Security Testing

Course + Lab, Spring 2017

Andreas Zeller, Saarland University

Hackers Remotely Kill a Jeep on the Highway—WithMeinlt ~ susscmise y o,

SSSSSSSS

HACKERS REMOTELY RILL A JEEP ON THE
HIGHWAY=WITH MEINIT

Thermostats can now get infected with
ransomware, because 2016

-Jr MATTHEW HUGHES y

GADGETS

thenextweb,.com

Credat: Ken Munro

Recommended

o‘ 5 reasons why wearables are
a(" |% stillruling our wrists (and
D . ¢ everywhere else)

Most popular

Google Maps now has a
‘Catching Pokémon' feature in
Timeline

Facebook Is testing a new
Twitter-like feature to boost
conversations

The world's first VR ballet
experience Is absolutely
stunning

The best Apple Keynotes to
watch before wWednesday's
IPhone 7 Keynote

warner Bros, shoots itself In
the foot as It flags Its own
website for piracy

The JOY of Tech.. by Nitrozac & Snaggy

The Internet of ransomware things...

.....

<=

ON STRIKE -
HUNGRY? UNTIL YOU
PAY UP AND SEND MONEY
ILL UNLOCK TO MY) A0 BAVEAL THE NEXT TIME
HACKERS. ACCOUNT YOU LEAVE, IT/LL
/ ILL BE COST YOU 100
OR I'LL ONLY | [BURNING THE BUCKS TO GET
BREW TOAST IF YOU BACK INTO THE
DON‘T GET HOUSE, UNLESS
ME SOME YOU GIVE ME

$75 NOW!

=
YOUR DIRTY
DISHES CAN

YOUR CAR, BUT
ONLY TO TAKE

YOU TO YOUR
BANK TO MAKE
IF YOU DONT _A TRANSFER.
SEND US CASH,

YOUR REPUTATION
WILL BE IN THE
TRASH.

EXCUSE US

WHILE WE
WIRE MY WAIT, I'M | PARTICIPATE
HACKER $100 BUSY MINING IN A DDOS
OR I’LL REVERSE BITCOINS. ATTACK.
MY MOTOR AND _
BLOW DIRT ALL
OVER THIS
PLACE/

SEND ME 425 OR
I’LL TELL EVERYONE
ON YOUR SOCIAL
NETWORK THAT YOU
WERE STUPID ENOUGH
TO BUY AN INTERNET-
CONNECTED BROOM/

30 BUCKS IN
BITCOIN, OR NEXT
TIME I SMELL
SMOKE, I MIGHT
JUST LET YOU
SLEEP.

MY ALARM
SYSTEM IS
GOING TO GO
OFF RANDOMLY
THROUGHOUT
THE NIGHT,
UNLESS YOU

“DONATE". /

s o

[I’M TURNING

OFF THE
HEAT UNTIL
YOU WARM UP
MY BANK
\Accourm/

External Attacks

e Some external event
causes a change in program behavior

Highjacking a Car

techmor.com

http://techmor.com

Highjacking a Car

e All car components are connected via a
bus system (CAN bus)

e [ncludes engine control, power steering,
controls, entertainment system

e Hardware controls tight access rules —

e.g. entertainment system can only read,
not write

Highjacking a Car

. Connect to entertainment system via public
WiFi access

. Exploit vulnerability to get control over
system

. Flash chip that controls CAN bus access to
get full writing capabilities

. Voila! Full control over car.

A Simple Vulnerability

while ((cc = getch()) != c)
{

name[j++] = cc;

}

e No checking for length of buffer name

e (Can overwrite stack with code and
new return address that jumps into code

e Any simple test would find that!

Security by Proof

Systems that are provably secure ensure that

e specific attacks are impossible
e.g. no buffer overflows, or no SQL injection

o they will always behave as designed
e.g. will always produce a correct result

Requires (expensive) mathematical proof

Security by Testing

Systems that are thoroughly tested ensure

o [ow probability of attack success
because several attacks already have been tested

e High complexity of remaining attacks
because simple attacks already have been tested

o (Cost-efficient if highly automated

But no guarantee of absence of bugs

Security Testing

Introduces you to
automated techniques for security testing

Enables you to implement and use such
techniques

Aim: Smart ways to break systems

Course Contents

e Simple fuzzing techniques
generating random inputs to programs

e Simple reduction techniques
to determine failure-inducing inputs

e Mutation techniques
changing existing (valid) inputs

Course Contents

e Structured fuzzing techniques
using grammars and models

e Adaptive fuzzing techniques
driven by code coverage

e Automatic inference of input structure
so you can effectively fuzz arbitrary programs

Course Format

Lecture in the morning (09:00-10:30)
Programming Lab for the rest of the day
Runs for two weeks (starting today)

At end, two weeks for individual project

Assignments

Over the course, you build four projects
that implement course content

We provide sample code from lecture as
starting point

Will be graded by their efficiency on a set
of (bugqy) subjects

We provide sample subjects for training

Individual Project

After two weeks, use the course content
to create your own security tester

Choose domain, techniques as you like
Submission due after two more weeks

Will be graded for creativity and efficiency

-'-
Programming l

Language /o

By Doc Searls - 20060scon_203.JPG, CCBY-SA 2.0 ¢
https://commons.wikimedia.org/w/index.ph ?curi 4974869

https://commons.wikimedia.org/w/index.php?curid=4974869

@ python

e Compact, easy to read, easy to learn
You can learn basic Python in 1-2 hours

o Great libraries for string manipulation
Creating, parsing, manipulating is very easy

o Great features for dynamic analysis
You can write a debuggerin ~10 lines

fuzzer.py

import random

def fuzzer():
Strings up to 1024 characters long
string_length = int(random.random() *x 1024)

Fill 1t with ASCII 32..128 characters
Out — 1nil
for i in range(@, string_length):
out += chr(int(random.random() * 96 + 32))
return out

L _main_
print(fuzzer())

if name__ ==

Fuzzer Output

[;x1-GPZ+wcckc];,N9J+7#6/6\e?]91u2_%'4GX"OVUBIE/r
~fApubb8<{%sigq8Zh.6{V,hr?:{Ti.r3PIXMMMv6{xS*+'Hq!
AxB"YXRS @ !Kd6;wtAMefFWM('I1J_<1~0}z3K(CCzRH JllvHz>_*.
\>JrlU32~eGP?IR=bF3+;y$3l0dQ<B89!5"W2fK*VE7V{")KC-
L,c{<[~m!]o{.TG\X}EtYetrpbY @aGZ1{P!AZU7x#4(Rtn!
g4nCwqolry6}0IKo="JK~;zMKV=9Nai:wxu{J&UV#HaU)*BiC<),
+t*gka<W=2Z.%T5WGHZpI30D<Pg>&]|BS6R&|?#tP7iaV}-}'\?

[[ZALBMPG-FKj\xwuZ1=Q ' 5,SNSQ@[!CuRzJ2DIvBY!
AzkhdfBC5PAKR?V hnl3='i2Qx]D

$gs40’ 1 @fevnG'2\11V{3piU37 @55ap\zly|"*,
$ee,J4Gw:cgNKLie3nx9(efSIge#[K" @WjhZ}r[Scun&sBCS, T[/
vY'pduwgzDIVNy7'rnzxNwl)(ynBa>%Ib"; 9fG]P_O0hdG~3 @6
3]KAeENQ7IU)3Pn,0)G/6N-wyzj/MTd#A;r

Fuzzing

Random Testing at the System Level

Security Testing

Introduces you to

automated techniques for security testing

Enables you to implement and use such
techniques

Aim: Smart ways to break systems

Lecture in the morning (09:00-10:30)
Programming Lab for the rest of the day
Runs for two weeks (starting today)

At end, two weeks for individual project

Assignments

Over the course, you build four test
generators that implement course content

We provide sample code from lecture as
starting point

Will be graded by their efficiency on a set
of (buggy) subjects

We provide sample subjects for training

Course Contents

Simple fuzzing techniques
generating random inputs to programs

Simple reduction techniques
to determine failure-inducing inputs

Mutation techniques
changing existing (valid) inputs

Structured fuzzing techniques
using grammars and models

Adaptive fuzzing techniques
driven by code coverage

Automatic inference of input structure
so you can effectively fuzz arbitrary programs

Individual Project

After two weeks, use the course content
to create your own security tester

Choose domain, techniques as you like
Submission due after two more weeks

Will be graded for creativity and efficiency

