Advanced Functional Programming

Software Engineering Chair and Programming Systems Lab

Small-group work

Divide into groups and discuss the following questions. You don’t have to
answer the questions in the given order, so pick your favorite questions.

1. What formal definitions of monad are given in the paper? What would
be an intuitive description? To answer that question, try to find com-
monalities between the different monads introduced in the paper.

2. What do you need to define a monad as a programming abstraction? Does

the “triple” suffice?

3. You are given the following signature for a monadic random generator:

type ’am

val
val
val
val

val
val
val

unit :
(>>=):
choose:
run:

flip:
uniform:
demo:

(* generator producing ’a *)
’a => ’am

’am-> (Ca->’bm) > ’bmn (*x infix bind *)
float -> ’am -> ’am -> ’a m (* prob. choice *)
’am-> ’a (* run the generator *)
int m

int -> int m

int m

Function choose p m m’ takes a probability p (0 < p < 1) and selects
generator m with probability p and generator m’> with probability 1 — p.
Give implementations for the functions £f1ip, uniform, and demo:

(a) flip returns 0 or 1, each with probability 1. (1 line)

(b) uniform n returns a number 1,...,n, each with equal probability.
Use this function to simulate throwing a die. (3 lines)

(c) demo throws a 6-sided fair die. If this yields a number not greater
than 3 the result is obtained by throwing an 8-sided fair die, or an
20-sided die otherwise. (3 lines)

4. The paper mentions purity a lot. Try to give a definition. How are monads
related to purity, and to laziness? Haskell relies on monads for state and
I/0O, can you explain why?

5. The paper demonstrates several applications of monads. Which cannot
easily be simulated with conventional language features? Can you think
of other applications not in the paper?

6. What is the general contribution of monads, as a tool in the programming
toolbox? What are possible disadvantages in using monads?



Homework Assignment

Congratulations! You were elected as a member for the program committee of
the next seminar on advanced topics in functional programming. Please review
the three anonymous submissions.

1. Write any comments you have into the margins, on the back of the paper,
or on an extra paper that you staple to the submission.

2. For each paper provide a list of 8 points that you like or that you would
like to see improved. You can also provide additional comments.

3. We ask you to handle your reviews with strict confidentiality. In partic-
ular, you are not allowed to discuss them with your colleagues.

4. Put your name and student ID on your reviews and drop them off at the
program chair’s office (room 326/45) until Monday, November 28th at
noon (12am). If the door is closed, slide your printout under the door.
No Emails.



