
Bug Driven Bug Finders

Chadd C. Williams
Department of Computer Science

University of Maryland
chadd@cs.umd.edu

Jeffrey K. Hollingsworth
Department of Computer Science

University of Maryland
hollings@cs.umd.edu

Abstract

We describe a method of creating tools to find bugs in
software that is driven by the analysis of previously fixed
bugs. We present a study of bug databases and software
repositories that characterize commonly occurring types
of bugs. Based on the types of bugs that were commonly
reported and fixed in the code, we determine what types
of bug finding tools should be developed. We have
implemented one static checker, a return value usage
checker. Novel features of this checker include the use of
information from the software repository to try to
improve its false positive rate by identifying patterns that
have resulted in previous bug fixes.

1. Introduction

Static analysis of source code to locate bugs is a well-
researched area [3][9]. Static analysis has several well-
known benefits. Examining the source code without
actually executing the code makes the quality of test
suites, a hard problem, a moot point. Static analysis also
allows code to be tested that is difficult to run in all
environments, such as device drivers. There are a number
of systems that provide a means to write code snippets
that will be used to statically check code for one type of
bug or another [5][10].

It is easy for programmers to think about types of bugs
that might occur, and then devise a tool to look for these
bugs. However, the space of possible tools to build is
very large. Instead of creating solutions and looking for
bugs, we propose that efforts to build bug-finding tools
should start from an analysis of the occurrence of bugs in
real software, and then proceed to build tools to locate
these bugs. This paper describes a study of bug databases
and software repositories to determine what types of bugs
static checkers should be looking for by classifying the
types of bugs that are frequently reported and fixed in the
code.

2. Related Work

While previous work has tried to make general

predictions about faults and identify trends across the
software project from software repositories, our work is
concerned with specific bugs. We determine the types of

bug checkers that will be useful for a code base by
looking at the history of its development. We also feed
data mined from the revision history back into specific
bug detectors to make decisions on which flagged errors
are more likely to be true errors.

There are a large number of systems in use to statically
check source code for bugs. These systems have been
very successful in finding various types of bugs [2]. At
the very basic end of these systems are compilers that
perform type checking. A step beyond these are tools like
Lint that have a set of patterns to match against the code
to flag common types of programming errors [13].
Systems such as metal [6] allow the user to define what
type of patterns the static analysis checker should look for
via state machines that are applied to the source code.
Simple data flow analysis has also shown to be an
effective way to statically detect bugs [10].

While static checkers are effective at finding bugs,
they can produce a large number of false positives in their
results. Therefore, the ordering in which the results of a
static bug checker are presented may have a significant
impact on its usefulness. Checkers that have their false
positives scattered evenly throughout their results can
frustrate users by making true errors hard to find.
Previous work on better ordering of results has focused
on analyzing the code that contains the flagged error [11].
Unlike previous work, we will look at data collected over
the entire project and historical trends to rank our error
reports.

The historical data we use are mined from revision
histories stored in software repositories. Data from
software repositories has been used in a number of ways
to guide the software development process. The software
repository data has been used to identify high-risk areas
of the code based on change histories [4]. It has been
claimed that data based on change history is more useful
in predicting fault rates than metrics based on the code,
such as length [8]. Others have worked to identify
relationships between software modules by studying
which pieces of the source code are modified together
[7][14].

3. Mining Historical Data

The software development process produces a number
of artifacts as code is written and maintained. Chief
among them are bug databases and source code

reposit
these a

NU
Ret
Log
Uni
Erro
Ext
Sys
No

3.1 Th

To

databa
the cur
We lo
FIXED
the typ
reports
the fix

Our
numbe
databa
change
marked
develo
to be c
to reso
consist
develo
the bu
vague
We ha
specifi
attache
1 cont
identif

The
worth
errors
is expe
feature
code i
errors.
misund
how s
Apach
being f
the or
calcula
correct

N
R
U
F
F
E
L
S

Table 1: Bugs Identified in the Bug Database

LL pointer check 3
urn Value check 4
ic Errors/Feature Request 34
nitialized Variable Errors 1
r Branch Confusion 2

ernal Bugs (OS or other software failed) 2
tem specific pattern 1
identified code change 153
ories containing revision histories. We use both of
rtifacts to guide our research.

e Bug Database

start our investigation, we reviewed the bug
se for the Apache web server, httpd[1]. We studied
rent branch of the software, which is version 2.0.
oked at the first 200 bugs that were marked as
 and CLOSED. We were interested in identifying
es of bugs that were fixed and matching the bug
 back to specific source code changes to classify
ed bugs.
 search through the bug database produced a
r of interesting results. The bug reports in the bug
se rarely can be tied directly back to a source code
. We were only able to tie 24% of the bug reports
 as fixed directly back to a code change. While a

per can post a comment detailing what code needed
hanged, or denote which CVS commit was created
lve the bug, this is rarely done. Most bug reports
 of a discussion between the reporter and a
per. If the bug is fixed, the developer often ends
g report with a short comment that contains some
notion of where in the code the problem existed.
ve also seen cases where the developer will be very
c and explain exactly what needed to be fixed or
s a diff, but these seem to be the exception. Table
ains a breakdown of the bugs we were able to
y from the bug database.
 types of bugs we found in the bug database are
discussing. Most of the bugs we found were logic
or feature requests. Feature requests are just what
cted, a new feature for the software or porting a
 to a new platform. We categorize bugs where the
s correctly written to do the wrong logic as logic
 These bugs can arise from the developer
erstanding the specifications or not understanding

ome web browsers act (in the specific case of
e's httpd). These bugs do not lend themselves to
ound via static checking. Bugs of this type are on
der of implementing the incorrect function to
te a value, but doing the implemented calculation
ly.

A
data
repo
soft
Onl
aga
lead
foun
rele
bug

3.2

I
com
into
repo
con
a sp
out
pos
larg
sho
from

T
mor
a f
spec
num
ana
The
com
func
acco
com

4. S

M
can
the
che
on
man
Table 2: Bugs identified in the Software Repository

ULL pointer check 28
eturn Value Check 29
ninitialized Variable Errors 3
ailure to set value of pointer parameter 1
eature Request 1
rror caused by if conditional short circuiting 1
oop iterator increment error 3
ystem specific pattern 3
ll but three of the bug reports we reviewed in the bug
base came from users outside the project. These
rts were mostly against a released version of the

ware, rather than a random CVS dump of the source.
y 2 of the bug reports were marked as being reported
inst a CVS-HEAD version of the source code. This
s us to believe that most of the simple "statically
d" bugs are taken care of by the developers before a

ase is made. Hence, the users exercise few of these
s.

 The Software Repository

n order to understand what types of bugs are being
mitted to the software repository, but not making it
 a release, we inspected commit messages in the CVS
sitory. We looked for commit messages that

tained the strings 'fix', 'bug' or 'crash’ and did not have
ecific bug report listed. In this way we tried to weed
as many of the bugs from the bug database as

sible. Moreover, we only looked at files that had a
er number of commits to them, 50 or more. Table 2
ws the breakdown of the bugs we were able to identify

 the CVS repository.
he bugs found in the CVS repository were much
e amenable to identification by static analysis. While
ew continued to be the result of misunderstood
ifications or some other logic error, a significant
ber were also of the kind easily found by static

lysis: a problem with the code, not with the algorithm.
 two most common types of bugs found in the CVS
mits were NULL pointer checks and misuse of
tion return values. These two types of bugs
unted for 57 of the bugs we identified in the CVS
mits.

tatic Checker

any of the bugs found in the CVS history are good
didates for being detected by static analysis, especially
NULL pointer check and the function return value

ck. We chose to develop a return value checker based
the knowledge that this type of bug has been fixed
y times in the past. Additionally, a return value

checker can easily take advantage of data in the CVS
repository to refine its results.

4.1 Return Value Checker

The return value checker we wrote checks to see if,
when a function returns a value, that value is tested before
being used. Using a return value can mean passing it as
an argument to a function, using it as part of a calculation,
dereferencing the value if it is a pointer or overwriting the
value. The need for checking the return value is intuitive
in C programs since the return value of a function often
may be either valid data or a special error code. For
example, in the case of returning a pointer the error code
is often NULL. This error code could cause problems if
the return value is dereferenced without being tested. If
an integer value is returned, often -1 or 0 is an error code
and these values should not be used in arithmetic. Even
though the idea of a return value checker is not new [13],
basing the return value checker on aggregate data and bug
fix histories makes our approach novel.

Our checker categorizes each error it finds into one of
several categories. Errors are flagged for return values
that are completely ignored; the return value is never
stored by the calling function. Errors are also flagged for
return values that are used in some manner before being
tested in a control flow statement. See Table 3 for the
complete list of categories of errors our checker reports.

4.2 Ranking

The key to our checker is the ranking system used to
present the output in a useful manner. Error reports are
grouped by the called function. A function is ranked by
how often its return value is tested before being used.
This is an aggregate number generated by running the
checker over all of the code in the current version of the
software and tracking, for each function, the number of
times the function is called and after how many of these
calls the return value is used improperly. An improper
usage of a return value is defined as either never storing
the return value in the calling function or using the return
value, as previously defined, before it is tested. We base
our ranking on the notion that while developers produce
bugs, they generally know how to use the return values of
the functions they call and most often do so correctly.
The more often a function has its return value checked,
the more likely it is to need its return value checked. If a
function almost always has its return value checked, the
instances in which its return value is not checked are
highly suspect and are good candidates for being bugs.

We also gather data automatically from the CVS
commits to help with the ranking of the error reports. We
search the CVS commit history to determine when a bug
our checker would find has been fixed. The fact that the

developer took the time to change this code suggests that
it is an important change to make. We expect that the
called function in such a bug fix, the function that
previously did not have its return value checked, does
need its return value checked before being used. Each
such function we find is flagged as being involved in a
bug fix in a CVS commit. We refer to these functions as
being flagged with a CVS bug fix. We suspect when this
function is called the return value has a valid reason to be
checked before being used.

Our tool ranks errors involving functions flagged with
a CVS bug fix higher than all functions not so flagged.
Within each list of functions--with and without CVS bug
fixes--the functions are sorted by the percent of their
return values checked in the current snapshot of the
software. At the top of the list then, are functions that
very often have their return value checked and are flagged
with a CVS bug fix.

We used a simple heuristic to determine if a CVS
commit contains a return value check bug fix. The old
and new versions of the committed files are both checked
for return value check errors. For a given function in a
file and a given function called by that function, if the
new version has more return value checks that are not
errors than the old version, the commit is said to fix a
return value check bug for the called function. Note that
simply adding an additional function call that has its
return value checked makes it appear that a fix has been
made.

5. Case Study

We ran a case study of our checker on the Apache

httpd 2.0 source code. This is a large project with a deep
CVS history. Our study was confined to the 2.0 branch
and did not look into any code that resided solely in the
1.0 branch. The current snapshot contains about 200,000
lines of code and approximately 2,200 unique functions
are called. These numbers include the core of the web
server and optional modules. Our checker runs on Linux
and we only considered modules that would run on such a
system. We also included the Apache Portable Runtime
(apr and apr-util) since the web server will not compile
without it. The APR is a set of libraries produced by
Apache to push some of the platform specific wrapper
code out of httpd and give the developer a consistent set
of APIs to use for common tasks.

In order to search the CVS repository for bug fixes we
had to take a number of steps. For each CVS commit, we
checked out the version of the code from the repository
produced by that commit. We used the configure script
supplied with the software to generate necessary files,
including Makefiles. The Makefiles were used to
determine the command line options needed to run the
particular source file through our checker.

We
determi
a return
made to
our che
correctl
our pa
variable
parser [
gcc. M
give err
integer,
parser t
true typ
to the r
of type
was 58
parser
cause o

5.1 In
Our

snapsho
checker
produce
7,223 e

In se
that hav
least on
have th
current
flagged
(886) h
The rem
flagged
likely c
of 231
their re
100) of
function

Upo
could b
bugs fo

Igno
Argu
NUL
Calcu
Store
Unus
Store

Ig
A
N
C
S
U
S

Table 3: Errors, CVS Bug fix flagged functions

Checked
99% -51%

Checked
50% - 1%

red (I) 22 33
ment (A) 13 14
L dereference (N) 2 45
lation (C) 12 18
d, Unused (S) 8 27
ed on Path (P) 15 9
d, Untested (U) 6 7
successfully evaluated 5188 CVS commits to
ne which functions were involved in a CVS fix to
 value check. There were 3811 more commits
 the CVS repository that we could not run through
cker. Some CVS commits would not configure
y (1737). Some files contained C constructs that
rser could not handle, most notably having a
 number of arguments to a function (1027). The
12] we used was stricter with type checking than
any statements that would give warnings in gcc
ors in the parser. For instance, passing NULL, an
 to a function that expects a void* caused the
o raise an error. A number of commits also had
e errors where there was an actual bug checked in

epository that resulted in a type error. The number
 errors, which caused a commit not to be checked,
4. Also, source files raised an internal error in the
66 times. We were not able to track down the
f these internal errors.

itial Results
checker flagged 7,223 errors in the current

t of the httpd source. Each error flagged by the
 is an individual call site that has the return value
d by the called function used improperly. These

rrors represent calls to 866 unique functions.
arching the CVS commits, we found 75 functions
e a return value check bug fix and are called at
ce in the current CVS snapshot. Of those 75, 41
eir return value checked 100% of the time in the
CVS snapshot (55%) and so are involved in no
 errors. For comparison, 52% of all functions
ad their return value checked 100% of the time.
aining 34 functions are involved in 231 errors

 by our checker. We consider these 231 errors
andidates to be true errors. Note that this number
does not include errors for functions with none of
turn values checked, with large numbers (over
 unchecked return values or functions called via
 pointers.

n inspecting these 231 errors, we believe 61 errors
e true bugs and need further inspection. The 61
und in these errors gives a false positive rate of

74%
a C
resu

T
fix
the
fun
che
che
to
insp
bug
resu
4 fo

O
that
bug
The
pro
50%
unl
insp

A
pala
wou
insp
has
sim
pos
and
rev
wou

5.2
W

bug
ap_
to
acc
and
rep
The
eas
the
Table 4: Errors, non-CVS Bug fix flagged functions

Checked
99% -51%

 Checked
50%- 0%

nored (I) 67 2803
rgument (A) 48 1439
ULL dereference (N) 21 532
alculation (C) 10 61
tored, Unused (S) 32 429
nused on Path (P) 17 486
tored, Untested (U) 27 216
 for this chunk of our results (functions flagged with
VS bug fix). See Table 3 for the breakdown of these
lts.
here were 86 functions not flagged with a CVS bug

but with their return value checked more than 50% of
time in the current software snapshot. These

ctions account for 222 of the errors flagged by our
cker. Since these functions have their return values
cked more often than not, we expect these errors also
be likely candidates for being true errors. Upon
ecting these 222 errors, we believe 37 could be true
s and need further inspection. This chunk of our
lts produces a false positive rate of 83%. See Table
r the breakdown of these results.
verall we inspected 453 error reports and found 98

 we believe are suspicious and should be marked as a
. This gives an overall false positive rate of 78%.
 remaining 6,770 errors marked by our checker are
duced by functions whose return value is checked
 of the time or less and we expect these errors to be

ikely candidates to be true errors, thus we did not
ect them.
 false positive rate closer to 50% would be more

table. A threshold for false positives is 50% since we
ld like a user to be as likely as not to find a bug when
ecting an error reported by our tool. Our technique

 not yet achieved this false positive rate. However, a
ple Lint-like tool would have had a higher false
itive rate as each error report is given equal weight
 not ranked in any way. We would have had to
iew each of the 7,223 errors to find the 98 bugs, which
ld be 73 false positives for every real bug.

 A Bug Expressed

e were able to crash the httpd server by exploiting a
 found by our tool. The return value of the function
server_root_relative() is used directly as an argument
strcmp(). The function ap_server_root_relative()
epts two arguments, a fully qualified directory name
 a filename. The return value is a char* that
resents a path to a file, basically directory/filename.
 return value can be NULL in a number of cases. The

iest way to get the function to return NULL is to have
fully qualified name of the file (plus NULL

terminator) to be larger than 4096 bytes. In this section
of the source code, 4096 appears to be the size of all the
filename buffers. Obviously, if one passes a directory
and filename to the function that has a combined length of
more than 4096 the function will return NULL. If this
happens when the return value is used directly as an
argument to strcmp() httpd will crash.

6. Conclusions

In this paper we have presented a method of creating
bug-finding tools that is driven by the analysis of
previous bugs. We have shown that the bugs cataloged in
bug databases and those found by inspecting source code
change histories differ in their types and level of
abstraction. Bugs listed in a bug database are generally
reported by users outside of the development team and
are most often reported against a public release of the
software rather than a CVS snapshot. These bugs are also
of a more high level nature, involved with algorithmic
problems rather than simple coding problems.

We have shown that the past bug history of a software
project can be used as a guide in determining what types
of bugs should be expected in the current snapshot.
Moreover, such data can help to recommend which of a
group of bug reports are more likely to be true.

The checker we have implemented checks for function
return value usage errors and uses data mined from the
revision history of the software to rank the results in a
useful way. With our checker we have been able to
identify 98 instances in the Apache web server that we
believe should be classified as bugs and need further
inspection.

In the future we want to identify other static bug
checkers that can benefit from information mined from a
CVS repository. We also plan to refine our current static
checker and run it on other software projects.

7. Acknowledgements

This work was supported in part by DOE Grants DE-
FG02-93ER25176, DE-FG02-01ER25510, and DE-
CFC02-01ER254489 and NSF award EIA-0080206. We
would like to thank Dan Quinlan at Lawrence Livermore
National Laboratory for help in using the ROSE parser.

8. References

[1] Apache Web Server, httpd. Available online at

http://httpd.apache.org
[2] Ashcraft, K., Engler, D., Using programmer-written

compiler extensions to catch security holes. In Proceedings
IEEE Symposium on Security and Privacy, Oakland,
California, May 2002.

[3] Ball, T., Rajamani, S. K., The SLAM Project: Debugging
System Software via Static Analysis, In Proceedings of the

29th Symposium on Principles of Programming Languages
(POPL ’02), Jan 2002, Portland, Oregon, USA, pages: 1 –
3.

[4] Bevan, J., Whitehead, E. J., Identification of Software
Instabilities, In Proceedings of 10th Working Conference
on Reverse Engineering, (WCRE ’03) Victoria, British
Columbia, Canada, Nov 13-17, 2003. pages 134-143.

[5] Engler, D., Incorporating application semantics and control
into compilation, In Proceedings USENIX Conference on
Domain-Specific Languages (DSL'97), October 15-17,
1997.

[6] Engler, D., Chelf, B., Chou, A., Hallem, S., Checking
System Rules Using System Specific, Programmer-Written
Compiler Extensions. In Proceedings of the Fourth
Symposium on Operating Systems Design and
Implementation, San Diego, CA, October 2000.

[7] Gall, H., Jazayeri, M., Krajewski, J., CVS Release History
Data for Detecting Logical Couplings, In Proceedings of
the International Workshop on Principles of Software
Evolution (IWPSE ‘03), Helsinki, Finland, September
2003, pages 13-23.

[8] Graves, T. L., Karr, A. F., Marron, J. S., Siy, H., Predicting
fault incidence using software change history, IEEE
Transactions on Software Engineering, Vol 26, Issue 7,
July 2000. pages: 653 – 661

[9] Heine, D. L., Lam, M. S., A Practical Flow-Sensitive and
Context-Sensitive C and C++ Memory Leak Detector In
Proceedings of the Conference on Programming Language
Design and Implementation (PLDI ’03), June 2003.

[10] Hovemeyer, D., Pugh, W., Finding Bugs Is Easy,
unpublished,
http://www.cs.umd.edu/~pugh/java/bugs/docs/findbugsPap
er.pdf

[11] Kremeneck, T., Engler, D., Z-Ranking: Using Statistical
Analysis to Counter the Impact of Static Analysis
Approximations, In Proceedings of 10th Annual
International Static Analysis Symposium, (SAS ’03) San
Diego, CA, USA, June 2003. pages 295-315.

[12] Quinlan, D., ROSE: A Preprocessor Generation Tool for
Leveraging the Semantics of Parallel Object-Oriented
Frameworks to Drive Optimizations via Source Code
Transformations. In Proceedings Eighth International
Workshop on Compilers for Parallel Computers (CPC ’00),
Aussois, France, Jan 4-7, 2000.

[13] Unix Time Sharing System Programmer’s Manual, AT&T
Bell Laboratories, 1979. Seventh Edition, Volume 2a.

[14] Ying, A. T. T., Murphy, G. C., Ng, R. T., Chu-Carroll, M.
C., Using version information for concern inference and
code-assist. Position paper for Tool Support for Aspect-
Oriented Software Development Workshop at the
Conference on Object Oriented Programming, Systems
Language and Applications (OOPSLA ‘02), Seattle, WA,
USA, November 4-8, 2002.

http://httpd.apache.org/

