring of ¢ (and to no other threads). This scope is unrelated
to lexical scope since the shared mutable global environment
is not thread-safe and we must ensure that any piece of code,
wherever it is, can show a page. This scope is unrelated to
dynamic scope since it has nothing to do with the evaluation
stack: the thread ¢t may be created with a high stack and
shrink it before evaluating (current-connection).

Therefore we are compelled to invent a new scope where
an information associated to a thread can be accessed from
this thread and all the threads of its offspring but from no
other threads. We name that scope “thread+offspring”.

Information may be retrieved using the thread+offspring-
get function that takes a name and a default value and re-
turns the associated value if there is one and the default
value otherwise. Following the libertarian spirit of Lisp, if
thread+offspring scope is used by the server, it should also
be usable by the user. Therefore we offer the thread+off-
spring-put function that binds a name and a value in the
thread+offspring scope.

(thread+offspring-put ’name ’wvalue)
(thread+offspring-get ’name °’value-if-absent)

We assume the server to place the current connection
in the thread+offspring scope of the newly created thread.
Therefore the current-connection may be defined as:

(define (current-connection)
(thread+offspring-get ’connection #f))

The JavaServer Pages [12] (or JSP for short) proposes a
number of specific scopes. Our notion of thread+offspring
scope is somewhat intermediate between the “request scope”
and the “session scope” of JSP. It contains request scope
since it covers all the threads that participate to the an-
swer(s) of a request but JavaServer pages limit the use of
that information to the first answer while we allow it until
threads commit suicide. Core Java has a related concept
named java.lang.InheritableThreadLocal.

Rather informally, our thread scope may be viewed as a
dynamic binding that wraps the invocation of the contin-
uation. To evaluate (thread+offspring-put ’n ’v) with
continuation k in direct style is similar to the following ex-
pression where k has been CPS-converted (the dynamic-let
special form binds n to the value v during the computation
of its body; the dynamic value of n may be retrieved with
(dynamic n)):

(dynamic-let ((n ’v))
(k #unspecified))

In particular, the thread+offspring scope jumps over calls
to show i.e., is captured by continuations.

3.5 Life-time

Once an URL appears somewhere in an HTML page and
since it may be memorized or retyped any time after, the as-
sociated continuation becomes a root for the GC (Garbage
Collector) and never disappears. This is clearly unreason-
able and servers implement a programmed oblivion.

Most servers offer a “session” object to track the user and
record associated information. The session object has a lim-
ited life-time say, 2 hours: if a user does not submit request
for 2 hours, then the related session object disappears. Reg-
istering continuations within the session object ensures them
a limited life-time.

This has a side-effect: since session objects are not shared,
continuations cannot be shared by this means. Continua-
tions which might be used by more than one user, should be
registered elsewhere. For instance, a game where two players
exchange their positions may be implemented by a simple
exchange of continuations. If continuations are registered
in a global table within a server, time-stamps or equivalent
might be added to dispose of old continuations.

4. APPLICATIONS

In this Section we describe two applications of our web-

continuations. These applications are mostly written in
Java, Scheme being the glue.
4.1 PS3l

Our first application is a browser-operated, multi-user,
multithread Scheme interpreter named PS3I standing for
the Persistent Server-Side Scheme Interpreter. The imple-
mented language is plain Scheme plus fork and suicide
special forms, thread+offspring scope, etc. This interpreter
is written as a component in Java.

The PS3I component is configured with respect to the
special forms it implements. Then it is possible to create
several PS3I.Worlds from this raw component after specify-
ing the Scheme libraries that each PS3I.World should load.
A PS3I.World is essentially characterized by a predefined
lexical global environment. Once a PS3I.World is created
(and this may take time to load all the required libraries), it
is possible to create (in a snap) PS3I.Evaluations within it.
A PS3I.Evaluation is first filled with evaluations (i.e., ex-
pressions to evaluate) or resumptions (i.e., continuations to
resume) and then run (with one Java thread for each evalua-
tion or resumption). The global environment of a PS3I.Ev-
aluation extends the global environment of the PS3I.World
that gave birth to it. The global environment of a PS3I.Ev-
aluation is local to that PS3I.Evaluation thus isolating
multiple users. This global environment is mutable and may
also be extended with new definitions. It is possible to listen
to a PS3I.Evaluation and detect when all its threads are
finished. Several PS3I.Evaluations may concurrently run
over a same PS3I.World.

A PS3I.World is persistent and may be serialized into a
file and so are environments and continuations. On the other
hand, a PS3I.Evaluation corresponds to a collection of run-
ning threads and is not serializable.

LAML pages are evaluated within fresh PS3I.Evaluations
based on a PS3I.World containing the LAML library. Users
of PS3I may submit evaluations or resumptions: a request
for evaluation creates a new PS3I.World offering R4RS li-
braries, while a request for resumption fetches and re-uses
the PS3I.World in which the continuation to resume was
captured (in order to find the appropriate global environ-
ment). When a PS3I.World is created, a background color
is chosen to ease distinguishing windows belonging to this
PS3I.World from others. Observe that, contrarily to a clas-
sical interpreter with a sequential toplevel loop where every
program is evaluated in a shared global lexical environment,
we create a new PS3I.World for every evaluation (see the
second application, the CD-ROM, for a different usage).

There are two fine points dealing with input/output on
the default input and output ports. The display function,
invoked with a single string argument, normally displays
this string on the current output port but no such port
exists in PS3I. Our implementation just accumulates dis-
played strings in the current PS3I.Evaluation. When a
page is about to be flushed, these accumulated strings are
then output.

The read function shows an inversion of control. Normally
the server is seen as an entity that replies to user’s requests.
When a (read) form is evaluated, the server requires an
expression from the user. The read function is implemented
as a special page, see first strip. When continued, this page
resumes the continuation of the (read) form with the read
value.

Continuations cannot be directly implemented in Java
since there is no equivalent concept. The PS3I interpreter is
written in CPS style as a kind of CEK machine [6] extended
with an environment for dynamic bindings and thread+off-
spring scope. Continuations are explicitly represented by
linked list of frames i.e., Java objects. This representation
allows numerous sharing since, as noted in [4], captured con-
tinuations are often multiply captured.

42 CD-ROM

Last year, we built a CD-ROM (mostly in French) that
gathers teaching material related to the C programming lan-
guage (see the associated site at http://videoc.lip6.fr/).
Among the many goals of the CD-ROM [14] was to help
students for their home-work: the CD-ROM provides some
“trails” corresponding to lectures notes and laboratory as-
signments.

Trails are an old idea [2, 20, 16]. They usually correspond
to a list of pages to traverse. Moreover they are associated
with tools allowing the user to know his position and to
move forth and back on the trail. We wanted to have more
complex trails with some branching points depending for
instance on the performance of the student to a quiz. We
also broadly suggested the students to wander through the
CD-ROM (150 Mbytes of pages related to C (history, style
guides, FAQ, various lectures, etc. plus some indexes, a
search engine and a “roulette” button) and be easily reset
on their trail.

Our innovation is that trails are Scheme programs evalu-
ated within a PS3I.World, the student’s position is a contin-
uation and since that continuation is persistent, the student
will be reset onto it the next time the CD-ROM is restarted.

Trails are easy to implement within our framework and
nave sequential trails just look like this:

31

(define (traill)
(for-each show
(list url-page-1

url-page-N)))

Observe that while simple this trail allows to traverse a
same page more than once without problems. Each time
the same page is presented, it has a different continuation.
Traditional trails systems do have problems with that fact
because of their page-centric point of view.

Our trails offer the following properties:

1. Trails are linear that is, there is exactly one page that
follows any other page but for the last page of the trail.
Some runtime branching is still possible though but no
fork may reply twice to the student.

2. At every page, the student may obtain a map describ-
ing the visited pages of the trail. This map does not
show what remains to be done on the trail since this
might not be computable.

3. Already seen pages may be returned to but no com-
putation is involved there. In other words, the page p’
that follows a page p is not recomputed, it is memo-
ized as the successor of page p. This is specially useful
not to propose again and again the same exercises or
jokes!

4. Since a trail is a Scheme program, fresh trails may be
easily downloaded from the site of the university to
provide new trails over the already existing pages of
the CD-ROM.

The web computation that embodies the trail maintains
a global history, a chronological list of records that, for each
shown page, memorizes its URL, its [after] continuation (i.e.,
what to do after this page) but also the [before] continuation
immediately preceding the call that shows that very page.
An additional field in the history record mentions, for each
successor page, its [from] continuation i.e., the after con-
tinuation of its preceding page. Thread+offspring scope is
naturally used to determine this information.

With such an history, it is possible to return to a page
and redisplay it (with its before continuation), to jump to
a successor page without re-computation and to visualize
(parts of) the history sorted along various criteria.

The server of the CD-ROM associates a PS3I.World for
each user. When a request arrives be it for an evalua-
tion or a resumption, the user is determined, the associ-
ated PS3I.World is resurrected from persistent memory and
the request is handled by a Scheme function within that
PS3I.World. The URL decoding may thus depend on the
instantaneous state of the user. This is in contrast with the
previous application where the URL decoding was done in
an immutable piece of Java code.

Our current rendering of the trail is to provide another
button on the pages of the CD-ROM to go to the following
page or to be reset on the last page seen of the followed trail.
For that latter goal, we just maintain the last resumed con-
tinuation in a global variable of the user’s PS3I.World. Do
not confuse the links the page may offer (and, more specifi-
cally, the “Previous, Content, Next” buttons of I¥TEX 2HTML’

"From Nikos Drakos, see http://wwu-
dsed.llnl.gov/files/programs/unix/latex2html/.

or HEVEA® with the “Following” button of the trail. The
server of the CD-ROM inserts a standard banner, after the
BODY tag of HTML pages, to manage the trail. This is
somewhat intrusive but allowed to instrument every HTML
page independently of any tool used to build it.

However we feel that this is too intrusive since it defi-
nitely spoils some carefully drawn pages. We envision now
to deport the banner into an independent trail-manager win-
dow to completely avoid to disturb the HTML page. Served
pages are simply instrumented to contain some additional
JavaScript code to refresh the trail-manager. Our solution
thus provides a nice way to organize a visit of pages every-
where on the net without requiring these pages to be aware
of this new usage. It will help teachers to re-use already ex-
isting material and still provide a commentary about these
pages as in Walden’s paths [16] but in a more powerful set-
ting.

5. RELATED WORK

The linguistic features of the browser-side are classical,
they may be formalized with the web combinators of [3].
The linguistic features of the server-side are also classical.
What is original is the parallel that exists between these two
sides where clone may simulate fork.

The concept of web computation where interactions with
the user are encapsulated in the show primitive is entirely
dependent on our use of continuations. Instead of thinking
in terms of state and transitions from page to page, we pro-
pose an alternate view where a program is suspended and
resumed, continuations automatically reifying the state of
the computation. This recalls Fuchs’ thesis [7] where he ad-
vocated the use of continuations for event process. We are
in a different setting though because of concurrency.

We introduce the thread+offspring scope to deal with the
intermittent input/output streams since neither lexical nor
dynamic scope were appropriate. This new scope comes
from the various scopes offered by JavaServer Pages [12]
except that we adapt it to fit with our (tree-)model of con-
currency.

While not simple to master, continuations give a clear
and precise view of some disturbing effects produced by
browsers. This improves on ad-hoc solution [18] as well as
it offers new possibilities such as the one-shot use or the
memoizing behavior.

[20] proposed “scripted paths” with sequences, conditions,
procedures and parallelism. In her realization, the Scripted
Document system, trails were represented by a list of pairs
made of a page and an action (a piece of code). The action
may for instance scan the page to extract voice annotations,
play them and switch automatically to the following page
of the trail. Our solution improves on that view since our
trails are more agile and not page-centric.

Walden’s paths [16] are sequential trails over already exist-
ing pages, our model adds a programmable view over these
trails allowing the rest of the trail to be computed and thus
to depend on information gleaned from previous pages. We
may even embed a trail (for instance, a trail built around
a quiz) as a sub-trail of a wider trail. Of course the com-
plexity of that programmable view may be lessened with an

8From Luc Maranget,
see http://pauillac.inria.fr/"maranget/hevea/.

32

appropriate layer of library functions or macros. This would
favor a more declarative definition of trails.

6. CONCLUSIONS

The thesis of this paper is to exhort programmers of web
applications to:

1. use a language with concurrency and continuations,

2. adopt a program-centric attitude rather than a page-
centric attitude

3. and cope with intermittent input/output streams.

One pleasing outcome of this paper is to give continua-
tions a new, nice and useful role. Far from being theoretical
ethereal concepts, they stand firm and solve elegantly and
efficiently an intricate problem.

Furthermore, this use of continuations provides an inter-
esting approach to expose students to continuations in a
clickable way.

PS3I is available under GPL from
http://www-spi.lip6.fr/ queinnec/VideoC/ps3i.html

Acknowledgments

Thanks to Emmanuel Chailloux, Luc Moreau, Manuel Ser-
rano and the anonymous referees for all their remarks on
this paper. Special thanks to David De Roure who men-
tioned the word “continuation” when talking of browsers
circa 1995.

7. REFERENCES

[1] M. Bieber, F. Vitali, H. Ashman,

V. Balasubramanian, and H. Oinas-Kukkonen. Fourth
generation hypermedia: Some missing links for the
world wide web. International Journal of
Human-Computer Studies, 47:31-65, 1997.

V. Bush. As we may think. The Atlantic Monthly,
pages 101-108, July 1945. reprinted in Adele Goldberg
(editor), A history of Personal Workstations, ACM
Press, New York, 1988, pp 237-247.

L. Cardelli and R. Davies. Service combinators for
web computing. IEEE Transactions on Software
Engineering, 25(3):309-316, May—June 1999.

O. Danvy. Memory allocation and higher-order
functions. In PLDI 87 -ACM SIGPLAN
Programming Languages Design and Implementation,
pages 241-252, 1987.

J. D. Davidson and D. Coward. Java™ Servlet
Specification, v2.2. SUN Microsystems, Dec. 1999.

M. Felleisen and D. P. Friedman. Control operators,
the secd-machine, and the lambda-calculus. In 3rd
Working Conference on the Formal Description of
Programming Concepts, pages 193-219, Ebberup,
Denmark, Aug. 1986.

M. Fuchs. Dreme: for Life in the Net. PhD thesis,
New York University, Sept. 1995.

R. Kelsey, W. Clinger, and J. Rees, editors. Revised®
report on the algorithmic language Scheme.
Higher-Order and Symbolic Computation, 11(1):7-105,
1998. Also appears in ACM SIGPLAN Notices 33(9),
September 1998.

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

(20]

L. Moreau. A Syntactic Theory of Dynamic Binding.
Higher-Order and Symbolic Computation,
11(3):233-279, Dec. 1998.

L. Moreau and C. Queinnec. Design and semantics of
quantum: a language to control resource consumption
in distributed computing. In Useniz Conference on
Domain Specific Language, DSL’97, pages 183-197,
Santa-Barbara (California, USA), Oct. 1997.

K. Ngrmark. Using lisp as a markup language — the
lam] approach. In European Lisp User Group Meeting,
Amsterdam, Holland, 1999.

E. Pelegri-Llopart and L. Cable. JavaServer Pages™
Specification, version 1.1. SUN Microsystems, Nov.
1999.

C. Queinnec. Lisp in Small Pieces. Cambridge
University Press, 1996.

C. Queinnec. Enseignement du langage C & I’aide d’un
cédérom et d’un site — Architecture logicielle. In
Colloque international — Technologie de I’Information
et de la Communication dans les Enseignements
d’ingnieurs et dans l’industrie, Troyes (France), Oct.
2000.

C. Queinnec and D. De Roure. Design of a concurrent
and distributed language. In R. H. Halstead Jr and
T. Ito, editors, Parallel Symbolic Computing:
Languages, Systems, and Applications, (US/Japan
Workshop Proceedings), volume Lecture Notes in
Computer Science 748, pages 234259, Boston
(Massachussetts USA), Oct. 1993.

F. M. Shipman III, C. C. Marshall, R. Furuta, D. A.
Brenner, H.-W. Hsieh, and V. Kumar. Creating
educational guided paths over the world-wide web. In
Proceedings of Ed-Telecom ’96, pages 326-331, Boston
(Massachussetts USA), 1996. Association for the
Advancement of Computers in Education.

G. L. Steele Jr. and G. J. Sussman. The art of the
interpreter, or the modularity complex (parts zero,
one, and two). MIT AI Memo 453, Massachusetts
Institute of Technology, Cambridge, Mass., May 1978.
J.-F. Touchette. Html thin client and transactions.
Dr. Dobb’s Journal, Software Tools for the
Professional Programmer, 24(10):80-86, Oct. 1999.
M. Wand. Continuation-based multiprocessing. In
Conference Record of the 1980 Lisp Conference, pages
19-28. The Lisp Conference, 1980.

P. T. Zellweger. Scripted documents: A hypermedia
path mechanism. In Proceedings of Hypertext-89,
pages 1-14, Pittsburgh, PA, 1989.

33

