Advanced Functional Programming

Software Engineering Chair and Programming Systems Lab

Small-group work

Questions for Composable Memory Transactions by Tim Harris and others.
It appeared in the Proceedings of the ACM SIGPLAN 2005 Symposium on
Principles and Practice of Parallel Programming, pages 48—60.

1. What destroys composability of lock-based synchronization? On the other
hand, what makes the approach proposed by Harris et al. composable?

2. How does Haskell’s type system help to implement composable memory
transaction? How would a design for ML look like?

3. Before atomic commits a transaction, it validates it. What for, and how
does this work?

Homework

1. Read Fun with Phantom Types by Ralf Hinze.

2. Summarize the paper in your own words on one page. Put your name
and student ID on your summary and drop off a printout at office 525/45
until Monday, January 16th at noon (12am). If the door is closed, slide
your printout under the door. No Emails.



Email conversation with Tim Harris

Tim,

we are reading your paper in my seminar course on Advanced

Functional Programming. I believe that this paper makes an important
contribution to the discussion how to deal with concurrency. I’d like to
ask a question that is triggered by the comparison with select(2) that
you provide in your paper: while select(2) is not composable, it is
fair. It waits for file descriptors from a set to become ready, not
preferring any of the these. The orElse opererator is composable but but
it also forces me to provide an order: I can try to execute one
transaction and, if this fails, another. But I cannot try to execute
both. Maybe I am confusing things here, but I was missing the inherent
parallelism of select. Maybe there is even a tradeoff between waiting in
parallel and composability, I wonder. I would appreciate your thoughts.

—- Christian

Hi,

That’s an interesting observation -- you’re right in that orElse doesn’t
meet the usual definition of fairmess in that an alternative that is
always ready to run might never be selected.

However, some of the examples that motivate orElse rely on this
deliberate bias -- for instance, suppose that "WaitForA" is a blocking
operation and we want to turn it into one that returns a true/false
value according to whether it would block (in pseudo-code):

{ WaitForA(); return false; } ’orElse’ { return true; }
In that case it’s crucial that orElse is not "fair".

Another motivation for a biased orElse is that a program can always
randomise the order in which alternatives are composed. That might deal
with the kind of starvation problem that you describe. Is it possible
to build a biased one from a non-deterministic one? Probably not
without leaving the STM monad (or adding support for parallelism within
it).

0f course, an implementation of orElse could actually run both
alternatives in parallel, tentatively performing the second alternative
in a separate transaction in the hope that the effects are already
prepared if the first alternative blocks. A related idea we’ve talked
about would be something like "A ’andThen’ B" where both alternatives
run in the hope that "B" does not depend on "A" (this being checked
dynamically by the STM, re-running B after A if there is a conflict).

Thanks,

Tim



