
Security Testing
Course + Lab, Spring 2017

Andreas Zeller, Saarland University

External Attacks

Program

☣

Program

• Some external event 
causes a change in program behavior

Highjacking a Car

techmor.com

http://techmor.com

Highjacking a Car

• All car components are connected via a
bus system (CAN bus)

• Includes engine control, power steering,
controls, entertainment system

• Hardware controls tight access rules –  
e.g. entertainment system can only read,
not write

Highjacking a Car
1. Connect to entertainment system via public

WiFi access

2. Exploit vulnerability to get control over
system

3. Flash chip that controls CAN bus access to
get full writing capabilities

4. Voilá! Full control over car.

A Simple Vulnerability

• No checking for length of buffer name

• Can overwrite stack with code and 
new return address that jumps into code

• Any simple test would find that!

while ((cc = getch()) != c)
{
 name[j++] = cc;
 ...
}

Security by Proof

Systems that are provably secure ensure that

• specific attacks are impossible 
e.g. no buffer overflows, or no SQL injection

• they will always behave as designed 
e.g. will always produce a correct result

Requires (expensive) mathematical proof

Security by Testing
Systems that are thoroughly tested ensure

• Low probability of attack success 
because several attacks already have been tested

• High complexity of remaining attacks  
because simple attacks already have been tested

• Cost-efficient if highly automated

But no guarantee of absence of bugs

Security Testing

• Introduces you to 
automated techniques for security testing

• Enables you to implement and use such
techniques

• Aim: Smart ways to break systems

Course Contents

• Simple fuzzing techniques 
generating random inputs to programs

• Simple reduction techniques 
to determine failure-inducing inputs

• Mutation techniques 
changing existing (valid) inputs

Course Contents

• Structured fuzzing techniques 
using grammars and models

• Adaptive fuzzing techniques  
driven by code coverage

• Automatic inference of input structure 
so you can effectively fuzz arbitrary programs

Course Format

• Lecture in the morning (09:00–10:30)

• Programming Lab for the rest of the day

• Runs for two weeks (starting today)

• At end, two weeks for individual project

Assignments

• Over the course, you build four projects
that implement course content

• We provide sample code from lecture as
starting point

• Will be graded by their efficiency on a set
of (buggy) subjects

• We provide sample subjects for training

Individual Project

• After two weeks, use the course content
to create your own security tester

• Choose domain, techniques as you like

• Submission due after two more weeks

• Will be graded for creativity and efficiency

Programming 
Language

By Doc Searls – 2006oscon_203.JPG, CC BY-SA 2.0 
https://commons.wikimedia.org/w/index.php?curid=4974869

https://commons.wikimedia.org/w/index.php?curid=4974869

• Compact, easy to read, easy to learn 
You can learn basic Python in 1–2 hours

• Great libraries for string manipulation 
Creating, parsing, manipulating is very easy

• Great features for dynamic analysis  
You can write a debugger in ~10 lines

fuzzer.py
import random

def fuzzer():
 # Strings up to 1024 characters long
 string_length = int(random.random() * 1024)

 # Fill it with ASCII 32..128 characters
 out = ""
 for i in range(0, string_length):
 out += chr(int(random.random() * 96 + 32))
 return out

if __name__ == "__main__":
 print(fuzzer())

Fuzzer Output
[;x1-GPZ+wcckc];,N9J+?#6^6\e?]9lu2_%'4GX"0VUB[E/r
~fApu6b8<{%siq8Zh.6{V,hr?;{Ti.r3PIxMMMv6{xS^+'Hq!
AxB"YXRS@!Kd6;wtAMefFWM(`|J_<1~o}z3K(CCzRH JIIvHz>_*.
\>JrlU32~eGP?lR=bF3+;y$3lodQ<B89!5"W2fK*vE7v{')KC-
i,c{<[~m!]o;{.'}Gj\(X}EtYetrpbY@aGZ1{P!AZU7x#4(Rtn!
q4nCwqol^y6}0|Ko=*JK~;zMKV=9Nai:wxu{J&UV#HaU)*BiC<),`
+t*gka<W=Z.%T5WGHZpI30D<Pq>&]BS6R&j?#tP7iaV}-}`\?
[_[Z^LBMPG-FKj'\xwuZ1=Q`^`5,NQ@[!CuRzJ2D|vBy!
^zkhdf3C5PAkR?V hn|3='i2Qx]D
$qs4O`1@fevnG'2\11Vf3piU37@55ap\zIyl"'f,
$ee,J4Gw:cgNKLie3nx9(`efSlg6#[K"@WjhZ}r[Scun&sBCS,T[/
vY'pduwgzDlVNy7'rnzxNwI)(ynBa>%|b`;`9fG]P_0hdG~$@6
3]KAeEnQ7lU)3Pn,0)G/6N-wyzj/MTd#A;r

Fuzzer

Fuzzing 
Random Testing at the System Level

Program

Security Testing

• Introduces you to 
automated techniques for security testing

• Enables you to implement and use such
techniques

• Aim: Smart ways to break systems

Course Format

• Lecture in the morning (09:00–10:30)

• Programming Lab for the rest of the day

• Runs for two weeks (starting today)

• At end, two weeks for individual project

Assignments

• Over the course, you build five test
generators that implement course content

• We provide sample code from lecture as
starting point

• Will be graded by their efficiency on a set
of (buggy) subjects

• We provide sample subjects for training

Individual Project

• After two weeks, use the course content
to create your own security tester

• Choose domain, techniques as you like

• Submission due after two more weeks

• Will be graded for creativity and efficiency

Course Contents

• Simple fuzzing techniques 
generating random inputs to programs

• Simple reduction techniques 
to determine failure-inducing inputs

• Mutation techniques 
changing existing (valid) inputs

Course Contents

• Structured fuzzing techniques 
using grammars and models

• Adaptive fuzzing techniques 
driven by code coverage

• Automatic inference of input structure 
so you can effectively fuzz arbitrary programs

four test

