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ABSTRACT

Writing concurrent programs is notoriously difficult, and
is of increasing practical importance. A particular source
of concern is that even correctly-implemented concurrency
abstractions cannot be composed together to form larger
abstractions. In this paper we present a new concurrency
model, based on transactional memory, that offers far richer
composition. All the usual benefits of transactional memory
are present (e.g. freedom from deadlock), but in addition we
describe new modular forms of blocking and choice that have
been inaccessible in earlier work.

Categories and Subject Descriptors: D.1.3 [Program-
ming Techniques]: Concurrent Programming — Parallel pro-
gramming

General Terms: Algorithms, Languages

Keywords: Non-blocking algorithms, locks, transactions

1. INTRODUCTION

Concurrent programming is notoriously tricky. Current lock-
based abstractions are difficult to use and make it hard to
design computer systems that are reliable and scalable. Fur-
thermore, systems built using locks are difficult to compose
without knowing about their internals.

To address some of these difficulties, several researchers
(including ourselves) have proposed software transactional
memory (STM), which can perform groups of memory oper-
ations atomically [27]. Using transactional memory instead
of locks brings well-known advantages: freedom from dead-
lock and priority inversion, automatic roll-back on excep-
tions or timeouts, and freedom from the tension between
lock granularity and concurrency.

Although promising, our previous work on transactional
memory suffered a number of shortcomings: it could not
statically prevent threads from bypassing transactional in-
terfaces and it did not provide a convincing story for oper-
ations that may block. In this paper we resolve these short-
comings. In particular, we make the following contributions:
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e We re-express the ideas of transactional memory in
the setting of Concurrent Haskell (Section 3). This is
much more than a routine “port” into a new setting.
As we show, STM can be expressed particularly ele-
gantly in a declarative language, and we are able to use
Haskell’s type system to give far stronger guarantees
than are conventionally possible. Furthermore trans-
actions are compositional: small transactions can be
glued together to form larger transactions.

e We present a new, modular form of blocking, which
appears to the programmer as a simple function called
retry (Section 3.2). Unlike most existing approaches,
the programmer does not have to identify the condi-
tion under which the transaction can run to comple-
tion: retry can occur anywhere within the transac-
tion, blocking it until an alternative execution path
becomes possible.

e The retry function allows possibly-blocking transac-
tions to be composed in sequence. Beyond this, we also
provide orElse, which allows them to be composed as
alternatives, so that the second is run if the first retries
(Section 3.4). This ability allows threads to wait for
many things at once, like the Unix select system call
— except that orElse composes well, whereas select
does not. It turns out that orElse requires the under-
lying STM implementation to support genuine nested
transactions, the first STM to do so (Section 6.4).

e Unusually for a practical programming language, we
provide a formal operational semantics of our system
in Section 5. This semantics clarifies the behaviour in
cases which have a less intuitive meaning, such as what
happens if an exception is raised mid-way through a
memory transaction.

e We have implemented our design in the Glasgow Haskell
Compiler, a fully-fledged optimising compiler for Con-
current Haskell. The changes are localised, rather than
pervasive, and we describe the details in Section 6.

Taken together, these ideas offer a qualitative improvement
in language support for modular concurrency, similar to the
improvement in moving from assembly code to a high-level
language. Our main war-cry is compositionality: a program-
mer can control atomicity and blocking behaviour in a mod-
ular way that respects abstraction barriers. In contrast, cur-
rent lock-based approaches lead to a direct conflict between
abstraction and concurrency (Section 2).



2. BACKGROUND

Throughout this paper we study internal concurrency be-
tween the threads interacting through memory in a single
process; we do not consider here the questions of external
interaction through storage systems or databases, nor do we
address distributed systems.

Even in this setting, concurrent programming is extremely
difficult. The dominant programming technique is based on
locks, an approach that is simple and direct, but that sim-
ply does not scale with program size and complexity. To
ensure correctness, programmers must identify which oper-
ations conflict; to ensure liveness, they must avoid introduc-
ing deadlock; to ensure good performance, they must bal-
ance the granularity at which locking is performed against
the costs of fine-grain locking. Perhaps the most fundamen-
tal objection, though, is that lock-based programs do not
compose: correct fragments may fail when combined.

For example, consider a hash table with thread-safe in-
sert and delete operations. Now suppose that we want to
delete one item A from table t1, and insert it into table t2;
but the intermediate state (in which neither table contains
the item) must not be visible to other threads. Unless the
implementor of the hash table anticipates this need, there
is simply no way to satisfy this requirement. Even if she
does, all she can do is expose methods such as LockTable
and UnlockTable — but as well as breaking the hash-table
abstraction, they invite lock-induced deadlock, depending
on the order in which the client takes the locks, or race con-
ditions if the client forgets. Yet more complexity is required
if the client wants to await the presence of A in t1, but this
blocking behaviour must not lock the table (else A cannot
be inserted). In short, operations that are individually cor-
rect (insert, delete) cannot be composed into larger correct
operations.

The same phenomenon shows up trying to compose alter-
native blocking operations. Suppose a procedure pl waits
for one of two input pipes to have data, using an internal
call to the Unix select procedure; and suppose another pro-
cedure p2 does the same thing, on two different pipes. In
Unix there is no way to perform a select between p1 and p2,
a fundamental loss of compositionality. Instead, Unix pro-
grammers learn awkward programming techniques to gather
up all the file descriptors that must be waited for, perform a
single top-level select, and then dispatch back to the cor-
rect handler. Again, two individually-correct abstractions,
pl and p2, cannot be composed into a larger one; instead,
they must be ripped apart and awkwardly merged, in direct
conflict with the goals of abstraction.

Rather than fixing locks, a more promising and radical
alternative is to base concurrency control on atomic mem-
ory transactions, also known as transactional memory. We
will show that transactional memory offers a solution to the
tension between concurrency and abstraction. For example,
with memory transactions we can manipulate the hash table
thus:

atomic { v:=delete(t1,A); insert(t2,A,v) }
and to wait for either p1l or p2 we can say

atomic { pl ‘orElse‘ p2 }
These simple constructions require no knowledge of the im-
plementation of insert, delete, pl, or p2, and they con-

tinue to work correctly if these operations may block, as we
shall see.
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2.1 Transactional memory

The idea of transactions is not new: they have been a funda-
mental mechanism in database design for many years, and
there has been much recent work on transactional memories
[11, 10, 9, 6, 31].

The key idea is that a block of code, including nested
calls, can be enclosed by an atomic block, with the guar-
antee that it runs atomically with respect to every other
atomic block. Transactional memory can be implemented
using optimistic synchronisation. Instead of taking locks, an
atomic block runs without locking, accumulating a thread-
local transaction log that records every memory read and
write it makes. When the block completes, it first validates
its log, to check that it has seen a consistent view of mem-
ory, and then commits its changes to memory. If validation
fails, because memory read by the method was altered by
another thread during the block’s execution, then the block
is re-executed from scratch.

Transactional memory eliminates, by construction, many
of the low-level difficulties that plague lock-based program-
ming [6]. There are no lock-induced deadlocks (because
there are no locks); there is no priority inversion; and there
is no painful tension between granularity and concurrency.
However little progress has been made on building trans-
actional abstractions that compose well. We identify three
particular problems.

Firstly, since a transaction may be re-run automatically,
it is essential that it do nothing irrevocable. For example
the transaction

atomic { if (n>k) then launch_missiles(); S2 }

might launch a second salvo of missiles if it were re-executed.
It might also launch the missiles inadvertently if, say, the
thread was de-scheduled after reading n but before read-
ing k, and another thread modified both before the thread
was resumed. This problem begs for a guarantee that the
body of the atomic block can only perform memory oper-
ations, and hence can only make benign modifications to
its own transaction log, rather than performing irrevocable
input/output.

Secondly, blocking is not composable. Many systems do
not support synchronisation at all without using condition
variables, and those that do rely on a a programmer-supplied
boolean guard on the atomic block [9]. For example, a
method to get an item from a buffer might be:

Item get() {
atomic (n_items > 0) {...remove item...}

}

The thread waits until the guard (n_items > 0) holds, be-
fore executing the block. But how could we take two con-
secutive items? We cannot call get(); get(), because an-
other thread might perform an intervening get. We could
try wrapping two calls to get in a nested atomic block,
but the semantics of this are unclear unless the outer block
checks there are two items in the buffer. This is a disaster
for abstraction, because the client (who wants to get the
two items) has to know about the internal details of the im-
plementation. If several separate abstractions are involved,
matters are even worse.

Thirdly, no previous transactional memory supports choice,
exemplified by the select example mentioned earlier (but
see Section 7.2 on Concurrent ML, which does). We tackle



all three issues by presenting transactional memory in the
context of the declarative language Concurrent Haskell, which
we briefly review next.

2.2 Concurrent Haskell

Concurrent Haskell [22] is an extension to Haskell 98, a
pure, lazy, functional language. It provides explicitly-forked
threads, and abstractions for communicating between them.
This naturally involves side effects and so, given the lazy
evaluation strategy, it is necessary to be able to control ex-
actly when they occur. The big breakthrough came from a
mechanism called monads [23].

Here is the key idea: a value of type I0 ais an I/O action
that, when performed, may do some I/O before yielding a
value of type a. For example, the functions putChar and
getChar have types:

Char -> I0 ()
I0 Char

putChar ::
getChar ::

That is, putChar takes a Char and delivers an I/O action
that, when performed, prints the character on the standard
output; while getChar is an action that, when performed,
reads a character from the console and delivers it as the
result of the action. A complete program must define an I/O
action called main; executing the program means performing
that action. For example:

0 O
putChar ’x’

main ::
main =

1/0 actions can be glued together by a monadic bind combi-
nator. This is normally used through some syntactic sugar,
allowing a C-like syntax. Here, for example, is a complete
program that reads a character and then prints it twice:

main = do { ¢ <- getChar; putChar c; putChar c }

As well as performing external input/output, I/O actions in-
clude operations with side effects on mutable cells. A value
of type IORef a is a mutable storage cell which can hold
values of type a, and is manipulated (only) through the fol-
lowing interface:

newIORef : a -> I0 (IORef a)
readIORef :: IORef a -> I0 a
writeIORef :: IORef a -> a -> I0 (O

newIORef takes a value of type a and creates a mutable stor-
age location holding that value. readIORef takes a reference
to such a location and returns the value that it contains.
writeIORef provides the corresponding update operation.
Since these cells can only be created, read, and written using
operations in the I0 monad, there is a type-secure guarantee
that ordinary functions are unaffected by state — e.g. a pure
function sin cannot read or write an I0Ref because sin has
type Float -> Float.

Concurrent Haskell supports threads, each independently
performing input/output. Threads are created using a func-
tion forkIO.

forkIO :: I0 a -> I0 ThreadId

forkIO takes an I/O action as its argument, spawns a fresh
thread to perform that action, and immediately returns its
thread identifier to the caller. For example, here is a pro-
gram that forks a thread that prints ‘x’, while the main

thread goes on to print ‘y’:
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-- The STM monad itself
data STM a
instance Monad STM
-- Monads support "do" notation and sequencing

-- Exceptions
throw :: Exception -> STM a
catch :: STM a -> (Exception->STM a) -> STM a

-- Running STM computations

atomic :: STM a -> I0 a
retry : STM a
orElse :: STM a -> STM a -> STM a

—-- Transactional variables
data TVar a

newTVar :: a -> STM (TVar a)
readTVar : TVar a -> STM a
writeTVar :: TVar a -> a -> STM ()
Figure 1: The STM interface
main = do { forkIO (print ’x’); print ’y’ }

A fuller introduction to concurrency, I1/0, exceptions and
cross-language interfacing (the “awkward squad” for pure,
lazy, functional programming) is given in [21]. Several gen-
eral on-line tutorials on Haskell are also available, for in-
stance [3].

3. COMPOSABLE TRANSACTIONS

We are now ready to present the key ideas of the paper. Our
starting point is this: a purely-declarative language is a per-
fect setting for transactional memory, for two reasons. First,
the type system explicitly separates computations which
may have side-effects from effect-free ones. As we shall see,
it is easy to refine it so that transactions can perform mem-
ory effects but not irrevocable input/output effects. Second,
reads from and writes to mutable cells are explicit, and rela-
tively rare: most computation takes place in the purely func-
tional world. These functional computations perform many,
many memory operations — allocation, update of thunks,
stack operations, and so on — but none of these need to
be tracked by the STM, because they are pure, and never
need to be rolled back. Only the relatively-rare explicit op-
erations need be logged, so a software implementation is
entirely appropriate.

So our approach is to use Haskell as a kind of “laboratory”
in which to study the ideas of transactional memory in a
setting with a very expressive type system. As we shall see,
we are able to define a much more compositional form of
transactional memory than has been possible hitherto. As
we go, we will mention primitives from the STM library, whose
interface is summarised in Figure 1, and whose semantics we
will describe more thoroughly in Section 5.

3.1 Transactional variables and atomicity

Suppose we wish to implement a resource manager, which
holds an integer-valued resource. The call getR r n should
acquire n units of resource r, blocking if r holds insufficient
resource; the call putR r n should return n units of resource
tor.




Here is how we might program putR in STM Haskell:

type Resource = TVar Int
putR :: Resource -> Int -> STM ()
putR r i = do { v <- readTVar r

; writeTVar r (v+i) }

The currently-available resource is held in a transactional
variable of type TVar Int. The type declaration simply
gives a name to this type. The function putR reads the
value v of the resource from its cell, and writes back (v+i)
into the same cell. (We discuss getR next, in Section 3.2.)
The readTVar and writeTVar operations both return STM
actions (Figure 1), but Haskell allows us to use the same
do {...} syntax to compose STM actions as we did for I/O
actions. These STM actions remain tentative during their
execution: in order to expose an STM action to the rest of
the system, it can be passed to a new function atomic, with

type

atomic :: STM a -> I0 a

It takes a memory transaction, of type STM a, and delivers
an I/O action that, when performed, runs the transaction
atomically with respect to all other memory transactions.
One might say:

main = do { ...; atomic (putR r 3); ... }

The atomic function and all of the STM-typed operations are
built over the transactional memory described in Section 6.
This deals with maintaining a per-thread transaction log to
record the tentative accesses made to TVars. When atomic
is invoked the STM checks that the logged accesses are valid
— i.e. no concurrent transaction has committed conflicting
updates. If the log is valid then the STM commits it atomi-
cally to the heap, thereby exposing its effects to other trans-
actions. Otherwise the memory transaction is re-run with a
fresh log.

Splitting the world into STM actions and I/O actions pro-
vides two valuable guarantees:

e Only STM actions and pure computation can be per-
formed inside a memory transaction; in particular I/O
actions cannot. This is precisely the guarantee we
sought in Section 2.1. It statically prevents the pro-
grammer from calling launchMissiles inside a trans-
action, because launching missiles is an I/O action
with type I0 (), and cannot be composed with STM
actions.

e No STM actions can be performed outside a transac-
tion, so the programmer cannot accidentally read or
write a TVar without the protection of atomic. Of
course, one can always say atomic (readTVar v) to
read a TVar in a trivial transaction, but the call to
atomic cannot be omitted.

3.2 Blocking memory transactions

Any concurrency mechanism must provide a way for a thread
to await an event or events caused by other threads. In lock-
based programming, this is typically done using condition
variables; message based systems offer a construct to wait for
messages on a number of channels; POSIX provides select;
Win32 provides WaitForMultipleObjects; and STM sys-
tems to date allow the programmer to guard the atomic
block with a boolean condition (see Section 2.1). None of
these mechanisms are composable.
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The Haskell setting led us to a remarkably simple and
composable mechanism for blocking: a single STM action
retry. Here is the code for getR:

getR :: Resource -> Int -> STM ()

getR r i = do { v <- readTVar r

; if (v < i) then retry
else writeTVar r (v-i) }

It reads the value v of the resource and, if v >= i, de-
creases it by i. But if not, so there is insufficient resource
in the variable, it calls retry. Conceptually, retry aborts
the transaction with no effect, and restarts it at the begin-
ning. However, there is no point in actually re-executing the
transaction until at least one of the TVars read during the
attempted transaction is written by another thread. Further-
more, the transaction log (which is needed anyway) already
records exactly which TVars were read. The implementation
therefore blocks the thread until at least one of these is up-
dated. Notice that retry’s type (STM a) allows it to be used
wherever an STM action may occur.

Unlike the validation check, which is automatic and im-
plicit, retry is called explicitly by the programmer. It does
not indicate anything bad or unexpected; rather, it shows
up when some kind of blocking would take place in other
approaches to concurrency.

Notice that there is no need for the putR operation to re-
member to signal any condition variables. Simply by writing
to the TVars involved, the producer will wake up the con-
sumer. A whole class of lost-wake-up bugs is eliminated
thereby.

From an efficiency point of view, it makes sense to call
retry as early as possible, and to refrain from reading un-
related locations until after the test succeeds. Nevertheless,
the programming interface is delightfully simple, and easy
to reason about.

3.3 Sequential composition

By using atomic, the programmer identifies atomic transac-
tions, in the classic sense that the entire set of operations
that it contains appears to take place indivisibly. This is the
key to sequential composition for concurrency abstractions.
For example, to grab three units of one resource and seven
of another, a thread can say

atomic (do { getR rl 3; getR r2 7 })

The standard do { .. ; .. } notation combines the STM
actions from the two getR calls and the underlying trans-
actional memory commits their updates as a single atomic
I/0 action.

The retry function is central to making transactions com-
posable when they may block. The transaction above will
block if either r1 or r2 has insufficient resource: there is
no need for the caller to know how getR is implemented, or
what condition guarantees its success. Nor is there any risk
of deadlock by awaiting r2 while holding r1.

This ability to compose STM actions is why we did not
define getR as an I/O action, wrapped in a call to atomic.
By leaving it as an STM action, we allow the programmer
to compose it with other STM actions before finally sealing
it into a transaction with atomic. In a lock-based setting,
one would worry about crucial locks being released between
the two calls, and about deadlock if another thread grabbed
the resources in the opposite order, but there are no such
concerns here. Any STM action can be robustly composed
with other STM actions.



3.4 Composing alternatives

We have discussed composing transactions in sequence, so
that both are executed. STM Haskell also lets us to compose
transactions as alternatives, so that only one is executed.
For example, to get either 3 units from r1 or 7 units from
r2:

atomic (getR rl 3 ‘orElse‘ getR r2 7)

The orElse function is provided by the STM module (Fig-
ure 1); here, it is written infix, by enclosing it in backquotes,
but it is a perfectly ordinary function of two arguments.

The transaction s1 ‘orElse‘ s2 first runs si; if it re-
tries, then s1 is abandoned with no effect, and s2 is run.
If s2 retries as well, the entire call retries — but it waits
on the variables read by either of the two nested transac-
tions. Again, the programmer need know nothing about the
enabling condition of s1 and s2.

Using orElse provides an elegant way for library imple-
mentors to defer to their caller the question of whether or
not to block. For instance it is straightforward to convert the
blocking version of getR into one which returns a boolean
success or failure result:

nonBlockGetR :: Resource -> Int -> STM Bool
nonBlockGetR r i = do { getR r i ; return True }
‘orElse‘ return False

Notice that this idiom depends on the left-biased nature of
orElse. The same kind of construction can be also used to
build a blocking operation from one that returns a boolean
result: simply invoke retry on receiving a False result:

blockGetR :: Resource -> Int -> STM ()
blockGetR r i =
do { s <- nonBlockGetR r i;
if s then return () else retry }

The orElse function obeys useful laws: it is associative, and
has unit retry:

M1 ‘orElse‘ (M2 ‘orElse‘ M3)

(M1 ‘orElse‘ M2) ‘orElse‘ M3
retry ‘orElse‘ M = M

M ‘orElse‘ retry = M

Haskell aficionados will recognise that STM may thus be an
instance of MonadPlus.

3.5 Exceptions

The STM monad supports exceptions just like the I0 monad,
and in much the same way as (say) C#. Two new prim-
itive functions, catch and throw, are required; their types
are given in Figure 1. (As with atomic, no new language
constructs are needed.) The question is: how should trans-
actions and exceptions interact. For example, what should
this transaction do?

atomic (do {

{n <- readTVar v_n

; lim <- readTVar v_lim

; writeTVar v_n (n+1)

; if n > lim then throw (AssertionFailed "Urk")
else if (n == lim) then retry
else return ()

; ...write data into buffer... }

The programmer throws an exception if n>lim, in which
case the ..write data.. part will clearly not take place.
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But what about the write to v_n from before the exception
was thrown?

Concurrent Haskell encourages programmers to use excep-
tions for signalling error conditions, rather than for normal
control flow. Built-in exceptions, such as divide-by-zero, also
fall into this category. For consistency, then, in the above
program we do not want the programmer to have to take ac-
count of the possibility of exceptions, when reasoning that
if v_n is (observably) written then data is written into the
buffer. We therefore specify that exceptions have abort se-
mantics: if an atomic transaction throws an exception, the
transaction is aborted with no effect. If the programmer
wants to commit the effects up to the point at which the ex-
ception was thrown, he can easily catch the exception inside
the transaction, and return normally — the transaction is
only aborted if the exception propagates to the end of the
atomic block.

Our use of exceptions to abort atomic blocks is a free
design choice. In other languages, especially in ones where
exceptions are used more frequently, it might be appropriate
to distinguish between exceptions that cause the enclosing
atomic block to abort from exceptions that allow it to com-
mit before they are propagated. Shinnar et al. show how
abort semantics are valuable when handling exceptions even
in single-threaded applications [28].

Notice the difference between calling throw and calling
retry. The former signals an error, and aborts the trans-
action; the latter only indicates that the transaction is not
yet ready to run, and causes it to block until the situation
changes.

An exception can carry a value out of the STM world. For
example, consider

atomic (do
{ s <- readTVar svar
; writeTVar svar "Wuggle"
; if length s < 10 then
throw (AssertionFailed s)
else ... }

Here, the external world gets to see the exception value hold-
ing the string s that was read out of the TVar. On the other
hand, since the transaction is aborted, no writes to svar are
externally observable. One might argue that it is wrong to
allow even reads to “leak” from an aborted transaction, but
we do not agree. The values carried by an exception can
only represent a consistent view of the store (or validation
would fail, and the transaction would retry), and it is al-
most impossible to debug an error condition that only says
“something bad happened” while deliberately discarding all
clues to what the bad thing was. The basic transactional
guarantees are not threatened.

What if the exception carries a TVar allocated in the
aborted transaction? A dangling pointer would be unpleas-
ant! To avoid this we refine the semantics of exceptions to
say that a transaction that throws an exception is aborted
so far as its write effects are concerned, but its allocation
effects are retained; after all, they are thread-local. As a re-
sult, the TVar is visible after the transaction, in the state it
had when it was allocated. Cases like these are tricky, which
is why we provide a full formal semantics in Section 5.

Concurrent Haskell also provides asynchronous exceptions
which can be thrown into a thread as a signal — typical
examples are error conditions like stack overflow, or when
a master thread wishes to shut down a helper. If a thread



is in the midst of an STM transaction, then the transaction
log can be discarded without externally-visible effects. By
aborting the transaction we provide a kill-safe mechanism
for avoiding the kind of consistency problems that Flatt and
Findler describe [5].

4. APPLICATIONSAND EXAMPLES

In this section we provide some examples of how compos-
able memory transactions can be used to build higher level
concurrency abstractions. We focus on operations that in-
volve potentially-blocking communication between threads.
Previous work has shown, many times over, how standard
shared-memory data structures can be developed from se-
quential code using transactional memory operations (for
instance [10, 9]).

41 MVars

Prior to our STM work, Concurrent Haskell provided MVars
as its primitive mechanism for allowing threads to commu-
nicate safely. An MVar is a mutable location like a TVar,
except that it may be either empty, or full with a value.
The takeMVar function leaves a full MVar empty, and blocks
on an empty MVar. A putMVar on an empty MVar leaves it
full, and blocks on a full MVar. So MVars are, in effect, a
one-place channel.

It is easy to implement MVars on top of TVars. An MVar
holding a value of type a can be represented by a TVar hold-
ing a value of type Maybe a; this is a type that is either an
empty value (“Nothing”), or actually holds an a (e.g. “Just
427).

type MVar a = TVar (Maybe a)
newEmptyMVar :: STM (MVar a)
newEmptyMVar = newTVar Nothing

The takeMVar operation reads the contents of the TVar and
retries until it sees a value other than Nothing:

takeMVar ::
takeMVar mv
= do { v <- readTVar mv
; case v of
Nothing -> retry
Just val -> do { writeTVar mv Nothing
; return val } }

MVar a -> STM a

The corresponding putMVar operation retries until it sees
Nothing, at which point it updates the underlying TVar:

putMvar :: MVar a -> a -> STM ()
putMVar mv val
= do { v <- readTVar mv
; case v of
Nothing -> writeTVar mv (Just val)
Just val -> retry }

Notice how operations which return a boolean success / fail-
ure result can be built directly from these blocking designs.
For instance:

tryPutMVar :: MVar a -> a -> STM Bool
tryPutMVar mv val
= do { putMVar mv val ; return True }
‘orElse‘ return False
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4.2 Multicast channels

MVars effectively provide communication channels with a sin-
gle buffered item. In this section we show how to program
buffered, multi-item, multicast channels, in which items writ-
ten to the channel (writeMChan in the interface below) are
buffered internally and received once by each read-port cre-
ated from the channel. The full interface is:

data MChan a

data Port a

newMChan :: STM (MChan a)

—- Write an item to the channel:
writeMChan :: MChan a -> a -> STM ()
-- Create a new read port:

newPort :: MChan a -> STM (Port a)
-- Read the next buffered item:
readPort :: Port a -> STM a

We represent the buffered data by a linked list, or Chain,
of items, with a transactional variable in the tail, so that it
can be extended by writeMChan:

TVar (Item a)
Empty | Full a (Chain a)

type Chain a
data Item a

An MChan is represented by a mutable pointer to the “write”
end of the chain, while a Port points to the read end:

TVar (Chain a)
TVar (Chain a)

type MChan a =
type Port a =

With these definitions, the code writes itself:

newMChan = do { ¢ <-
newPort mc = do { c <-

newTVar Empty; newTVar c }
readTVar mc; newTVar c }

readPort p
= do { ¢ <- readTVar p
; 1 <- readTVar c
; case i of
Empty -> retry
Full v ¢’ -> do { writeTVar p c’;
return v } }
writeMChan mc v
= do { ¢ <- readTVar mc
; ¢’ <- newTVar Empty
; writeTVar c¢ (Full v c’)
; writeTVar mc ¢’ }

Notice the use of retry to block readPort when the buffer
is empty. Although this implementation is very simple, it
ensures that each item written into the MChan is delivered
to every Port; it allows multiple writers (their writes are
interleaved); it allows multiple readers on each port (data
read by one is not seen by the other readers on that port);
and when a port is discarded, the garbage collector recovers
the buffered data.

More complicated variants are simple to program. For ex-
ample, suppose we wanted to ensure that the writer could
get no more than N items ahead of the most advanced
reader. One way to do this would be for the writer to
include a serially-increasing Int in each Item, and have a
shared TVar holding the maximum serial number read so far
by any reader. It is simple for the readers to keep this up to
date, and for the writer to consult it before adding another
item.

43 Merge

We have already stressed that transactions are composable.
For example, to read from either of two different multicast
channels we can say:



z,y € Variable
r,t € Name
¢ € Char

Value Viz=r|c| \za->M

return M | M>>=N
putChar ¢ | getChar

throw M | catch M N
retry | M ‘orElse‘ N
forkI0O M | atomic M
newTVar

readTVar r | writeTVar r M

Term M,N ==z |V | MN | ---

Figure 2: The syntax of values and terms

atomic (readPort pl ‘orElse‘ readPort p2)

No changes need to be made to either multicast channel. If
neither port has any data, the STM machinery will cause the
thread to wait simultaneously on the TVars at the extremity
of each channel.

Equally, the programmer can wait on a condition which
involves a mixture of MVars and channels (perhaps the mul-
ticast channel indicates ordinary data and an MVar is being
used to signal a termination request), for instance:

atomic (readPort pl ‘orElse‘ takeMVar ml)

This example is contrived for brevity, but it shows how op-
erations taken from different libraries, implemented without
anticipation of them being used together, can be composed.
In the most general case we can select between values re-
ceived from a number of different sources. Given a list of
computations of type STM a we can take the first value to be
produced from any of them by defining a merge operator:

merge :: [STM al -> STM a
merge = foldrl orElse

This example is childishly simple in STM Haskell. In con-
trast, a function of type

mergeI0 :: [I0 a] -> I0 a

is un-implementable in Concurrent Haskell, or indeed in
other settings with operations built from mutual exclusion
locks and condition variables.

4.4 Summary

Our main claim is that transactional memory qualitatively
raises the level of abstraction offered to programmers. Just
as high-level languages free programmers from worrying about
register allocation, so transactional memory frees the pro-
grammer from concerns about locks and lock acquisition
order. More fundamentally, one can combine abstractions
without knowing their implementations, a property that is
the key to constructing large programs.

Like high-level languages, transactional memory does not
banish bugs altogether; for example, two threads can easily
deadlock if each awaits some communication from the other.
But, again like high-level languages, the gain is very sub-
stantial: transactions provide a programming platform for
concurrency that eliminates whole classes of concurrency er-
rors, and allows the programmer to concentrate on the really
interesting bits.

Thread soup P,Q == M; | (P|Q)
Heap O = r—>M
Allocations A = r—M
Evaluation E == []]| E>>=M | catch E M
contexts P == E | (P|P) | (P|P)
Action a == lc| ?c| e

Figure 3: The program state and evaluation contexts

5. THE SEMANTICSOF STM HASKELL

So far our description of the functions in Figure 1 has been
informal. It is hard to be sure that such descriptions cover
all the combinations of these functions that might arise, so
in this section we provide a formal, operational semantics
for STM Haskell.

Figure 4 gives a small-step operational semantics for a
small language whose syntax is given in Figure 2. The key
idea is that there are two transition relations: the top-level
I/0 transitions, written “ — 7; and the STM transitions,
written “=”. The I/O transition relation takes a program
state P;© to a new program state Q;©’, while performing
input/output described by an action a:

P % Q0

Execution proceeds by repeatedly choosing a thread, and
executing a single I/O transition; transitions from different
threads may thereby be interleaved in a non-deterministic
way. An atomic block, however, invokes zero or more steps
of the STM transition relation, but the result state change is
regarded as a single 1/0 transition; transitions in the STM
relation therefore cannot interleave. The semantics has no
notion of transaction logs or rollback — these are implemen-
tation matters. Instead the semantics expresses atomicity
simply by requiring that an atomic block, if chosen for the
next I/O transition, must reduce (using =) to a return or
throw, and not to retry. The rest of this section fleshes out
the details.

5.1 Syntax

Figure 2 gives the syntax of a fragment of STM Haskell.
Terms and values are entirely conventional, except that we
treat the application of monadic combinators, such as return
and catch, as values. The do-notation we have been using
so far is syntactic sugar for uses of return and >>=:

do {z<-e; QY = e >>= (\z-> do {Q3)
do{e; QY = e >>= (\> do {Q})
do{e} = e

The monadic operations return, >>=, throw, and catch are
overloaded, and can be used in both the I0 and STM monad.
Specific to the I0 monad are:

getChar :: I0 Char
putChar :: Char -> I0 ()
forkIO : I0 a -> I0 Threadld

1/0 transitions are labelled with an optional action a, de-
scribing the input/output effect of the transition. The ac-
tions a (Figure 2) allow reading a character ¢ from standard
input ?7¢, writing one to standard output !c, or the silent
action €, which is often omitted. A real system would have
many more input/output actions.




I/O transitions

P 5 Qe

PlputChar ¢|; © — Plreturn ()]; © (PUTC)
PlgetChar]; © % Plreturn c]; © (GETC)
PlforkI0 M]; © — (Plreturnt] | M;); © t¢P,0,M (FORK)
M — N (ADMIN)
Pl 6 — P[V] ©
M; ©,{} 3 return N; @', A’ M; ©,{} S throw N; ', A’
_ (ARET) _ (ATHROW)
Platomic M]; ® — Plreturn NJ; © Platomic M]; ©® — P[throw N]; © UA
| Administrative transitions M — N |

M — Vv ifV[M] =V and M £V (EVAL)
return N>>=M — MN (BIND)

throw N>>=M — throw N (THROW)

catch (throw M) N — N M (CATCHI)

catch (return M) N — return M (CATCH?2)

retry>>=M — retry (RETRY)

’ STM transitions M;0,A = N;0,A
E[readTVar r]; ©,A = [E[return O(r)]; 6,A if r € dom(©) (READ)
E[writeTVar r M]; ©,A = [E[return ()]; Or — M],A if r € dom(©) (WRITE)
EnewTVar M]; ©,A = E[return r|; O[r — M],Alr — M| r & dom(©) (NEW)
Mi; ©,A = return N; @' A’
M _— N (AADMIN) ! reem (OR1)

E[M]; ©,A = E[N]; 6,A

M;; ©,A = throw N; 6, A’
E[M; ‘orElse‘ Ms]; ©,A = [E[throw N|; ©' A’

E[M; ‘orElse‘ M]; ©,A = [E[return NJ]; €', A’

(OR2)

Mi; ©,A = retry; O/, A’
E[M; ‘orElse‘ Ms]; ©,A = [E[M]; ©,A’

(OR3)

Figure 4: Operational semantics of STM Haskell

A program state P;© consists of a thread soup P and a
heap © (Figure 3). A thread soup is just a multi-set of
threads, each consisting of a single term M annotated with
a thread ID t. A heap, ©, is a finite mapping from references
to terms.

To describe the possible transitions of a program state, we
use an evaluation context to identify the active site for the
transition. Figure 3 gives the syntax of evaluation contexts.
A program evaluation context, P, corresponds to the sched-
uler of a real implementation. It chooses an arbitrary thread
from the soup, and then uses the term evaluation context [E
to find the active site in the term. The term evaluation con-
text corresponds to the stack of a real machine, and looks
into the left operand of >>=, catch, and orElse.

5.2 Operational semantics

Now we are ready to discuss the transition rules of Figure 4.
First we treat the I/O transitions, in the top part of the
figure, which can have arbitrary input/output effects. The
first two rules deal with input and output. If the active
term is a putChar or getChar the appropriate labelled tran-

sition takes place, and the operation is replaced by a return
carrying the result. Rule (FORK) allows a new thread to
be created, by adding a new term M to the thread soup,
allocating a fresh name t as its ThreadId.

Rule (ADMIN) concerns administrative transitions, which
are given in the second section of Figure 4. Rule (EVAL)
allows a term M that is not a value to be evaluated by an
auxiliary function, V[M], which gives the value of M. This
function is entirely standard, and we omit it here. Rule
(BIND) implements sequential composition in the monad.
The rules (THROW), (CATCH1) and (CATCH2) imple-
ment exceptions in the standard way. All of these rules
are, as we shall see, used in both the I0 monad and the STM
monad, which is why we keep them in a separate group.

Everything so far is quite standard. The new part starts
with rules (ARET) and (ATHROW). The former describes
how an atomic transaction takes place: the term M makes
zero or moretransitions of the STM relation, =, which takes
the following form:

M;: ©,A = N; 6, A
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Here, © is the heap as before, while A redundantly records
the allocation effects (only) of the transition, for use during
exception handling. Rule (ARET) specifies that the term
M may make zero or more STM transitions until it reaches
the form (return N), indicating successful completion. In
that case, rule (ARET) takes one step, embodying the new
heap ©' as its resulting heap. In contrast, rule (ATHROW)
specifies that if M evaluates to (throw N), then the new
heap ©’ is discarded, and instead just the allocation effects
A are added to the initial heap ©.

Rules (ATHROW) and (ARET) are the only rules in the
top panel of Figure 4 that affect the heap, so we can see
immediately that the heap can be mutated only inside an
atomic block. Furthermore, notice that multiple STM tran-
sitions yield a single program transition. Program transi-
tions from different threads can be interleaved, but (ARET)
provides no way for STM transitions to interleave. This is
precisely what it means to execute “atomically”. (A real
implementation will not do this, but we are concerned with
semantics here.)

The STM transitions themselves, in the last part of Fig-
ure 4, are largely standard. In particular, Rules (READ),
(WRITE), and (NEW) describe how new mutable locations
can be read, written, and created; the only point of inter-
est is that (NEW) not only records the location’s creation
in the heap, but also in the allocation record A, for use by
(ATHROW). Rule (AADMIN) lifts the administrative tran-
sitions into the STM world, just as t. The interesting part
is the orElse combinator and retry, which we tackle next.

5.3 Blocking and nested transactions

The alert reader may be wondering why there is no rule
(ARETRY) to go along with (ARET) and (ATHROW), to
account for the fact that an STM computation may evaluate
to retry, for instance:

atomic (do
{ v <- readTVar r
; if v==0 then retry else return ()

HEAS S

What if v is zero? Then the body of the atomic block re-
duces to retry. There is no rule for this case. This means
that the transition system cannot make progress by choos-
ing a thread whose next operation is an atomic block, when
the heap will cause it to retry. To make progress, another
thread must be chosen.

Nested transactions are handled by rules (OR1-3). The
first of these tries the left argument of an orElse. If it
succeeds normally, then that is the result of the orElse,
including any memory effects in ©'. If it throws an excep-
tion, that too is the result of the orElse, and any memory
effects are retained. But if M retries, then rule (OR3) dis-
cards all its effects, and instead commits to M>. Notice the
strong similarity between (ARET) and (OR1), and between
(ATHROW) and (OR2); this is the sense in which we say
that orElse implements nested transactions.

An alternative design would have (OR2) behave like (OR3);
that is, if M; throws an exception, we could discard its ef-
fects and try Mz instead. But that would invalidate the
beautiful identity which makes retry a unit for orElse and
would also make orElse asymmetric in its treatment of ex-
ceptions (discarded from M; but retained for M2). This was
not a hard choice to make!
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// Basic transaction execution

TLog *STMStart ()

void *STMReadTVar(TLog *tlog, TVar *t)

void STMWriteTVar(TLog *tlog, TVar *t, void *v)

// Transaction commit operations
boolean STMIsValid(TLog *tlog)
void STMCommit(TLog *tlog)

// Blocking operations
void STMWait(TLog *tlog)
void STMUnWait(TLog *tlog)

// Nested-transaction operations
TLog *STMStartNested(TLog *outer)
void STMMergeNested(TLog *tlog)

Figure 5: The STM runtime interface

6. IMPLEMENTATION

Our implementation is split into two layers. The top layer
implements the STM operations from Figure 1. This is built
on top of the lower layer, which comprises a C library for
performing memory transactions that is integrated in the
Haskell runtime system. Figure 5 shows the API to our C
library; we consider the four groups of operations in turn in
Sections 6.1-6.4.

Concurrent Haskell is currently implemented only for a
uni-processor. The runtime schedules lightweight Haskell
threads within a single operating system thread. Haskell
threads are only suspended at “safe points”; they cannot be
pre-empted at arbitrary moments. This environment sim-
plifies the implementation of our library because, by con-
struction, C runtime functions run without interruption.

We are confident that a multi-processor implementation
is practical: our previous work has developed several tech-
niques for building multi-processor STMs in which a multi-
word atomic update is no worse than half the speed of a
uniprocessor design [10, 9]. These have been tested in prac-
tice on 1..96-CPU shared memory machines, giving scalable
performance when threads are attempting non-conflicting
transactions (for instance, concurrent inserts on different
parts of a red-black tree could commit in parallel). Even
in the intensive workload we describe in Section 6.6, the
commit operation is less than 10% of total execution time
and so the overall consequences of using a parallel version
would be low.

6.1 Transaction logsand TVar accesses

While executing a memory transaction, a thread-local trans-
action log is built up recording the reads and tentative writes
that the transaction has performed. This transaction log is
held in a heap-allocated object called a TLog that is pointed
to by the Thread Control Block of the thread engaged in
the transaction.

The log contains an entry for each of the TVars that the
memory transaction has accessed. Each entry contains a
reference to the TVar involved, the old value held in the TVar
when it was first accessed in the transaction, and the new
value to be stored in the TVar if the transaction commits.
These two values are identical in the case a TVar that has
been read but not written by the transaction.

Within a transaction, all TVar accesses are performed by
STMReadTVar and STMWriteTVar (Figure 5). These accesses




TVart
Nothing
—

e
(a) A TVar representing a single-cell buffer. The value
Nothing indicates that the buffer is empty. The TVar’s
queue of waiting threads is empty.

’—H Just42

T [ Notng [ T ]
First log entry for TLogA

TVart
Nothing

TLogA

[

=
(b) A transaction log (TLogA) containing a tentative

update to TVarl. The transaction proposes replacing
Nothing with Just 42 to indicate that the buffer holds 42.

Figure 6: Transaction logs

remain buffered within the thread’s log, and hence invis-
ible to other threads, until the transaction commits (Sec-
tion 6.2): writes are made to the log, and reads first consult
the log so that they see preceding writes from the same
transaction. Hence, a transaction can be aborted with no
effect simply by discarding its log.

Figure 6 shows the structure of TLogs and TVars. It de-
picts a transaction executing the code from Section 4.1 that
builds an MVar buffer using a TVar. In (a) the TVar refers to
the value Nothing indicating that the buffer is empty. In (b)
the thread reads from the TVar, sees it to hold Nothing and
creates a new log entry that tentatively places the value 42
in the buffer. The fields depicted with a big cross, indicating
null, are discussed in subsequent sections.

Our transaction logs are ordinary heap-allocated struc-
tures. This means that we can rely on the garbage collector
to avoid A-B-A problems.

6.2 Validation and commit

The atomic function operates by pushing an AtomicFrame
entry onto the Haskell stack, and invoking STMStart to allo-
cate a fresh transaction log (Figure 5). When execution re-
turns to this frame the log is validated, using STMIsValid, to
check that it reflects a consistent view of memory. For each
log entry, validation checks that the old value is pointer-
equal to the current contents of the TVar. If validation
succeeds, STMCommit is called to apply the changes to the
heap. Otherwise, the TLog is discarded, a fresh transaction
is started and the atomic block re-executed. This entire
validate-and-then-commit sequence is carried out atomically
with respect to all other threads — see the remarks at the
start of Section 6.

If an exception propagates to the AtomicFrame (ATHROW
in Figure 4) then, rather than just abandoning the trans-
action, we must still call STMIsValid. This ensures that
the transaction saw a consistent view of memory, and re-
executes it if not. Why? Because it is entirely possible that
the exception was thrown solely because the transaction saw
an inconsistent view of memory, and the programmer must
never know that this has happened.

In fact, it is also possible that an inconsistent view of
memory might lead to non-termination. For example, con-
sider:

f :: Integer -> Bool
f x = if x==0 then True else f (n-1)
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TVart
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Wait queue entry for TLogA
[ [ i =1
TLogA*
[ [ Nothing__ | Nothing |
=
Wait queue entry for TLogB
=T | 1
T
TLogE+
[ ———» Nothing | Nothing |

Figure 7: Logs for two threads blocked on TVari

atomic (do
{ x <- readTVar v
; y <- readTVar v
; if £ (x-y) then ...

foo =

else ... })

If foo saw memory at a moment at which x-y was less than
zero, the call to £ would loop infinitely. Nontermination is
an effect that the type system does not track!

Our solution to this is simple: whenever the scheduler is
about to switch to a thread that is engaged in a transaction,
the scheduler first calls STMIsValid to check that the trans-
action is not already doomed. If it is, the stack is unrolled
back to the AtomicFrame and the transaction is re-started.
In this way, doomed transactions can be killed off before
they have consumed too much time. It does not make sense
to validate more frequently on a uniprocessor (indeed, less
frequently might perform better) but, as in previous work,
we might use an alternative scheme on a multiprocessor.

6.3 Blocking transactions: retry

Leaving aside the possibility of orElse for the moment, call-
ing retry causes the stack to be unwound searching for the
enclosing AtomicFrame — the types guarantee that exactly
one such frame exists. Then STMIsValid is called, as usual,
to check that the transaction log has seen a consistent view
of the heap, and if not the transaction is re-run. In the con-
sistent case, STMWait is called. It allocates new wait-queue
entries, held in doubly-linked lists attached to the TVars that
the transaction has read, using the previously-null field in
each TVar. Once this is done, the calling thread is responsi-
ble for blocking itself and re-entering the scheduler.

The wait queue entries are noticed by an STMCommit which
updates the TVars: the updater unblocks any waiters it en-
counters. Once a waiting thread is rescheduled, it is re-
sponsible for calling STMIsValid to assess whether it should
retry execution of its atomic block. If the transaction is no
longer valid then STMUnWait unlinks its wait queue entries
and the caller retries its transaction with a fresh log. If the
transaction is still valid then it leaves its wait queue entries
in place, so that it can be woken by further updates, and
blocks once more — this can happen only if, by the time the
thread is scheduled, the TVars again contain pointer-equal
values to those originally read by that thread. Figure 7 il-
lustrates this, depicting two threads both waiting for TVar1
to be updated.

6.4 Nested transactions; orElse

The final piece of the implementation is orElse, which places
two additional requirements on the STM. Firstly, proper
nested transactions are needed, to isolate the execution of




the two alternatives: if the first alternative retries, any up-
dates it has proposed must be invisible when trying the
second alternative. Nesting is handled by STMStartNested
which creates a fresh log for a nested transaction. While ex-
ecuting a nested transaction, writes are recorded (only) in
the nested transaction’s log, while reads must consult both
the nested log and the logs of its enclosing transactions.

If either alternative completes without retrying then the
nested transaction is validated by calling STMIsValid to
check that it has seen a consistent view of the heap. Vali-
dating a nested transaction requires us to also validate its
enclosing transactions: if any of them has become invalid by
a concurrent update then we re-execute the whole atomic
function with a fresh log. If the nested transaction is valid
then STMMergeNested is called. This examines each entry in
the nested log: if the parent already contains an entry for
the TVar involved then the new value (only) is copied from
the nested log, otherwise the entire entry is copied.

If both alternatives call retry then we propagate the retry
in such a way that the thread will wait on the union on the
sets of TVars that they have accessed. To do this, we first
validate the logs for both nested transactions. If either is
invalid then we re-execute the outer transaction with a fresh
log. Otherwise, if both are valid, we call STMMergeNested
on the two logs, in either order. Figure 8 illustrates this for
the case of orElse being used to combine operations on two
TVars. In (a) the two nested transactions hold the accesses
made within the two branches of orElse. In (b) these nested
transactions have been merged to their parent so that, if the
retry propagates to the AtomicFrame, the thread will block
on the union of the sets of TVars involved.

Note the “in either order”. There is a subtle question
about what happens when the two alternatives supplied to
orElse try to perform conflicting updates before retrying:

do { writeTVar v 10 ; possiblyRetry }
‘orElse
do { writeTVar v 20 ; possiblyRetry }

If both alternatives retry then their logs will hold inconsis-
tent updates to v, so the final merged log will contain either
10 or 20 as the new wvalue for v, depending on which log
is the last to be merged. However, when retrying, the new
value in the merged log does not matter: the log will be
subject only to further merges, or eventually to STMWait.

6.5 Progress

The STM implementation guarantees that one transaction
can force another to abort only when the first one commits.
As aresult, the STM implementation is lock-free in the sense
that it guarantees at any time that some running transaction
can successfully commit. For example, no deadlock will oc-
cur if one transaction reads and writes to TVar x and then to
TVar y, while a second reads and writes to those TVars in the
opposite order. Each transaction would observe the original
value of those TVars, the first to validate will commit, and
the second will abort and restart. Similarly, synchronisation
conflicts over TVars cannot cause cyclic restart, where two
or more transactions repeatedly abort one another.

Starvation is possible. For example, a transaction that
runs for a very long time may repeatedly conflict with shorter
transactions. We think that starvation is unlikely to occur
in practice, but we cannot tell without further experience.
A transaction may also never commit if it is waiting for a
condition that never becomes true.
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(b) If both branches retry then the two logs are merged
into the enclosing transaction and the retry propagates.

Figure 8: Two steps in the implementation of ‘orElse*

6.6 Performance

Evaluation of the STM implementation described here is at
an early stage, so there are no detailed performance results
to report as yet.

However, initial measurements are encouraging. We wrote
a simple implementation of unbounded channels using STM
Haskell, which mirrors the MVar-based channels in Concur-
rent Haskell [22]. We benchmarked the two implementations
by measuring the time taken to communicate a large num-
ber of values over a channel between two threads. They
performed almost identically: runtimes were the same (to
within 10%), and the STM version allocated 50% less heap
space during the run.

Why should this be the case, given that the STM ver-
sion appears to be doing more bookkeeping under the hood?
The raw MVar operations would outperform the equivalent
TVar operations if we benchmarked them independently,
but in practice programs don’t perform raw MVar opera-
tions. Instead, the MVar operation is normally wrapped in
an exception handler that restores invariants in the event
of an exception. Further protection from asynchronous ex-
ceptions is usually required, to prevent an asynchronous ex-
ception from arriving before the handler has been installed
[17]. This exception-robustness is implemented in the MVar-
based channel library that we used, but it adds significant
overhead to MVars.

In contrast, our STM code benefits from asynchronous
exception safety “for free”, because each channel operation
is atomic. In short, the STM-based channels are not only
clearer, but the operations are composable, and it runs just
as fast as the MVar version.

7. RELATED WORK

We build on two main categories of related work. The first,
discussed in Section 7.1, is work on transactional models of
concurrency and the design and implementation of STMs.
The second, in Sections 7.2-7.3 are the designs that have
been attempted to provide forms of composability in con-
current programming languages.




7.1 Transactions

Transactions have long been used for fault-tolerance in data-
bases [7] and distributed systems. These transactions rely
on stable storage and distributed commit protocols to pro-
tect system integrity against crashes.

Nested transactions were first proposed by Moss [19], who
extended nesting to two-phase locking protocols. The Ar-
gus language [16] for fault-tolerant distributed applications
provided explicit language support for nested transactions.

Distributed transactions typically provide both synchro-
nisation, ensuring that concurrently-executing transactions
appear to execute serially, and persistence, ensuring that
state changes are backed up on fault-tolerant, non-volatile
storage. Recently, several projects have provided persistence
without synchronisation for transactions running at a single
machine [15, 26, 13].

By contrast, software transactional memory provides syn-
chronisation without persistence. Because the state manip-
ulated by memory transactions is intentionally volatile there
is no need for distributed commit protocols or stable stor-
age. It follows that many design and implementation is-
sues are quite different from those arising in distributed or
persistence-only transaction systems.

Transactional memory was originally proposed as a hard-
ware architecture [11, 29] to support non-blocking synchro-
nisation, and architectural support for this model remains
the subject of ongoing research [18, 20, 24, 8]. A number of
proposals have emerged for supporting transactional mem-
ory in software [12, 27, 4, 10, 9].

Work on software transactional memory has focused on li-
braries, not on integrating transactional mechanisms into a
programming language. Two exceptions are Welc et al. [31]
who show how STM-like techniques can increase the con-
currency available in systems based on Java’s synchronized
blocks, and Harris and Fraser [9] who discuss how Java might
be adapted to support non-blocking atomic sections. In re-
cent work Welc et al. showed how I/O could be performed
by backing off from an optimistic execution scheme to a
pessimistic one — however, their approach relied on starting
with a correctly-synchronized lock-based program [30].

Prior work has not placed much emphasis on conditional
blocking or compositionality. Herlihy et al. [10] support syn-
tactically nested transactions by “flattening” nested trans-
actions to a single transaction, but provide no explicit mech-
anism for conditional blocking. Harris and Fraser [9] sup-
port conditional blocking using a guarded-command syntax,
but lacking retry, such transactions could not be easily
composed. Lastly, no prior work on memory transactions
supports the equivalent of the orElse construct, which is
essential for composition.

7.2 Concurrent ML

Concurrent ML [25] is an inspiring language directed squarely
at the goal of composable concurrency. The principal ab-
straction is that of a first-class event, which allows far richer
composition than do conventional locks. One can draw an
analogy between a CML event and an STM action in our
language. Events can be composed as alternatives using
choose, which is similar to our orElse, and “run” using
sync, which has the same flavour as our atomic; in Haskell
syntax their types are:

:: Event a -> a
[Event a] -> Event a

sync
choose ::
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However, nothing corresponds to our notion of sequential
composition of actions. Indeed, given an Event a and an
Event b, one cannot construct a compound event of type
Event (a,b) that fires only when both argument events fire.
This is no accident — CML events are carefully structured
to have a single “commit point” — but it limits the way in
which events can be composed.

This same limitation does support one form of abstraction
that we cannot. A swap channel offers the operation

swap :: SwapChan a -> a -> Event a

The idea is that two threads rendezvous at a SwapChan, and
exchange data. But no matter how many threads are si-
multaneously calling swap on the same channel, if thread A
gives data to thread B, then B’s data must go to A. We can-
not support a composable swap inside an STM transaction
because that would require mutual linkage of an arbitrary
number of threads whereas STM actions represent isolated
updates made by individual threads. Suppose thread A does
a swap with thread B; and then both go on to swap with third
parties (Al and B1, say). Then if A1l is not ready, A’s trans-
action must retry; and hence so must B’s, and so must B1’s,
and so on. In contrast, it is easy to define swap-channels
with the operation

swap :: SwapChan a -> a -> I0 a

but this operation, having an I0 type, does not compose
(by design). It is perhaps interesting to note for future work
that this kind of synchronization, which is hard to build with
STM, is extremely easy to build with a chord in Benton et
al.’s Polyphonic C# [1].

7.3 Scheme48 proposals

Scheme 48 proposals are an optimistic-concurrency mecha-
nism that supports a subset of our notion of memory trans-
actions [14]. Each thread maintains a log of the data accesses
performed using operations like provisional-car. The call
call-ensuring-atomicity t is just like our atomic t; it
re-runs automatically if there are concurrent updates.

Of course, Scheme is untyped, so the proposal mecha-
nism cannot offer any guarantees about effects; for example,
there is no way to ensure that the programmer only uses
provisional-car etc inside a transaction, nor that trans-
actions refrain from doing input/output. There is no mech-
anism for conditionally entering a proposal (and blocking
if the condition does not hold), let alone for our modular
retry. The programmer must resort to locks and condition
variables for that. Nor is there anything like orElse.

8. CONCLUSION

We have shown that STM provides a substrate for concur-
rent programming that offers far richer composition than
has been available to date, and that it can be implemented
in a practical language.

We have used Haskell as a particularly-suitable labora-
tory, but an obvious question is this: to what extent can
our results be carried back into the mainstream world of
imperative programming? We believe that the idea of us-
ing constructs like retry and orElse can indeed be applied
to other languages. For instance, in C#, one could indi-
cate retry by raising a specified kind of exception and then
express orElse as a particular kind of exception handler.



An interesting distinction to notice about atomic blocks in
C+# or Java, when compared with Haskell, is that it would be
necessary to support dynamic nesting. The reason is that,
in Haskell, the code within an atomic block has an STM type
and so the only way it can be run is by atomic execution:
library operations do not need to ensure atomicity internally
because it will be provided by their callers. In contrast, in
a traditional imperative language, atomicity would be the
responsibility of the callee rather than the caller and so it
may be provided defensively at multiple levels in a call chain.

In an imperative setting it is less clear how to statically
prevent operations with irreversible side effects being per-
formed within transactions: there is not ordinarily any way
of indicating possible effects other than (in some languages)
the sets of exceptions that a method may raise. Whether
or not one believes in transactions, it does seem likely that
some combination of effect systems and/or ownership types [2]
will play an increasingly important role in concurrent pro-
gramming languages, and these may contribute to the guar-
antees desirable for memory transactions.

Our implementation forms part of GHC 6.4, which is pub-
licly available at http://haskell.org/ghc. Our current im-
plementation is for uni-processor, but we plan to work on a
true multi-processor implementation in 2005.
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