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Abstract

Impact analysis, determining when a change in one part
of a program affects other parts of the program, is time-
consuming and problematic. Impact analysis is rarely used
to predict the effects of a change, leaving maintainers to
deal with consequences rather than working to a plan. Pre-
vious approaches to impact analysis involving analysis of
call graphs, and static and dynamic slicing, exhibit several
tradeoffs involving computational expense, precision, and
safety, require access to source code, and require a rela-
tively large amount of effort to re-apply as software evolves.
This paper presents a new technique for impact analysis
based on whole path profiling, that provides a different set
of cost-benefits tradeoffs – a set which can potentially be
beneficial for an important class of predictive impact anal-
ysis tasks. The paper presents the results of experiments
that show that the technique can predict impact sets that
are more accurate than those computed by call graph anal-
ysis, and more precise (relative to the behavior expressed in
a program’s profile) than those computed by static slicing.

1. Introduction
A frequent problem with software is that changes to a

system, however small, may have unintended, expensive, or
even disastrous effects [13]. Software change impact anal-
ysis, often called simply impact analysis, is a family of ap-
proaches for addressing this problem [2, 3, 14, 16, 22].

Impact analysis is often used to assess the effects of a
change on a system after that change has been made, but a
more proactive approach uses impact analysis to predict the
effects of change before it is instantiated [3]. For instance,
software maintainers may wish to consider several methods
for implementing a change and choose one that has the low-
est estimated impact on cost or schedule. Predictive impact
analysis can allow maintainers to work to a plan, rather than
simply deal with consequences.

Impact analysis techniques can been partitioned into two
classes: traceability analysis and dependency analysis [3].

We focus on the latter. Impact analysis techniques based on
dependency analysis [1, 5, 6, 7, 9, 10, 11, 19, 23] attempt
to assess the affects of change on semantic dependencies
between program entities, typically by identifying the syn-
tactic dependencies that may signal the presence of such
semantic dependencies [17].

We focus on three traditional dependency-based impact
analysis techniques: call graph based analysis, and static
and dynamic program slicing [3].1 Each of these ap-
proaches has advantages and disadvantages:

� Transitive closure on call graphs, cited as a fundamen-
tal technique for predicting change impact [3]; is rel-
atively inexpensive; however, it can be highly inaccu-
rate, identifying impact where none exists and failing
to identify impact where it does exist.

� Static slicing (see [21] for a summary), can predict
change impact conservatively (safely); however, by fo-
cusing on all possible program behaviors, it may return
impact sets that are too large, or too imprecise relative
to the expected operational profile of a system, to be
useful for maintainers.

� Dynamic slicing can predict impact relative to specific
program executions or operational profiles, which may
be useful for many maintenance tasks, but it sacrifices
safety in the resulting impact assessment.

� Static and dynamic slicing techniques are relatively
computationally expensive, requiring data depen-
dence, control dependence, and alias analysis, whereas
call graph based analysis is comparatively inexpensive.

� All three approaches rely on access to source code to
determine the static calling structure or dependencies
in that code, and require a relatively large amount of
effort to recompute the information needed to assess
impact on subsequent releases of a software system.

1Other common techniques include expert judgment and code inspec-
tion; however, these are not easily automated. Moreover, expert predictions
of the extent of change impact have been shown to be frequently incorrect
[12], and performing impact analysis by inspecting source code can be
prohibitively expensive [16].
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In this paper, we present a new technique for perform-
ing impact analysis based on whole path profiling [8]. Our
technique, PathImpact, uses relatively low-cost instru-
mentation to obtain dynamic information about system exe-
cution, and from this information builds a representation of
the system’s behavior which it uses to estimate impact.

PathImpact provides a different set of cost-benefits
tradeoffs than the three techniques outlined above – a set
which can potentially be beneficial for an important class of
predictive impact analysis tasks. The technique is dynamic,
requiring no static analysis of the system. The resulting im-
pact estimate is thus not safe, but because it is drawn only on
operational behavior, it can be used in cases where safety is
not required to provide more precise information relative to
a specific operational profile or set of executions than static
analysis. The technique is call-based, and thus identifies
impact at a coarser level than that provided by fine-grained
analyses, but it is much more precise than call graph based
analysis, and requires no dependence analysis. The instru-
mentation on which the technique is based has a relatively
low overhead and can be performed on binaries, so the tech-
nique does not require access to source code. The technique
also accommodates system evolution at relatively low cost.

We present results of a controlled experiment comparing
PathImpact to transitive closure on call graphs and static
slicing, in relation to a real software system, a large set of
changes, and a wide range of inputs and test suites. The
results of the experiment show that the technique can pre-
dict impact sets that are far more accurate than those com-
puted by call graph analysis, and more precise (relative to
the behavior expressed in a program’s profile) than those
computed by static slicing.

2. Costs-Benefits Tradeoffs for Dependency-
Based Impact Analysis Techniques

Call graphs are commonly used by programmers to esti-
mate the potential impact of software change [3]. The un-
derlying assumption is that a change in some procedure p
in program P has a potential change impact on any node
reachable from p in P ’s call graphG. The transitive closure
of G calculates all potential impact relationships between
procedures in P under this assumption.

Call graphs are well understood and relatively easily
constructed, and transitive closure on call graphs is simple
to perform. However, calling behavior is much more com-
plex than call graphs indicate. Calling behavior may include
entering and exiting a procedure without calling any other
procedures; entering a procedure, calling one other proce-
dure and exiting; or entering a procedure and making any
number of calls to many other procedures in any order. A
call graph captures the local structure of potential calls by
a single procedure, but ignores these other aspects of calls.
As a result, call graph based analysis can lead to imprecise
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Figure 1. Example call graph. An arc from node M
to node A denotes that procedure M may call procedure
A; the dashed arc denotes a back-edge in the call graph
and signals the presence of recursion.

impact sets. For example, in the call graph in Figure 1, M
transitively calls all other procedures in the program. We
cannot determine from the call graph what conditions cause
propagation of change impact from M to other procedures.

Another limitation of the call graph is that it does not
capture impact propagation due to procedure returns. Sup-
pose we propose to change E. The effects of the change
could propagate through returns to C, B, A, and M. A typi-
cal call graph has no information on returns, and inferring
such information may cause errors. We can infer that E re-
turns to C; however, we cannot infer whether, following the
return to C, impact propagates into A, B, both, or neither.

In contrast to call-graph based techniques, techniques
based on static slicing rely on calculation of fine-grained de-
pendency relationships. Static slicing is conservative (safe);
it accounts for all possible program inputs and behaviors.
When safety is required, this conservatism is important;
however, impact analyses that rely on the results may re-
turn large impact sets of little use to maintainers. More im-
portant, these sets may claim the existence of impacts that
do not occur relative to the expected operational profile of
the system; for non-safety-critical systems, it may be more
cost-effective to consider impact relative to expected usage.

Dynamic slicing overcomes these drawbacks of static
slicing by focusing on static dependencies that have been in-
volved in program executions, at the potential cost of safety.
Both dynamic slicing and static slicing, however, require
fine-grained dependence analysis entailing additional ex-
pense in computational support and instrumentation.

Further, fine-grained analysis of dependencies may be
inappropriate in many predictive impact analysis situations.
Predictive impact analysis requires maintainers to specify
the approximate location of changes, but knowing the pre-
cise statements that will require modification, and the pre-
cise variables that will be involved in those modifications,
may not be practical. Further, when modifications involve
deleting code, it may not be obvious what slicing criteria to
invoke, at the fine-grained level, to predict potential impact.
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Working at the coarser-grained level of functions or meth-
ods simplifies the impact analysis task, because it requires
maintainers to determine only a set of functions or methods
that will be changed, and not the precise syntax of the re-
quired changes. This suggests that analysis at the level of
calls may be more appropriate in practice.

Finally, call-graph based and slicing-based approaches
all rely on access to source code to determine the static call-
ing structure of or dependencies in that code. In practice,
systems often contain or consist primarily of components
for which source code is not available. Approaches for an-
alyzing binaries may lessen this problem, but another alter-
native is not to analyze them at all, but simply to instrument
them, and it is this alternative that we consider.

3. Dynamic, Whole Program Path-Based Im-
pact Analysis

The use of dynamic path information collected at the
level of procedure calls helps address the foregoing prob-
lems. Our approach can be summarized as follows: if we
propose to change procedure p, we concern ourselves only
with impact that may propagate down any (and only) dy-
namic paths that have been observed to pass through p.
Therefore, any procedure that is called after p, and any pro-
cedure which is on the call stack after p returns, is included
in the set of potentially impacted procedures.

By examining program paths, yet limiting impact to ob-
served call orders and call-return sequences, we can im-
prove considerably on the precision of the more simple call
graph based techniques, while also approaching the accu-
racy of more detailed techniques based on static slicing.
Also, since program binaries can be instrumented [4, 20],
we can avoid requiring program source code. While this
approach remains subject to the limitations of dynamic in-
formation, it can yield impact sets that are more accurate
relative to a specific operational profile.

As an example, suppose we have a single execution
trace, shown by the string of letters along the top of Fig-
ure 2, for the program whose call graph appears in Figure
1. Function returns are represented in this string by r, and
program exit by x. Informally, if we propose to change pro-
cedure E, we can estimate the dynamic impact of the change
relative to this execution by searching forward in the trace
to find procedures that are called directly or indirectly by E
and procedures that are called after E returns. By search-
ing backward in the trace we can discover the procedures
E returns into. In the case of this trace, E makes no calls,
but E returns into C, A, and M. E cannot return into D since
D is immediately followed by a return, and likewise for B.
Therefore, we can conclude that the set of potentially im-
pacted procedures due to a change in E is f M, A, C, E g.

A small amount of bookkeeping is necessary to recon-
struct the behavior of the program from a trace such as that

M B r A C D r E r r r r x

Figure 2. Single execution trace.

M B r A C D r E r r r r x M B G r r r x M B C F r r r r x

Figure 3. Multiple execution traces.

given in Figure 2. Unmatched function returns encountered
in the trace determine which procedures are returned into.
For example, counting forward from E we encounter three
more returns (r) than procedure names (including E). This
indicates that three functions were returned into. Searching
backwards we pair the three unmatched returns with any
procedure names that do not have associated returns. For
instance, searching backward from E we look for three pro-
cedure names, but skip D and B because we encounter a
return immediately before each of them indicating that they
returned before E was called. (An alternative approach uses
instrumentation that explicitly identifies the procedure re-
sponsible for each return. In this case impact can be esti-
mated solely by searching forward in the trace. However,
this has disadvantages which we discuss in Section 4.1.)

Multiple execution traces can be processed by concate-
nating traces, and proceeding in the same manner as for a
single trace, but not crossing the termination symbol while
searching either forwards or backwards. For example, Fig-
ure 3 shows a series of execution traces. If we propose to
change G, the potentially impacted procedures are G,B, and
M. If we propose to change C the potentially impacted set
is f M, A, B, C, E g from the first trace and f M, B, C, F g
from the third trace, giving a union of f M, A, B, C, E, F g.

An obvious difficulty with this approach involves track-
ing executed paths, since traces of this sort may be long.
Therefore, practical techniques must restrict the length of
traces to be viable. In the next section we show how meth-
ods for compressing traces [15] can be used to greatly re-
duce the size of the trace, constructing a directed acyclic
graph representation called a whole path DAG [8]. Then
we present algorithms that calculate impact directly from
this DAG. We further show how this DAG can be incre-
mentally updated, facilitating its continued use for impact
analysis as a program and its operational profile evolve.

4. Algorithms

Our technique requires programs to be instrumented at
procedure (or method) entry and exit. This produces a trace
containing procedure names, function returns, and program
exits in the order in which they occur across multiple execu-
tions. The SEQUITUR data compression algorithm [15] is
used to reduce the size of the trace that is collected, generat-
ing a grammar. The whole path DAG representation devel-
oped by Larus [8] is used to represent the grammar. We next
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review the SEQUITUR data compression algorithm focus-
ing on its application in our context, and its representation
as a whole path DAG; then, in Section 4.2 we present our
dynamic impact algorithms and algorithms for incremen-
tally updating the DAG.

4.1. The SEQUITUR data compression algorithm
and whole path DAG

The SEQUITUR algorithm examines a trace generated
by a program and removes redundancies in the observed se-
quence of events by creating a grammar that can exactly re-
generate the original trace. The trace may contain loops and
backedges. SEQUITUR is an online algorithm – this means
it can process traces as they are generated, rather than re-
quiring the entire trace to be available. To facilitate re-use
of the collected trace, only the resulting SEQUITUR gram-
mar need be stored.

Figure 4 displays the SEQUITUR algorithm.2 The algo-
rithm constructs a grammar by appending each token seen
to the end of rule T and searching the resulting rule and
all other production rules for redundancy. If the tail of the
new end of the compressed trace matches any of the pro-
duction rules the appropriate substitution is made. Then,
if any redundancy is found a new production rule is added
and substituted in the compressed trace. The algorithm also
checks each time a replacement is made to ensure that each
production rule is used more than once. If any rule is used
just once its production is substituted where it is used and
the rule is removed from the grammar. This prevents the
retention of rules that do not contribute to compression.

In our case, we apply this algorithm to a set of one or
more concatenated traces, each consisting of tokens indicat-
ing calls and returns, as shown in Figure 3. Each individual
trace is terminated by a special symbol x, generated by the
instrumented program on exit. For an example of the SE-
QUITUR algorithm’s operation, consider the trace shown in
Figure 3. The rule T is initially empty:

T !

Using the program trace shown in Figure 3 the algorithm
begins appending symbols, starting with M and continuing
until it finds a duplicate digram:

T !MBrACDrErrrr

At each step the algorithm checks to see if the last two to-
kens (a digram) in the string are duplicated (without over-
lap). In this case rr appears twice, so the algorithm con-
structs a grammar rule and applies it to T (we use numbers
as tokens to denote production rules, to distinguish them
from the tokens in the execution traces):

T !MBrACDrE11

1! rr

2We present the algorithm given in [15]; in [8] Larus introduces a mod-
ification to the SEQUITUR algorithm which we have not used.

algorithm SEQUITUR( S )
input Execution Trace S
output Grammar G

Grammar G
Rule T

1. for each token in S
2. append token to end of production for T
3. if duplicate digram appears
4. if other occurrence is a rule g in G
5. replace new digram with non-terminal of g.
6. else
7. form a new rule and replace duplicate
8. digrams with the new non-terminal.
9. if any rule in G is used only once

10. remove the rule by substituting the production.
11. return G

Figure 4. SEQUITUR algorithm.

After applying the new rule the algorithm continues append-
ing tokens and seeking redundancies. In this case another
redundancy,MB, is found, and a second rule is created:

T ! 2rACDrE11x2

1! rr

2!MB

The grammar is complete when there are no more tokens to
process; in this case the result is:

T ! 2rACDrE113G43CF4rx

1! rr

2!MB

3! x2

4! 1r

Following processing, the resulting grammar for these
traces contains terminals (function names, r, and x) and
rules, that can contain both terminals and other rules.

The SEQUITUR algorithm runs in time O(N), where
N is the trace length. The size of the compressed trace is
O(N) worst case (no compression possible) and O(logN)
best case [15]. Programs containing loops may generate
extremely long traces; however, loops will introduce redun-
dancies that SEQUITUR takes advantage of.

The SEQUITUR grammar can be stored as it is con-
structed in the form of a whole path DAG [8]. Each node
in the whole path DAG is a rule in the SEQUITUR gram-
mar. A directed acyclic graph is constructed by connecting
the members of each production rule to their rule or non-
terminal node. The whole path DAG for the above SE-
QUITUR grammar is shown in Figure 5. Note that the out-
going edges from any node are ordered by the members of
the production rule. The size of the whole path DAG is
equal to the size of the SEQUITUR grammar plus the sum
of the lengths of the production rules, since each DAG node
represents a grammar rule and the sum of the lengths of the
production rules equals the number of DAG edges.
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2 rT −> x4 rFC34G311ErDCA

4 −> 1 r3 −> x 22 −> M B1 −> r r

M xrGFEDCBA

Figure 5. Whole path DAG.

4.2. Path impact algorithm
The PathImpact algorithm for estimating impact is

shown in Figure 6. One way to visualize its operation is to
consider beginning at a procedure node in the DAG, and as-
cending through the DAG performing recursive forward and
backward in-order traversals at each node, stopping when
any trace termination symbol is found. Traversing the DAG
in this manner yields an impact set equivalent to that which
would result by traversing the uncompressed traces.

Any changed procedure is a terminal, so PathImpact
begins at that terminal, ascending upwards in the DAG
searching forward for procedures that were called after the
changed procedure, and searching backward for procedures
that are returned into. This is implemented in the function
up shown in Figure 7. The integer act.stat is used to sig-
nal the end of an execution trace and set the Boolean values
of fwd and bwd accordingly. Up uses two functions, for-
ward and backward, to search for terminals in the gram-
mar that should be added to the impact set I ; these functions
are shown in Figures 8 and 9, respectively.

The integers act.retn and act.skip perform the necessary
bookkeeping functions while searching forward, governing
which functions are returned into while searching back-
ward. Forward matches function names and returns, and
passes the number of unmatched returns to backward in
the structure named act and variable named retn.

Backward uses act.retn to determine how many proce-
dures to include in the impact set. When Backward has
added a number of procedures equal to act.retn, the search
backwards in this trace can stop. Backward must also
match function returns and names while searching back-
wards, since functions that return before the changed func-
tion is executed cannot be returned into. The variable skip
controls this by incrementing when a return is encountered
and decrementing when a procedure name is found. Proce-
dures are added to I when skip is zero.

Since the SEQUITUR grammar forms a DAG, and a
DAG has no cycles, the traversal performed by PathIm-

algorithm PathImpact(G, c )
input Whole Path DAG G

input Changed Procedure c
output Impact Set, I

struct Action contains:
integer skip = initially 0
integer retn = initially 0
integer stat = initially 0

Set I = set of potentially impacted procedures, initially empty.
boolean fwd = initially true.
boolean bwd = initially true.
Action act.

1. if node c exists in G
2. add c to I
3. for each node p whose production contains c
4. up( p, c, fwd, bwd, act )

Figure 6. PathImpact algorithm.

algorithm up(p, c, fwd, bwd, act )
input Node p
input Node c
input boolean fwd
input boolean bwd
input Action act
output Action

Node t
1. if( fwd == true )
2. t = c
3. while t has a successor in prod rule of p
4. t = successor of t
5. act = forward( t, act )
6. if( act.stat == -1 )
7. fwd = false
8. break
9. if( bwd == true )

10. t = c
11. while t has a predecessor in prod rule of p
12. t = predecessor of t
13. act = backward( t, act )
14. if( act.stat == -1 )
15. bwd = false
16. break
17. if( fwd == false AND bwd == false )
18. act.stat = -1
19. return act
20. for each node q whose production contains p
21. up( q, p, fwd, bwd, act )

Figure 7. Up function in PathImpact.

pact must terminate. It is relatively easy to verify that
PathImpact is correct for an uncompressed trace such as
the one given in Figure 3. Since the SEQUITUR grammar
exactly reproduces the uncompressed trace, the introduction
of intermediate nodes in the DAG due to the formation of
grammar rules does not affect the ability to retrieve the trace
via the graph traversal. Since each trace records a sequence
of actual calls and returns the calling context is always pre-
served. As long as the trace termination symbols are always
appended to the end of each execution, and as long as they
are honored while searching, PathImpact computes the
predictive impact set outlined in Section 3.
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algorithm forward( g, act )
input Node g
input Action act
output Action

Node t
1. if( g is a procedure )
2. if( g is a program exit )
3. act.stat = -1
4. return act
5. if( g is a function return )
6. act.retn++
7. return act
8. add g to I
9. act.retn–

10. return act
11. t = first element of production rule of g
12. act = forward( t, act )
13. if( act.stat == DONE )
14. return act
15. while t has a successor in prod rule of g
16. t = successor of t
17. act = forward( t, act )
18. if( act.stat == DONE )
19. return act
20. return act

Figure 8. Forward function in PathImpact.

Applying PathImpact(E) to the whole path DAG
in Figure 5 for a proposed change in procedure E, the al-
gorithm first adds E to the impact set, I . Next, since
the only rule whose production contains E is the rule T ,
PathImpact calls up(T ,E,true,true,act). Pro-
cedure up searches forward to find procedures directly and
transitively called by E. The immediate successor of E in
rule T is 1, therefore up calls forward(1,act). For-
ward searches recursively for the end-of-trace symbol, x,
and counts returns. The production rule for 1 results in two
calls of forward(r,act). The value of act.retn after
these two calls is 2. Then control returns to up in rule T ,
where the next successor of E is considered. Since the next
successor is another 1, another call of forward(1,act)
and two more calls of forward(r,act) result, and the
value of act.retn is 4. The next successor in the production
rule for T is 3. Forward(3,act) causes a call to for-
ward(x,act). Since x is the end-of-trace symbol, for-
ward sets act.stat to �1 and returns. The value of act.stat
causes up to break out of the forward searching loop, set
the value of fwd to false, and begin searching backwards for
procedures that E returns into.

Backward uses the value of act.retn and its own count
of return symbols encountered, act.skip, to determine which
procedures in the trace are actually returned into. The
search starts by calling backward(r,act) since r is
the immediate predecessor of E in the production for
rule T . Since r is a procedure return Backward incre-
ments the value of act.skip. The subsequent call, back-
ward(D,act), decrements act.skip rather than adding
D to the impact set I . The next predecessor in the pro-

algorithm backward( g, act )
input Node g
input Action act
output Action

Node t
1. if( g is a procedure )
2. if( g is a program exit )
3. act.stat = -1
4. return act
5. if( g is a procedure return )
6. act.skip++
7. return act

18. if( act.skip > 0 )
19. act.skip–
10. return act
11. if( act.retn > 0 )
12. add g to I
13. act.retn–
14. return act
15. t = last element of production rule of g
16. act = backward( t, act )
17. if( act.stat == DONE )
18. return act
19. while t has a predecessor in prod rule of g
20. t = predecessor of t
21. act = backward( t, act )
22. if( act.stat == DONE )
23. return act
24. return act

Figure 9. Backward function in PathImpact.

duction for rule T is the procedure C. Execution of the
call backward(C,act) adds procedure C to the impact
set and decrements act.retn. Subsequent calls to back-
ward(2,act) result in the addition of A and M to the
impact set I and the decrementing of act.retn to 1. An ex-
ecution that terminated abnormally would count fewer re-
turns in act.retn and, consequently, cause backward to
terminate sooner. In this example, since there is no next
predecessor, the algorithm ends. The resulting impact set
for PathImpact(E) is f M, A, C, E g.

Similarly, PathImpact(G) results in the impact set f
M, B, G g and PathImpact(F) results in the set f M,
B, C, F g. The worst-case running time of PathImpact
is O(N), where N is the uncompressed length of the con-
catenated traces. PathImpact does not require additional
space above that required by the whole path DAG.

We are also interested in the ability to incrementally up-
date a whole path DAG as a program and its operational
profile evolve. Adding a trace to the whole path DAG can
be easily accomplished due to the on-line nature of the
SEQUITUR algorithm. Removing a trace simply involves
deleting a section of the compressed trace and associated
edges and adjusting the grammar. Adjusting traces in re-
sponse to a deleted procedure requires removing traces con-
taining that procedure from the whole path DAG, via simple
modification of PathImpact. Beginning at the procedure
that has been removed from the system, we search upwards,
forwards, and backwards locating the traces where the pro-
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cedure occurs and then remove each trace from the DAG.
Addition of a procedure requires identification of traces
containing procedures changed to call that procedure; these
can then be deleted per the foregoing approach and col-
lected again, and new versions inserted as above.

Finally, we return to a point raised in Section 3, where
we mentioned the possibility of altering the instrumenta-
tion to explicitly identify returning procedures rather than
returning a common symbol. Doing so can reduce the cost
of searching the DAG, since we then need to search only
in a forward direction. However, doing so would also ap-
proximately double the size of the traces considered, since
each return would require a procedure name plus a special
character to indicate a return. Also, pairs of returns would
no longer match other pairs of returns unless they were as-
sociated with the same two procedures, in the same order,
reducing possibilities for compression.

Therefore, a tradeoff exists between the cost of search-
ing and the amount of compression obtainable. The SE-
QUITUR grammars generated in our experiments (see Sec-
tion 5) were reduced to approximately one fifth of the aver-
age trace size of 1 MB. Larus reports reducing a 2GB trace
to approximately 100 MB [8]. We would intuitively expect
SEQUITUR to achieve better compression on larger traces.
Due to the large number of SEQUITUR grammars gener-
ated in our experiments we have chosen to emphasize pos-
sible compression over a reduction in searching.

5. Empirical Validation

The research questions we wish to investigate are
whether PathImpact computes an appropriate impact set
relative to a specific operational profile or set of dynamic
executions, and how that impact set compares to those com-
puted by dependency-based impact analysis algorithms. To
investigate these questions we performed an experiment
comparing the impact sets calculated by PathImpact to
those calculated by approaches based on transitive closure
on the call graph and function-level static slicing.

5.1. Experiment materials

As an subject for our experiment we used a program de-
veloped for the European Space Agency; we refer to this
program as space. Space is an interpreter for an an-
tenna array definition language (ADL). Space has approx-
imately 6200 non-blank, non-comment lines of C code and
136 functions. The developers of Space found 33 faults
during the program’s development. We found five addi-
tional faults [18]. We created 38 single fault versions, each
containing one of the known faults. We excluded two ver-
sions that could not be analyzed by our tools.3 The remain-

3On one version, the fault caused it to crash on nearly all executions, so
no usable traces were produced. On a second version, the Codesurfer tool
was unable to calculate accurate dependencies for a large array.

ing 36 versions served as our experiment subjects, allowing
us to model a process of performing predictive impact anal-
ysis on a function in which a fault is about to be corrected.

To provide input sets for use in determining dynamic be-
havior, we used test cases created for space for earlier ex-
periments [18]. These test cases consisted of 10,000 ran-
domly generated test cases and 3,585 test cases generated
by hand to ensure coverage of every branch in the program
by at least 30 test cases. This pool of test cases was used
to generate 1000 branch coverage adequate test suites con-
taining on average approximately 150 test cases each. We
randomly selected 50 of these test suites. The selected test
suites in aggregate contained 7773 test cases including 2886
duplicates. To examine impact on single executions, we
eliminated the duplicate test cases to obtain another set of
4887 individual test cases. We collected execution trace in-
formation for the individual test cases and for the test suites.

5.2. Experiment methodology
5.2.1 Measures
As discussed in Sections 1 and 3, the transitive closure and
static dependency-based slicing techniques for impact anal-
ysis may over- or underestimate change impact, relative to a
specific set of program behaviors as captured in a profile, a
specific execution, or a test suite. Overestimates force main-
tainers to spend additional, unneeded time investigating po-
tential impacts; underestimates may cause maintainers to
omit, in their investigations, important potential impacts.

Thus, in this study, we examine these over- and under-
estimates. To do this, we compare the relative size and
contents of the impact sets computed by transitive closure,
PathImpact for single program executions, PathIm-
pact for test suites, and function-level static slicing, for
each of the faulty versions of space.

5.2.2 Impact analysis techniques
To calculate static function-level slices for each version
we used the Codesurfer tool by GrammaTech.4 In
Codesurfer a function-level static forward slice uses all
the dependencies identified by data and control dependence
analysis in the changed procedure or procedures to iden-
tify dependent functions. We implemented the algorithm
for impact analysis based on transitive closure, and we im-
plemented the PathImpact algorithm.

5.2.3 Design
In this experiment, the three impact analysis techniques are
our independent variables. Our dependent variables are the
sets of functions identified as impacted by each technique.

We applied each impact analysis techniques to each ver-
sion of space, calculating the number of functions that
would be returned as potentially impacted by correction of

4Available from: GrammaTech, Inc. 317 North Aurora Street Ithaca,
NY 14850, or http://www.grammatech.com.
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the faulty function. For the transitive closure and function-
level slice techniques this calculation was performed only
once per version, since they are static and not dependent on
test executions. For the PathImpact algorithm, we ap-
plied the algorithm once for each of the 4887 tests for each
version. From the impact set resulting from each test, we
calculated the differences between impact sets. The results
for suites is based on the DAG created by concatenating all
the executions from tests in a suite, including duplicates.

5.2.4 Threats to validity
We have studied only one program and set of changes, and
we cannot claim that these are representative of programs
and changes generally. Also, our tests do not represent op-
erational profiles, and the test suites we use represent only
one type of suite that could be found in practice. Additional
studies of other programs, change distributions, and types
of inputs are needed to address such threats to external va-
lidity. However, space is a “real world” program and its
faults are actual faults, its test suites constitute one type of
suite that could be used in practice.

A second concern involves our measures of impact. We
would like to know how the impact sets returned by our
algorithm correlate with true dynamic impact over the test
suites. Such a measure would be difficult to obtain, how-
ever, given the general undecidability of precisely deter-
mining impact, and would most likely have to be accom-
plished at least partially through expensive and error-prone
human calculations. However, our comparisons of the sets
returned by various impact analysis techniques provide im-
portant perspective on their relative power.

Finally, we have considered only one static slicing im-
plementation; other implementations may obtain different
results. Also we have not yet compared our technique to
dynamic slicing techniques, since no implementations were
readily available and an appropriate implementation will re-
quire considerable effort to create. However, we intend to
accomplish such a comparison in the future.

5.3. Analysis and results

We now present our results, beginning by presenting and
discussing data. Section 5.4 discusses implications.

5.3.1 Data
Figure 10 provides a view of the data we collected. Col-
umn one lists the version of space. Column 2 (TC) shows
the size of the impact set resulting from transitive closure.
The columns under the heading “Individual Traces” list
measures of the impact set calculated by the PathImpact
algorithm relative to the size and contents of the transitive
closure set and static slicing set using individual program
executions. The columns under the heading “Test Suites”
show the same for executions of entire test suites. The col-
umn heading PI/TC is the average ratio of the size of the

PathImpact set to the size of the transitive closure set.
PI-TC is the average number of functions that are members
of the PathImpact set, but not members of the transitive
closure impact set. Likewise, TC-PI is the average number
of functions that are members of the transitive closure im-
pact set, but not members of the PathImpact set. PI/FS
is the average ratio of the size of the PathImpact set to
the size of the static slicing impact set. PI-FS is the average
number of functions that are members of the PathImpact
set, but are not members of the static slicing impact set.
Similarly, FS-PI is the average number of functions that are
members of the static slicing impact set, but not members
of the PathImpact set. All of the average measures are
obtained across either the sets of individual test executions,
or the sets of test suites. We have calculated ratios so that
the results can be compared across versions and test suites.

5.3.2 Analysis of impact sets
As Figure 10 shows, the transitive closure sets included far
fewer procedures than those of the other two impact ap-
proaches. On examination of the changes it can be seen
that this is due to the locations of the changed procedures
in the call graph, most of which were relatively “deep” in
the call graph (with the exception of version 30). The im-
pact set calculated using PathImpact generally included
(on average) many more procedures, and the set calculated
using function-level static slicing contained the most.

Figure 11 contains a scatter-plot comparing sizes of
the PathImpact sets to the sizes of the corresponding
function-level static slice sets, for both test suite and in-
dividual test executions. Most of the data points lie on or
below the x = y line, with the exception of some of the
cases involving versions 19, 20, and 21, which we discuss
below. This graphically shows that PathImpact using
single program executions calculates generally smaller sets
than function-level static slicing with an increasing differ-
ence in the set sizes as the set size gets larger. PathIm-
pact sets using test suite execution displayed a somewhat
wider range of differences, with maximums approximately
equal to the size of the static slicing impact sets.

We calculated paired t-test statistics between each of the
four impact sets. In each of the comparisons the t-statistic
was outside of the 95% confidence interval, the p-value was
zero, and the null hypothesis (that the sets had the same
mean) was rejected.

To directly compare the size of the PI sets with the size
of the TC and FS sets across program versions we ex-
pressed the size of PI as a percent of TC or FS for each
of the single execution impact sets and for the 50 test suites.
Columns 3, 7, 10, and 14 in Figure 10 show the average
relative size of PI for each version.

The PI sets were considerably larger than the TC sets,
four and a half times larger in the case of single traces and
nine and a half times larger for the test suites, and displayed
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Individual Traces Test Suites
Vers TC PI/TC PI-TC TC-PI PI PI/FS PI-FS FS-PI PI/TC PI-TC TC-PI PI PI/FS PI-FS FS-PI FS

1 3 14.8 41.6 0.0 44.6 0.45 1.0 55.4 33.0 96.0 0.0 99.0 1.00 1.0 1.0 99
2 3 16.6 46.8 0.0 49.8 0.44 1.0 64.2 36.5 106.4 0.0 109.4 0.97 1.0 4.6 113
3 2 22.4 42.8 0.0 44.8 0.37 1.0 76.2 56.5 111.0 0.0 113.0 0.94 1.0 8.0 120
4 3 6.0 14.9 0.0 13.0 0.18 1.0 82.1 6.3 16.0 6.3 19.0 0.19 1.0 81.0 99
5 3 4.6 10.9 0.0 13.9 0.18 1.0 100.1 7.0 18.0 0.0 21.0 0.18 1.0 93.0 113
6 2 8.0 14.0 0.0 16.0 0.13 1.0 105.0 15.5 28.6 0.0 30.6 0.26 1.0 90.4 120
7 4 1.8 5.4 2.2 7.3 0.40 0.5 11.2 4.1 13.3 1.0 16.3 0.90 1.0 2.7 18
8 3 1.7 3.2 1.2 5.0 0.72 0.5 2.5 2.7 5.0 0.0 8.0 1.14 1.0 0.0 7
9 6 2.9 14.0 2.6 17.4 0.51 0.7 17.3 5.4 27.7 1.0 32.7 0.96 1.0 2.3 34

10 4 4.1 14.4 2.1 16.4 0.48 0.6 18.2 7.0 25.0 1.0 28.0 0.82 1.0 7.0 34
11 5 3.2 13.0 2.0 16.0 0.47 0.4 18.4 6.4 28.1 1.0 32.1 0.94 1.0 2.9 34
12 4 3.4 12.6 3.0 13.6 0.52 0.5 12.9 3.6 13.6 3.0 14.6 0.56 0.7 12.1 26
13 14 1.6 13.4 5.0 22.4 0.55 0.7 19.3 2.9 29.0 2.0 41.0 1.00 2.0 2.0 41
14 6 4.5 21.3 0.2 27.1 0.40 1.0 41.9 10.9 59.7 0.0 65.7 0.96 1.0 3.3 68
15 6 3.2 14.0 0.6 19.4 0.31 1.0 44.6 7.7 40.4 0.0 46.4 0.74 1.0 17.6 63
16 7 0.9 3.7 4.4 6.3 0.57 0.5 5.3 1.6 5.0 1.0 11.0 1.00 1.0 1.0 11
17 6 3.7 17.2 1.0 22.2 0.52 0.6 21.4 6.9 36.2 1.0 41.2 0.96 1.0 2.8 43
18 4 3.8 12.6 1.0 15.6 0.56 0.5 12.9 4.2 13.6 1.0 16.6 0.59 0.7 12.1 28
19 1 4.0 3.0 0.0 4.0 1.33 1.0 0.0 1.3 3.0 0.0 4.0 1.33 1.0 0.0 3
20 1 7.0 6.0 0.0 7.0 1.17 1.0 0.0 6.9 5.9 0.0 6.9 1.14 1.0 0.1 6
21 1 7.0 6.0 0.0 7.0 1.17 1.0 0.0 6.9 5.9 0.0 6.9 1.14 1.0 0.1 6
22 5 1.7 4.8 1.4 8.4 0.93 1.8 2.4 1.9 5.5 1.0 9.5 1.05 2.0 1.5 9
23 1 10.7 9.7 0.0 10.8 0.60 1.0 8.2 16.4 15.4 0.0 16.4 0.91 1.0 2.6 18
24 14 1.6 13.2 5.0 22.3 0.52 0.6 21.3 3.0 29.0 1.0 42.0 0.98 1.0 2.0 43
25 6 1.1 5.0 4.3 6.8 0.21 0.2 25.5 4.8 25.8 3.0 28.8 0.90 1.0 4.2 32
26 18 2.0 26.3 8.4 35.9 0.40 0.9 55.0 5.0 72.9 1.0 89.9 1.00 1.0 1.1 90
27 7 0.9 3.7 4.4 6.3 0.57 0.6 5.3 1.6 5.0 1.0 11.0 1.00 1.0 1.0 11
28 17 1.9 20.5 4.7 32.8 0.42 1.0 47.2 3.9 50.0 0.0 67.0 0.85 1.0 13.0 79
30 16 0.4 0.0 10.2 5.8 0.07 0.0 73.2 0.8 0.0 3.5 12.5 0.16 0.0 66.5 79
31 12 2.1 17.0 4.1 24.9 0.23 1.0 85.1 7.7 81.7 1.0 92.7 0.85 1.0 17.3 109
32 3 2.6 5.9 1.2 7.7 0.48 0.8 9.1 5.3 13.8 1.0 15.8 0.99 1.0 1.2 16
33 3 3.0 7.0 1.0 9.0 1.00 1.0 1.0 3.0 7.0 1.0 9.0 1.00 1.0 1.0 9
35 5 1.3 4.5 3.2 6.4 0.35 0.5 12.1 3.3 12.5 1.0 16.5 0.91 1.0 2.5 18
36 1 7.0 6.0 0.0 7.0 0.12 1.0 50.0 49.0 48.0 0.0 49.0 0.88 3.0 10.0 56
37 13 1.3 10.8 6.4 17.4 0.51 0.6 17.2 2.6 22.0 1.0 34.0 1.00 1.0 1.0 34
38 13 1.4 11.2 6.3 17.9 0.52 0.6 16.8 2.6 22.0 1.0 34.0 1.00 1.0 1.0 34

Avg 4.56 0.51 9.51 0.87
Std Dev 4.78 0.29 13.12 0.27

Figure 10. Impact sets and their relationships calculated in the experiment.

a large standard deviation. Averaged across all the versions
the PI impact sets were about one half (51%) of the size of
the FS impact sets using single executions and 87% of their
size using test suites. In the case of versions 19, 20, and
21, PI was larger than FS by one function. On inspection
we found that in every case the additional function was the
same. This extra function executes near the end of nearly
every test and has no static dependencies (its purpose is sim-
ply to pause program execution after displaying output to
the screen). Since the function nearly always executes it is
nearly always included in PI, but since it has no static de-
pendencies it is never included in FS. In practice, maintain-

ers familiar with the system could cause it to be excluded
from future impact consideration.

5.4. Discussion

Our goal was to compare the impact sets calculated by
our four target approaches when performing predictive im-
pact analysis relative to a specific set of program behaviors
captured by a specific input set. We now comment on some
of the implications of our results.

The sets shown in Figure 10 show that PathImpact
caught a large number of procedures which would be
missed by transitive closure, but did not include as many
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Figure 11. Impact set size comparison. Single traces are shown as “+”, suites are shown as “�”.

procedures as function-level static slicing. This is good on
both counts since it is moderated by the fact that the in-
cluded procedures actually executed, and thus could have
propagated actual impact.

The impact sets observed for transitive closure were un-
reliable, having more to to with the location of the change
in the call graph than the behavior of the program. This
reinforces the notion that impact propagation is more de-
pendent on the behavior of the program than the program’s
structure. PathImpact moderates the results of transitive
closure and static slicing in cases where we have an inter-
est in specific program behavior embodied in an operational
profile or a specific set of tests.

Function-level static slicing is also, in some sense, a
reflection of the program’s structure. Static slices repre-
sent every possible behavior rather than actual behavior. In
our experiments, this sometimes led to overestimation of
change impact using static slicing. However, the test suites
used, while showing considerable variation, often came re-
markably close to agreement with the static slicing impact
sets. Further, cases in which profile-based impact analy-
sis overestimates impact are fewer, and the amount of over-
estimation is less, than with static slicing.

Of course, the extent to which the estimate from
PathImpact matches actual impact is entirely dependent
on the appropriateness of the operational profile or set of
tests used. But it is these situations, where that appropriate-
ness holds, that are our focus.

We have not presented execution time or slow-down
statistics since our initial implementation processes stored
traces with Java programs, rather than using a fully online
implementation. A fully online implementation would build
the DAG as the instrumentation executes and not save the
uncompressed traces, and would be considerably more effi-
cient than our prototype. Nonetheless, the simulation times
we observed were relatively small. The time required to
generate the DAG was less than one minute per test suite,
and the time required to calculate an impact set was at most
several seconds.

6 Conclusions and Future Work
The call graph of a program has severe limitations for

predicting the impact of program changes. Static slicing
is much more precise than transitive closure on call graphs,
but may be expensive. It also may return unnecessarily large
impact sets if the goal is to predict impact relative to a set of
dynamic behaviors as present in a user profile or test suite.

We have thus introduced a new approach to function-
level impact analysis, based on dynamic information ob-
tained through simple program instrumentation. Our ap-
proach does not rely on availability of program source code
and does not require static dependency calculations. In our
approach dynamic traces are compressed using the SE-
QUITUR data compression algorithm [15], and a directed
acyclic graph (DAG) is constructed following Larus [8]. We
then use the PathImpact algorithm presented in this pa-
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per to predict dynamic change impact. The results of our ex-
periment show that PathImpact can provide potentially
more useful predictions of change impact than function-
level static slicing in situations where specific program be-
havior is the focus.

Future work includes experimentation with a wider
range of programs, an examination of the sensitivity of our
techniques to test input data, and consideration of object-
oriented and distributed programs. Future implementations
will address performance issues such as program slow-
down and impact calculation times. We also intend to inves-
tigate statistical measures of impact such as density func-
tions for the predicted impact sets. While this research has
investigated the application of an approach at the level of
a procedure, we intend to apply this model to other levels,
such as components. We intend to investigate scalability to
large systems by adapting the local level of modeling ac-
cording to various criteria, such as local usage or complex-
ity measures. We also plan additional empirical compar-
isons with conventional dynamic slicing techniques. While
typical dynamic slicing techniques operate at a different
level (statement-level versus procedure-level) than our tech-
niques, the behavior of impact analyses based on dynamic
slicing may be more directly comparable to our techniques
than those based on static slicing.

Eventually, a thorough understanding of our technique
will require an examination of the return on investment
(ROI) in practice. By this examination, we hope to deter-
mine the extent to which the technique can save software
maintainer’s time and improve the quality of systems un-
dergoing maintenance.
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