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Abstract 
 

We describe a method of creating tools to find bugs in 
software that is driven by the analysis of previously fixed 
bugs.  We present a study of bug databases and software 
repositories that characterize commonly occurring types 
of bugs.   Based on the types of bugs that were commonly 
reported and fixed in the code, we determine what types 
of bug finding tools should be developed. We have 
implemented one static checker, a return value usage 
checker. Novel features of this checker include the use of 
information from the software repository to try to 
improve its false positive rate by identifying patterns that 
have resulted in previous bug fixes. 
 

1. Introduction 
 

Static analysis of source code to locate bugs is a well-
researched area [3][9].  Static analysis has several well-
known benefits.  Examining the source code without 
actually executing the code makes the quality of test 
suites, a hard problem, a moot point.  Static analysis also 
allows code to be tested that is difficult to run in all 
environments, such as device drivers.  There are a number 
of systems that provide a means to write code snippets 
that will be used to statically check code for one type of 
bug or another [5][10].   

It is easy for programmers to think about types of bugs 
that might occur, and then devise a tool to look for these 
bugs.  However, the space of possible tools to build is 
very large.  Instead of creating solutions and looking for 
bugs, we propose that efforts to build bug-finding tools 
should start from an analysis of the occurrence of bugs in 
real software, and then proceed to build tools to locate 
these bugs. This paper describes a study of bug databases 
and software repositories to determine what types of bugs 
static checkers should be looking for by classifying the 
types of bugs that are frequently reported and fixed in the 
code.   

 

2. Related Work 
 
While previous work has tried to make general 

predictions about faults and identify trends across the 
software project from software repositories, our work is 
concerned with specific bugs.  We determine the types of 

bug checkers that will be useful for a code base by 
looking at the history of its development. We also feed 
data mined from the revision history back into specific 
bug detectors to make decisions on which flagged errors 
are more likely to be true errors. 

There are a large number of systems in use to statically 
check source code for bugs.  These systems have been 
very successful in finding various types of bugs [2].  At 
the very basic end of these systems are compilers that 
perform type checking.  A step beyond these are tools like 
Lint that have a set of patterns to match against the code 
to flag common types of programming errors [13].  
Systems such as metal [6] allow the user to define what 
type of patterns the static analysis checker should look for 
via state machines that are applied to the source code.  
Simple data flow analysis has also shown to be an 
effective way to statically detect bugs [10]. 

While static checkers are effective at finding bugs, 
they can produce a large number of false positives in their 
results.  Therefore, the ordering in which the results of a 
static bug checker are presented may have a significant 
impact on its usefulness.  Checkers that have their false 
positives scattered evenly throughout their results can 
frustrate users by making true errors hard to find.  
Previous work on better ordering of results has focused 
on analyzing the code that contains the flagged error [11].  
Unlike previous work, we will look at data collected over 
the entire project and historical trends to rank our error 
reports. 

The historical data we use are mined from revision 
histories stored in software repositories.  Data from 
software repositories has been used in a number of ways 
to guide the software development process.  The software 
repository data has been used to identify high-risk areas 
of the code based on change histories [4].  It has been 
claimed that data based on change history is more useful 
in predicting fault rates than metrics based on the code, 
such as length [8]. Others have worked to identify 
relationships between software modules by studying 
which pieces of the source code are modified together 
[7][14]. 

 

3. Mining Historical Data 
 

The software development process produces a number 
of artifacts as code is written and maintained.  Chief 
among them are bug databases and source code 
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Table 1: Bugs Identified in the Bug Database 

LL pointer check 3 
urn Value check 4 
ic Errors/Feature Request 34 
nitialized Variable Errors 1 
r Branch Confusion 2 

ernal Bugs (OS or other software failed) 2 
tem specific pattern 1 
identified code change 153 
ories containing revision histories.  We use both of 
rtifacts to guide our research. 

e Bug Database 

start our investigation, we reviewed the bug 
se for the Apache web server, httpd[1].  We studied 
rent branch of the software, which is version 2.0.  
oked at the first 200 bugs that were marked as 
 and CLOSED.  We were interested in identifying 
es of bugs that were fixed and matching the bug 
 back to specific source code changes to classify 
ed bugs.   
 search through the bug database produced a 
r of interesting results.  The bug reports in the bug 
se rarely can be tied directly back to a source code 
.  We were only able to tie 24% of the bug reports 
 as fixed directly back to a code change. While a 

per can post a comment detailing what code needed 
hanged, or denote which CVS commit was created 
lve the bug, this is rarely done.  Most bug reports 
 of a discussion between the reporter and a 
per.  If the bug is fixed, the developer often ends 
g report with a short comment that contains some 
notion of where in the code the problem existed.  
ve also seen cases where the developer will be very 
c and explain exactly what needed to be fixed or 
s a diff, but these seem to be the exception.  Table 
ains a breakdown of the bugs we were able to 
y from the bug database.   
 types of bugs we found in the bug database are 
discussing. Most of the bugs we found were logic 
or feature requests.  Feature requests are just what 
cted, a new feature for the software or porting a 
 to a new platform.  We categorize bugs where the 
s correctly written to do the wrong logic as logic 
  These bugs can arise from the developer 
erstanding the specifications or not understanding 

ome web browsers act (in the specific case of 
e's httpd).    These bugs do not lend themselves to 
ound via static checking.  Bugs of this type are on 
der of implementing the incorrect function to 
te a value, but doing the implemented calculation 
ly. 
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Table 2: Bugs identified in the Software Repository 

ULL pointer check 28 
eturn Value Check 29 
ninitialized Variable Errors 3 
ailure to set value of pointer parameter 1 
eature Request 1 
rror caused by if conditional short circuiting 1 
oop iterator increment error 3 
ystem specific pattern 3 
ll but three of the bug reports we reviewed in the bug 
base came from users outside the project.  These 
rts were mostly against a released version of the 

ware, rather than a random CVS dump of the source.  
y 2 of the bug reports were marked as being reported 
inst a CVS-HEAD version of the source code. This 
s us to believe that most of the simple "statically 
d" bugs are taken care of by the developers before a 

ase is made.  Hence, the users exercise few of these 
s. 

 The Software Repository 

n order to understand what types of bugs are being 
mitted to the software repository, but not making it 
 a release, we inspected commit messages in the CVS 
sitory.  We looked for commit messages that 

tained the strings 'fix', 'bug' or 'crash’ and did not have 
ecific bug report listed.  In this way we tried to weed 
as many of the bugs from the bug database as 

sible.  Moreover, we only looked at files that had a 
er number of commits to them, 50 or more.  Table 2 
ws the breakdown of the bugs we were able to identify 

 the CVS repository. 
he bugs found in the CVS repository were much 
e amenable to identification by static analysis.  While 
ew continued to be the result of misunderstood 
ifications or some other logic error, a significant 
ber were also of the kind easily found by static 

lysis: a problem with the code, not with the algorithm.  
 two most common types of bugs found in the CVS 
mits were NULL pointer checks and misuse of 
tion return values.  These two types of bugs 
unted for 57 of the bugs we identified in the CVS 
mits. 

tatic Checker 

any of the bugs found in the CVS history are good 
didates for being detected by static analysis, especially 
NULL pointer check and the function return value 

ck.  We chose to develop a return value checker based 
the knowledge that this type of bug has been fixed 
y times in the past.  Additionally, a return value 



checker can easily take advantage of data in the CVS 
repository to refine its results. 
 
4.1 Return Value Checker 
 

The return value checker we wrote checks to see if, 
when a function returns a value, that value is tested before 
being used.  Using a return value can mean passing it as 
an argument to a function, using it as part of a calculation, 
dereferencing the value if it is a pointer or overwriting the 
value.  The need for checking the return value is intuitive 
in C programs since the return value of a function often 
may be either valid data or a special error code.  For 
example, in the case of returning a pointer the error code 
is often NULL.  This error code could cause problems if 
the return value is dereferenced without being tested.  If 
an integer value is returned, often -1 or 0 is an error code 
and these values should not be used in arithmetic.  Even 
though the idea of a return value checker is not new [13], 
basing the return value checker on aggregate data and bug 
fix histories makes our approach novel. 

Our checker categorizes each error it finds into one of 
several categories.  Errors are flagged for return values 
that are completely ignored; the return value is never 
stored by the calling function.  Errors are also flagged for 
return values that are used in some manner before being 
tested in a control flow statement.  See Table 3 for the 
complete list of categories of errors our checker reports. 
 
4.2 Ranking 
 

The key to our checker is the ranking system used to 
present the output in a useful manner.  Error reports are 
grouped by the called function.  A function is ranked by 
how often its return value is tested before being used.  
This is an aggregate number generated by running the 
checker over all of the code in the current version of the 
software and tracking, for each function, the number of 
times the function is called and after how many of these 
calls the return value is used improperly.  An improper 
usage of a return value is defined as either never storing 
the return value in the calling function or using the return 
value, as previously defined, before it is tested.  We base 
our ranking on the notion that while developers produce 
bugs, they generally know how to use the return values of 
the functions they call and most often do so correctly.  
The more often a function has its return value checked, 
the more likely it is to need its return value checked.  If a 
function almost always has its return value checked, the 
instances in which its return value is not checked are 
highly suspect and are good candidates for being bugs.      

We also gather data automatically from the CVS 
commits to help with the ranking of the error reports.  We 
search the CVS commit history to determine when a bug 
our checker would find has been fixed.  The fact that the 

developer took the time to change this code suggests that 
it is an important change to make.  We expect that the 
called function in such a bug fix, the function that 
previously did not have its return value checked, does 
need its return value checked before being used.  Each 
such function we find is flagged as being involved in a 
bug fix in a CVS commit.  We refer to these functions as 
being flagged with a CVS bug fix.  We suspect when this 
function is called the return value has a valid reason to be 
checked before being used.   

Our tool ranks errors involving functions flagged with 
a CVS bug fix higher than all functions not so flagged.  
Within each list of functions--with and without CVS bug 
fixes--the functions are sorted by the percent of their 
return values checked in the current snapshot of the 
software.  At the top of the list then, are functions that 
very often have their return value checked and are flagged 
with a CVS bug fix. 

We used a simple heuristic to determine if a CVS 
commit contains a return value check bug fix.  The old 
and new versions of the committed files are both checked 
for return value check errors.  For a given function in a 
file and a given function called by that function, if the 
new version has more return value checks that are not 
errors than the old version, the commit is said to fix a 
return value check bug for the called function.  Note that 
simply adding an additional function call that has its 
return value checked makes it appear that a fix has been 
made. 
 

5. Case Study 
 
We ran a case study of our checker on the Apache 

httpd 2.0 source code.  This is a large project with a deep 
CVS history.  Our study was confined to the 2.0 branch 
and did not look into any code that resided solely in the 
1.0 branch.  The current snapshot contains about 200,000 
lines of code and approximately 2,200 unique functions 
are called.  These numbers include the core of the web 
server and optional modules.  Our checker runs on Linux 
and we only considered modules that would run on such a 
system.  We also included the Apache Portable Runtime 
(apr and apr-util) since the web server will not compile 
without it.   The APR is a set of libraries produced by 
Apache to push some of the platform specific wrapper 
code out of httpd and give the developer a consistent set 
of APIs to use for common tasks. 

In order to search the CVS repository for bug fixes we 
had to take a number of steps.  For each CVS commit, we 
checked out the version of the code from the repository 
produced by that commit.  We used the configure script 
supplied with the software to generate necessary files, 
including Makefiles.  The Makefiles were used to 
determine the command line options needed to run the 
particular source file through our checker. 
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Table 3: Errors, CVS Bug fix flagged functions 

Checked  
99% -51% 

Checked  
50% - 1% 

red (I) 22 33 
ment (A) 13 14 
L dereference (N) 2 45 
lation (C) 12 18 
d, Unused (S) 8 27 
ed on Path (P) 15 9 
d, Untested (U) 6 7 
successfully evaluated 5188 CVS commits to 
ne which functions were involved in a CVS fix to 
 value check.  There were 3811 more commits 
 the CVS repository that we could not run through 
cker.  Some CVS commits would not configure 
y (1737).  Some files contained C constructs that 
rser could not handle, most notably having a 
 number of arguments to a function (1027).   The 
12] we used was stricter with type checking than 
any statements that would give warnings in gcc 
ors in the parser.  For instance, passing NULL, an 
 to a function that expects a void* caused the 
o raise an error.  A number of commits also had 
e errors where there was an actual bug checked in 

epository that resulted in a type error.  The number 
 errors, which caused a commit not to be checked, 
4.  Also, source files raised an internal error in the 
66 times.  We were not able to track down the 
f these internal errors. 

itial Results 
checker flagged 7,223 errors in the current 

t of the httpd source.  Each error flagged by the 
 is an individual call site that has the return value 
d by the called function used improperly.  These 

rrors represent calls to 866 unique functions.   
arching the CVS commits, we found 75 functions 
e a return value check bug fix and are called at 
ce in the current CVS snapshot.  Of those 75, 41 
eir return value checked 100% of the time in the 
CVS snapshot (55%) and so are involved in no 
 errors.  For comparison, 52% of all functions 
ad their return value checked 100% of the time.  
aining 34 functions are involved in 231 errors 

 by our checker.  We consider these 231 errors 
andidates to be true errors.  Note that this number 
does not include errors for functions with none of 
turn values checked, with large numbers (over 
 unchecked return values or functions called via 
 pointers. 

n inspecting these 231 errors, we believe 61 errors 
e true bugs and need further inspection.  The 61 
und in these errors gives a false positive rate of 
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Table 4: Errors, non-CVS Bug fix flagged functions 

Checked  
99% -51% 

 Checked  
50%- 0% 

nored (I) 67 2803 
rgument (A) 48 1439 
ULL dereference (N) 21 532 
alculation (C) 10 61 
tored, Unused (S) 32 429 
nused on Path (P) 17 486 
tored, Untested (U) 27 216 
 for this chunk of our results (functions flagged with 
VS bug fix).  See Table 3 for the breakdown of these 
lts. 
here were 86 functions not flagged with a CVS bug 

but with their return value checked more than 50% of 
time in the current software snapshot.  These 

ctions account for 222 of the errors flagged by our 
cker.  Since these functions have their return values 
cked more often than not, we expect these errors also 
be likely candidates for being true errors.  Upon 
ecting these 222 errors, we believe 37 could be true 
s and need further inspection.  This chunk of our 
lts produces a false positive rate of 83%.   See Table 
r the breakdown of these results. 
verall we inspected 453 error reports and found 98 

 we believe are suspicious and should be marked as a 
.  This gives an overall false positive rate of 78%.  
 remaining 6,770 errors marked by our checker are 
duced by functions whose return value is checked 
 of the time or less and we expect these errors to be 

ikely candidates to be true errors, thus we did not 
ect them. 
 false positive rate closer to 50% would be more 

table.  A threshold for false positives is 50% since we 
ld like a user to be as likely as not to find a bug when 
ecting an error reported by our tool.  Our technique 

 not yet achieved this false positive rate. However, a 
ple Lint-like tool would have had a higher false 
itive rate as each error report is given equal weight 
 not ranked in any way.  We would have had to 
iew each of the 7,223 errors to find the 98 bugs, which 
ld be 73 false positives for every real bug. 

 A Bug Expressed 

e were able to crash the httpd server by exploiting a 
 found by our tool.  The return value of the function 
server_root_relative() is used directly as an argument 
strcmp().  The function ap_server_root_relative() 
epts two arguments, a fully qualified directory name 
 a filename.  The return value is a char* that 
resents a path to a file, basically directory/filename.  
 return value can be NULL in a number of cases.  The 

iest way to get the function to return NULL is to have 
fully qualified name of the file (plus NULL 



terminator) to be larger than 4096 bytes.  In this section 
of the source code, 4096 appears to be the size of all the 
filename buffers.  Obviously, if one passes a directory 
and filename to the function that has a combined length of 
more than 4096 the function will return NULL.  If this 
happens when the return value is used directly as an 
argument to strcmp() httpd will crash. 

 

6. Conclusions 
 

In this paper we have presented a method of creating 
bug-finding tools that is driven by the analysis of 
previous bugs.  We have shown that the bugs cataloged in 
bug databases and those found by inspecting source code 
change histories differ in their types and level of 
abstraction.  Bugs listed in a bug database are generally 
reported by users outside of the development team and 
are most often reported against a public release of the 
software rather than a CVS snapshot.  These bugs are also 
of a more high level nature, involved with algorithmic 
problems rather than simple coding problems.   

We have shown that the past bug history of a software 
project can be used as a guide in determining what types 
of bugs should be expected in the current snapshot.  
Moreover, such data can help to recommend which of a 
group of bug reports are more likely to be true. 

The checker we have implemented checks for function 
return value usage errors and uses data mined from the 
revision history of the software to rank the results in a 
useful way. With our checker we have been able to 
identify 98 instances in the Apache web server that we 
believe should be classified as bugs and need further 
inspection. 

In the future we want to identify other static bug 
checkers that can benefit from information mined from a 
CVS repository.  We also plan to refine our current static 
checker and run it on other software projects. 
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